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Abstract: Medical image annotation is a major hurdle for developing precise and robust machine-
learning models. Annotation is expensive, time-consuming, and often requires expert knowledge,
particularly in the medical field. Here, we suggest using minimal user interaction in the form of
extreme point clicks to train a segmentation model which, in effect, can be used to speed up medical
image annotation. An initial segmentation is generated based on the extreme points using the random
walker algorithm. This initial segmentation is then used as a noisy supervision signal to train a fully
convolutional network that can segment the organ of interest, based on the provided user clicks.
Through experimentation on several medical imaging datasets, we show that the predictions of the
network can be refined using several rounds of training with the prediction from the same weakly
annotated data. Further improvements are shown using the clicked points within a custom-designed
loss and attention mechanism. Our approach has the potential to speed up the process of generating
new training datasets for the development of new machine-learning and deep-learning-based models
for, but not exclusively, medical image analysis.

Keywords: image segmentation; image annotation; weak supervision

1. Introduction

A major bottleneck for the development of novel machine-learning (ML)-based models
is the annotation of datasets that are useful to train such models. This is especially true
for healthcare applications, where annotation typically needs to be performed by experts
with clinical domain knowledge. This bottleneck often inhibits our ability to integrate
ML-based models into clinical workflows. At the same time, there is a growing demand for
ML methods to improve clinical image analysis workflows, driven by the growing number
of medical images taken in routine clinical practice.

In particular, volumetric analysis has shown several advantages over 2D measure-
ments for clinical applications [1], which in turn, further increases the amount of data
(a typical CT scan contains hundreds of slices) needing to be annotated to train accurate
3D models. Apart from acquiring accurate measurements, volumetric segmentation is
widely desirable for visualization, 3D printing, radiomics, radiation treatment planning,
image-guided surgery, and registration. Despite the increasing need for 3D volumetric
training data to train accurate and efficient ML models for medical imaging, the major-
ity of annotation tools available today are constrained to performing the annotation in
multiplanar reformatted views. The annotator needs to either use a virtual paint brush
or draw boundaries around organs of interest, often on a slice-by-slice basis [2]. Classical
techniques such as 3D region-growing or interpolation can speed up the annotation process
by starting from seed points or sparsely annotated slices, but its usability is often limited to
certain types of structures. Some tools allow the user to skip certain regions of the image
using interpolation between slices or cross-sectional views which can be helpful, but they
often ignore the underlying image information. Hence, these approaches cannot always
generalize to the varied use cases in medical imaging.
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In this work, we propose to use only minimal user interaction in the form of extreme
point clicks to train a deep-learning (DL)-based segmentation model with minimal anno-
tation burden. “Extreme points” are user-provided clicks that lie on the surface of the
organ of interest and define the extent of that organ along each image dimension in a
three-dimensional medical image. The proposed approach integrates an iterative training
and refinement scheme to gradually improve the models” performance. Starting from the
user-defined extreme points along each dimension of a 3D medical image, an initial seg-
mentation is produced based on the random walker (RW) algorithm [3]. This segmentation
is then used as a noisy supervisory signal to train a fully convolutional network (FCN)
that can segment the organ of interest based on the provided user clicks. Furthermore,
we propose several variations on the deep-learning setup to make full use of the extreme
point information provided by the user. For example, we integrate the point information
into a novel point-based loss function and combine it with an attention mechanism to
further guide the segmentations. Through large-scale experimentation, we show that the
network’s predictions can be iteratively refined using several rounds of training and pre-
diction while only using the same weakly annotated point data as our manually provided
supervision signal.

1.1. Related Work
1.1.1. Segmentation Networks

Fully convolutional networks (FCNs) [4] have established themselves as the state-
of-the-art methods for medical image segmentation in recent years [5-9]. However,
a major drawback is that they are very data-hungry, limiting their application in health-
care where data annotation is very expensive. To reduce the cost of labeling, semi-
automated/interactive and weakly supervised methods have been proposed in the litera-
ture [10,11].

1.1.2. Interactive Segmentation

The integration of semi-automated approaches has been an active area of develop-
ment [12], typically using classical methods such as graph cut [13], random walks [3],
active shape models [14,15], and others [16]. Machine-learning methods have also been
considered to be a viable way for interactive algorithms. In Wang et al. [17], an online
random forest is used in combination with conditional random fields and 4D graph cuts
to segment, in a minimally interactive framework, the human placenta in fetal MRI scans.
Recently, building on advances in deep learning, several new methods have been proposed.
One popular form of interaction is user-drawn scribbles. In Amrehn et al. [18], a user can
iteratively add scribble hints as seed points to improve the segmentation result given by an
FCN. In Wang et al. [19], the DeeplGeoS algorithm leverages geodesic distance transforms
and scribbles to allow interactive segmentation. An alternative method [20] uses image-
specific fine-tuning and leverages both bounding boxes and scribble-based interaction.
Can et al. [21] proposes to use scribbles with random walks [3] and FCN predictions to
achieve semi-automated segmentation. Scribbles are also used to generate pixel-level maxi-
mum category likelihood via propagation to their neighborhood in [22]. Instead of scribbles,
point clicks is another widely practiced interaction. In Sakinis et al. [23], the authors use the
clicks as Gaussian kernels and put them in a separate input channel to an FCN to model
user interactions via seed-point placing. Khan et al. [24] extends the Gaussian kernel idea
to a confidence map derived from extreme points that quantitatively encodes some priors.
Majumder and Yao [25] transforms the positive and negative clicks into images based
on superpixel and object proposals, so that image information can be used with clicks to
generate a guidance map. In addition to scribbles and points, Ling et al. [26] parameterizes
the segmentation boundary as polygons/splines, which are further modeled as a graph.
Location shifts for each node are then predicted via Graph Convolutional Networks (GCN).
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1.1.3. Weakly Supervised Segmentation

Weak supervision significantly reduced the time needed for user annotation, and there-
fore is an important research area for DL. One popular idea is to apply classical non-
learning-based methods over a DL-generated feature map. For example, in Dias and
Medeiros [27], Monte Carlo region-growing is triggered from confidence scores given by a
network, and in Cerrone et al. [28], random walks is performed over learned edge weights.
An “opposite” idea is to use classical unsupervised methods as initial estimate for further
learning process. In Rajchl et al. [29], an initial GrabCut segmentation is used for this pur-
pose, and segmentation performance is then improved with several rounds of predictions
using CNN plus Dense CRF post-processing. Similarly, in Zhang et al. [30], segmentation
results based on K-means are used to train a deep segmentation network on cystic lung
regions. Without proper supervision, such approaches might work well if unsupervised
techniques can have good enough initial performance. However, completely unsupervised
techniques might fail to generalize to organs where the boundary information is not as
clear. One possible way to address this issue is to add a confidence network [31] to judge
the quality of additional information generated, so that unlabeled data can be included
to adversarially train the segmentation network. More recently, Kervadec et al. [32] intro-
duced inequality constraints based on target-region size and image tags in the loss function
of a CNN to train the network for weakly supervised segmentation. Instead of information
extracted by classical methods, weakly supervised or self-learning can also make use of
measurements readily available, or use non-experts’ judgements. One example is the mea-
surements acquired during evaluation of the RECIST criteria [33] in the hospital picture
archiving and communication system (PACS). However, such measurements are typically
constraint to 2D and might miss adequate constraints for more complex three-dimensional
shapes. Non-expert annotations can be acquired by using crowd-sourcing platform, Rajchl
et al. [34] distributes superpixel weak annotation tasks and collects such annotations from a
crowd of non-expert raters, and further use them as weak supervision for network training.

1.2. Contributions

This work follows our preliminary study presented in [35] which investigated a 3D ex-
tension of [36] in a weakly supervised setting and building on random walker initialization
from scribbles. In this work, we extend this approach and add the following contributions:

¢  We use a modern network architecture shown to be very efficient for medical image
segmentation tasks, namely the architecture proposed in Myronenko [9] and integrate
the attention mechanism proposed by Oktay et al. [37].

*  We make proper use of the point channel information not just at the input level of the
network, but throughout the network, namely in the new attention gates.

*  We furthermore propose a novel loss function that integrates the extreme point
locations to encourage the boundary of our model’s predictions to align with the

clicked points.

*  We extend the experimentation to a new multi-organ dataset that shows the generaliz-
ability of our approach.

2. Method

The starting point for our framework is a set of user-provided clicks on the extreme
points {e} that lie on the surface of the organ of interest. We follow the approach of
Maninis et al. [36] and assume the users to provide only the extreme points along each
image dimension in a three-dimensional medical image. This information is then used at
several places within the network and during our iterative training scheme. The overall
proposed algorithm for weakly supervised segmentation from extreme points can be
divided into the steps which are detailed below:

1.  Extreme point selection
2. Initial segmentation from scribbles via random walker (RW) algorithm
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3.  Segmentation via deep fully convolutional network (FCN), where we explore several
variations on the training scheme

(a) Without RW and Dice loss

(b) With RW but without the extra point channel and Dice loss
(c)  With RW and Dice loss

(d) With RW and Dice loss and point loss

(e)  With RW and Dice loss and point loss and attention

(f)  With RW and Dice loss and point loss and point attention

4. Regularization using random walker algorithm

Steps 2, 3, and 4 will be iterated until convergence. Here, convergence is defined based
on a holdout validation set which is used to select the best model during training.

2.1. Step 1: Extreme Point Selection

Defining extreme points {e} on the surface of the organ will allow the extraction of a
bounding box around the organ of interest. Additional padding is typically useful to allow
the network to learn some contextual information around the organ of interest.

Bounding box selection significantly reduces the image content to be analyzed and
simplifies the machine-learning problem, as previous work on cascaded approaches
showed [38]. The computer vision literature has extensively studied bounding boxes and
extreme points on objects [36]. They give some advantages over the technical drawbacks of
bounding box selection in which the user often must pick the corners of bounding boxes out-
side of the object of interest. This is particularly difficult to do for three-dimensional objects
where users typically must traverse three multiplanar reformatted views (axial, coronal,
sagittal) to accomplish the task. Recent studies also demonstrated the time savings achieved
with extreme point selection instead of conventional bounding box selection [36,39]. At the
same time, extreme points can provide the segmentation model with additional information
which can be seen in our experimental section, Table 1 where we compare various ways of
integrating the extreme point information into the model training. They lie on the surface
of the object. In the basic approach, we can model them together with the image intensities
as an additional input channel. This extra channel G({e}) includes 3D Gaussians centered
on each user clicked point location e. This approach is similar to Maninis et al. [36] but we
have extended this approach to problems with 3D medical imaging. At the same time, we
can use the point information to guide the loss function towards making predictions whose
boundary aligns with the point locations (see Section 2.9) or use it as an additional signal
that can be used to guide model attention mechanisms (see Section 2.7).

Figure 1 illustrates the different ways of how the extreme point information can be
used by our proposed network architecture. We ask the user to click on six extreme points
that describe the largest extent of the organ. Here, six click locations are shown after
conversion to Gaussians in the extra input channel to the network, loss, and attention gates.
These points are then used to compute a bounding box B automatically, including some
padding p. In this study, we extract the extreme points automatically during training from
a given ground truth mask. In order to simulate user interaction, we add some Gaussian
noise ¢ to the x,y, z point locations at each DL training iteration as in Maninis et al. [36].
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Table 1. Summary of our weakly supervised segmentation results on validation data. This table compares the random walker initialization (rnd. walk. init.) with the weakly supervised
training approach using Dice loss (DL) (weak. sup. dextr3D (w/o RW) DL), without the extra point channel information as input to the network (weak. sup. dextr3D (w RW; no extr. points.
channel) DL), when using the point channel as input (weak. sup. dextr3D (w RW) DL), using the proposed point loss (PL) together with DL (weak. sup. dextr3D (w RW) Dice + PL), integrating
the attention mechanism as in Oktay et al. [37] (weak. sup. dextr3D (w RW) Dice + PL + Attn.), attention with point channel information at attention gates (weak. sup. dextr3D (w RW) Dice +
PL + Pt. Attn.), and fully sup. (dextr3D DL) for reference on different datasets.

Dice [Mean =+ std (Median)] MSD-Spleen MO-Spleen MO-Liver MO-Pancreas MO-L.Kidney MO-Gallbladder
rnd. walk. init. 0.922 £ 0.018 (0.922) 0.830 & 0.144 (0.913) 0.786 & 0.146 (0.847) 0.458 + 0.206 (0.414) 0.741 + 0.137 (0.815) 0.638 + 0.195 (0.619)
weak. sup. (w/o RW) DL 0.939 £ 0.011 (0.943) 0.942 + 0.009 (0.939) 0.924 £ 0.020 (0.924) 0.656 £ 0.089 (0.634) 0.878 4 0.034 (0.893) 0.678 £ 0.194 (0.740)
weak. sup. (w RW; no extr. points. channel)DL 0.945 + 0.012 (0.950) 0.942 £ 0.009 (0.937) 0.940 & 0.011 (0.942) 0.637 & 0.166 (0.664) 0.900 =+ 0.013 (0.899) 0.677 & 0.252 (0.787)
weak. sup. (w RW)DL 0.946 & 0.011 (0.950) 0.944 £ 0.023 (0.945) 0.937 4 0.013 (0.941) 0.700 =+ 0.068 (0.676) 0.909 =+ 0.017 (0.907) 0.701 4 0.209 (0.795)
weak. sup. (W RW)Dice + PL 0.946 & 0.010 (0.949) 0.945 =+ 0.019 (0.947) 0.939 =+ 0.012 (0.940) 0.726 =+ 0.080 (0.746) 0.906 =+ 0.024 (0.909) 0.719 + 0.186 (0.789)
weak. sup. (w RW)Dice + PL + Attn. 0.945 £ 0.013 (0.948) 0.924 £ 0.053 (0.948) 0.920 £ 0.059 (0.943) 0.451 + 0.124 (0.427) 0.905 =+ 0.023 (0.907) 0.606 £ 0.256 (0.632)

weak. sup. (w RW)Dice + PL + Pt. Attn.

fully sup. DL

0.948 + 0.011 (0.950)
0.958 + 0.007 (0.959)

0.945 + 0.021 (0.943)
0.954 £ 0.027 (0.959)

0.939 £ 0.013 (0.939)
0.956 + 0.010 (0.957)

0.703 £ 0.077 (0.688)
0.747 + 0.082 (0.721)

0.913 =+ 0.013 (0.916)
0.942 + 0.019 (0.946)

0.702 + 0.184 (0.773)
0.715 + 0.173 (0.791)
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Figure 1. A high-level overview of our proposed network architecture and weakly supervised
learning approach. First, the user selects six extreme points that define the 3D bounding box around
the organ of interest and are used to automatically generate the scribbles that are the input (together
with the image) to the random walker algorithm, whose output prediction serves as the supervision
signal for training the segmentation network. The network receives both a image channel input and a
point channel input that represents the user-provided extreme points. The point channel is then used
throughout the network to further guide the segmentation training, i.e., as an additional input to
attention gates and in the loss function. The feature shapes of each layer of the encoder are shown for
the setting used in this study.

After cropping the image based on B, we resize each bounding box region to a
constant size S = sy X sy X s,. In all our experiments we set sy = s, = s; = 128 and choose
p =20 mm which can include enough contextual information for typical applications of
clinical CT scanning (see Section 3).

2.2. Step 2: Initial Segmentation from Scribbles via Random Walker Algorithm

In this step, we generate a set of scribbles or seed points S = {sg,s1} as input for
the random walker algorithm [3] whose output is a probability map Y. This map ¥
then acts as a pseudo-dense or “noisy” label map used to supervise a 3D deep network
learning the segmentation task. The foreground scribbles s; and background scribbles s are
automatically generated from the initial set of extreme points {e} by computing the shortest
path between each extreme point pair along each image axis via the Dijkstra algorithm [40].
Here, we model the distance between neighboring voxels by their gradient magnitude

AN AN A
D= — — = 1
\/<ax) () < (%) W
where I denotes the image intensity. The resulting path can be seen as an approximation of
the geodesic distance between the two extreme points in each dimension [19] with respect
to the content of the image. Figure 2 displays the foreground scribbles to be used for

the random walker algorithm used as input seeds and shows the ground truth surface
information for reference. Please note that this ground truth is not used to compute the
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scribbles (apart from simulating the extreme points). To increase the number of foreground
seeds s; for the random walker, each path will also be dilated with a 3D ball structure
element of radius r; = 2. The background seeds s are estimated as the dilated and inverted
version of the input scribbles. The amount of dilation needed for successful initialization
depends on the size of the organ of interest. We typically dilate the scribbles with a ball
structure element of radius rg = 30, which achieves good initial seeds for organs such as
the spleen and liver (see Figure 3).

Br&e

(b) (0) (d) (e)

Figure 2. Examples of automatically created foreground “scribbles” (yellow) from extreme point clicks, modeled as 3D

Gaussians in our network learning. We use a geodesic shortest path algorithm to compute a scribble based on the image

information alone that connects two opposing extreme points across one of the three image dimensions. (a—e) are showing
examples from MSD-Spleen, MO-Spleen, MO-Liver, MO-Pancreas, MO-L.Kidney, and MO-Gallbladder, respectively. The surface
rendering show the ground truth segmentations for reference in red. Best viewed in color.

2.3. Random Walker

Next, the random walker algorithm [3] is used to produce an initial prediction map ¥
based on the background sy and foreground s; scribbles mentioned above. The random
walker basically solves the diffusion equation between voxels by turning the scribbles
S = {sp, 51} into a source and sink. The 3D volume here is defined as a G(E, V') graph with
¢ € Eedges and v € V vertices. Each edge between two vertices of v; and v; is referred
to as ¢;; and a weight of w;; can be assigned based on gradients of the image intensities.
In addition, d; = }_ w;; defines the degree of a given vertex. To get a probability p(w|x) of
whether each vertex v; belongs to the foreground w, we solve the diffusion equation. L
is the Laplacian matrix of the weighted image graph G with each element of the matrix
defined as:

d;, ifi =j,
Lijj = { —wjj, ifiand jare adjacent voxels, )
0, otherwise
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MO-Spleen

MO-Liver

MO-Pancreas

MO-L.Kidney

MO-Gallbladder

@) (b) (e)

Figure 3. Our results on six different segmentation tasks on example cases from the validation set. We show (a) the image

after cropping based on extreme points, (b) overlaid (full) ground truth (used for evaluation only), (c) initial random
walker prediction, (d) our final segmentation result produced by the weakly supervised segmentation scheme, (e) the fully
supervised result for reference. Specifically, we compare example cases for weak. sup. dextr3D (w RW) Dice + Point loss +
Point Attn and fully sup. dextr3D Dice loss for (d,e), respectively. The probability maps are scaled between 0 and 1 and we
show all non-zero probabilities.

The weights between adjacent voxels can be defined as w;; = e PlE~%  This will
make the diffusion between similar voxel intensities z; and z; easier and hence allow them
to be assigned to the same class. Here, § is a tunable hyperparameter that controls the
amount of diffusion. We keep B = 130 in all our experiments. By separating the voxels
marked by scribbles S and unmarked voxels, the Laplacian matrix L can be decomposed

into blocks.
| Lm B
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Here, M corresponds to voxels marked by scribbles S and U to unmarked voxels.
This can be formulated as a system of equations which can be analytically solved as:

LyX = —B™M, 4)

where M is made of elements m;f’ which are 1 for marked voxels of s, for the given class w,

and 0 otherwise. Solving Equation (4), results in a probability for each voxel p(w|x) = x{,
resulting in our pseudo-label Y.

2.4. Step 3: Segmentation via Deep Fully Convolutional Network

Next, we can train a fully convolutional neural network to segment the given fore-
ground class with P(X) = f(X) with pairs of X and pseudo-labels Y. Our preferred
network architecture follows the encoder-decoder network proposed in Myronenko [9]
(without the VAE part), using 3D convolutions throughout the network.

2.5. Encoder

The encoder uses residual blocks [41], where each block consists of two convolutions
with normalization and ReLU, followed by additive skip connection. Here, we use group
normalization (GN) [42], which typically shows better performance than batch normaliza-
tion [43] when batch size is small (in our case batch size 4). We adopt a standard FCN
approach to slowly decrease the number of image dimensions by 2 and simultaneously
increase the number of features by 2 as in Ronneberger et al. [5]. For downsizing, we use
strided convolutions with a stride of 2. All conversions are 3 x 3 x 3 with an initial filter
number equal to 8 in the input layer of the network.

2.6. Decoder

The design of the decoder is identical to the one of the encoders, but with a single
residual block per each spatial level of the network. Each level of decoders starts with
upsampling that involves reducing the number of features by a factor of 2 (using 1 x 1 x 1
convolutions) and doubling the spatial dimension using trilinear upsampling. This is
followed by adding or concatenating the features from the equivalent spatial level encoder.
In this study we use addition due to the lower memory consumption of the resulting
network. At the end of the decoder, the features have the same spatial size as the original
image and the number of features equal to the size of the initial input function. This
is followed by 1 x 1 x 1 conversion into one output channel followed by a final sigmoid
activation as we are assuming the binary segmentation case in this work. As shown in
Figure 1, we use four different resolution levels inside the segmentation network. Therefore,
we require three downsizing and upsampling operations each in the encoder/decoder
branch, respectively. We use trilinear upsampling here as it has been shown to be efficient
for medical imaging tasks [9] and requires no trainable parameters compared to alternative
operations such as transposed convolution.

2.7. Attention

We follow the approach of Oktay et al. [37] to implement attention gates in the decoder
part of our segmentation network. The attention gates help the model to focus on the
structures of interest. Attention gates can encourage the model to suppress regions that are
irrelevant to the segmentation task and highlight the regions of interest most relevant to
the segmentation task (see Figure 1).

The attention gate can be further augmented by the point channel information avail-
able from extreme point selection. We propose to add the extreme point channels G({e}) at
each level of the decoder to further guide the network to learn the relevant information.
In practice, we downsample the initial input point channel to match the resolution of each
decoder level and concatenate it with the gating features from the encoder path of the
network in each attention gate.
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2.8. Dice Loss

The Dice loss [6] is a popular objective function for segmentation tasks in medical
imaging. Its properties allow it to automatically scale to unbalanced labeling problems.
At the same time, it also naturally adapts without any changes to the original formulation
to learn from probability maps:

1— 2 le\il ylyi
OARRT-E D DA -

©)

EDice =

Here, y; is the predicted probability from our network f(X) and y; is the weak label
probability from our pseudo-label map Y at voxel i.

2.9. Point Loss

The extreme points selected by the user for weak annotation cannot only be used for
generating initial scribbles but also in an additional loss function during the training of
our deep neural network. We add an additional constraint to the deep-learning training
making use of the extreme points the user has already selected. This new loss Lyoints
penalizes the distance between the boundary of our model’s predicted segmentation mask
P = f(X) and the location of the extreme points. To compute it, we apply a Gaussian filter
G(-) to our models prediction P(X) which can be easily implemented using standard 3D
convolutional operations with a constant n x n x 1 kernel with each element being 1/n5.
The resulting point distance loss between the filtered prediction G(P(X)) and the extreme
points channel G({e}) (which includes a Gaussian kernel placed over each extreme point)
is therefore

1 N
Lpoints = — Egigir (6)
N3

where N are the number of voxels i in the image and g; € G(P(X)) and g; € G({e}),
respectively. The point loss computation is illustrated in Figure 4. This results in a new
total loss used for training:

L = Lpjce + “Lpoints~ 7)

Here, a is hyperparameter weight that controls the influence of the point distance loss.

(b) (0)

Figure 4. Visualization of the boundary enhancement map computed in Equations (6)-(8) in the

paper. In this example, we show (a) the ground truth overlaid on the image, (b) the boundary
enhancement map b(P), and (c) the point channel G({e}) on the corresponding axial slice of the 3D
volume used in the computation of the point loss Lpoints (see Equation (6)). The loss is minimized
if the prediction’s boundary b(P) aligns with the center of each clicked extreme point e in G({e}).
Note that during training, we compute the boundary on the model’s prediction P but here we show
it computed on the ground truth for illustration purpose.
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2.10. Point Loss Implementation

We implement the Gaussian filter G(-) using a set of standard 3D convolutions.
First, we use B convolution operations to enhance the boundary of the prediction P(X):

Go(P(X)) = convg(...(convs(convy(convy (P(X)))))...)
G1(P(X)) = (Go(P(X)) - 05)? ®)
G(P(X)) = e G1(P(X))

Here, the convolutional kernel in each conv operation is set to be constant n x n x n
kernel with each element being 1/7°. B should be adjusted depending on the size of input
image and the extent of organ of interest. In our setting, we use B = 25 to achieve a good
boundary enhancement at the scale of the images and targeted organs.

The resulting point distance loss between the filtered prediction G(P(X)) and the
extreme points channel G({e}) (which includes a Gaussian kernel placed over each extreme
point) is therefore as in Equation (6).

2.11. Step 4: Regularization Using Random Walker Algorithm

We could stop learning after the above segmentation network f(X) is trained on the ¥
pseudo-labels for the first time. Nevertheless, we note that an additional regularization step
by an additional random walker segmentation as mentioned above may be of great benefit
to the convergence of our weakly supervised segmentation approach. This approach is
close in spirit to Rajchl et al. [29], where a DenseCREF is used as the post-processing step
during iterative refinement.

To increase the amount of regularization that the random walker can give to the
predictions P(X) of the network, we define an area of uncertainty U (P(X)). The foreground
and background in the prediction map can be defined as P(X) >= 0.5 and P(X) < 0.5,
respectively. Here, we chose a ball structure element of radius 7 ,ndomwalker = 4 to erode
both the foreground and background regions in all our segmentation tasks to compute
U which in turn is acting as the unmarked voxels in the random walker algorithm. This
allows the random walker to generate new predictions around the foreground object’s
boundary that differ from previous 3D network’s predictions and, in turn, help the next
deep-learning training iteration to learn new features from the same set of training images
and to not become stuck in a poor local minimum. Moreover, we find that our weakly
supervised segmentation framework becomes unstable without this step and does not
converge as easily to a satisfactory result (see Figure 5).
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Figure 5. Weakly supervised training from random walker initialization. For illustration, we only show the MO-Liver and MO-Pancreas segmentation tasks with the varying training settings as shown
in our ablation study of Table 1 at each round of deep network training. Although the performance of the MO-Liver models generally improves with the number of iterations, it can also be noticed
that for MO-Pancreas, a poor initialization by the random walker can cause the models to degrade quickly. Notice that adding the point channel information results in a more stable training behavior.
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3. Experiments and Results
3.1. Datasets

We use the training datasets (as they include ground truth annotations) from public
resources, specifically, from the multi-organ (MO) segmentation study in Gibson et al. [44]
(https://zenodo.org/record /1169361#.XcsiOHFKi90, accessed on 28 May 2021) which pro-
vided annotation for abdominal CT data from previously published datasets: Roth et al. [45]
(https:/ /wiki.cancerimagingarchive.net/display/Public/Pancreas-CT, accessed on 28 May
2021) and BTCV [46] (https:/ /www.synapse.org/#!Synapse:syn3193805/wiki/217752,
accessed on 28 May 2021). Furthermore, we use data from the Medical Segmentation De-
cathlon (MSD) challenge [47] (http://medicaldecathlon.com, accessed on 28 May 2021).
From MO, we use the spleen, liver, pancreas, left kidney, and gallbladder segmentation
masks, denoted as MO-Spleen, MO-Liver, MO-Pancreas, MO-L.Kidney, and MO-Gallbladder,
respectively. From MSD, we include the spleen mask, denotes as MSD-Spleen. Quali-
tative results are shown in Figure 3 for each segmentation task on example cases from
the validation set. For MO, we use a constant data split of 81 training and 9 validation
cases, respectively. For MSD, there are 32 training and 9 validation cases, respectively,
available. In Table 1, we only evaluate the different variations of our proposed approach
on the validation set as our method is aimed at building models to help the creation of
annotated data.

For testing, we evaluate three of the trained annotation models using the proposed ap-
proach (weak. sup. (w RW) Dice + PL + Pt. Attn.) on completely unseen datasets. Specifically,
we use all cases available in CT-ORG [48] (https:/ /wiki.cancerimagingarchive.net/display/
Public/CT-ORG%3A+CT+volumes+with+multiple+organ+segmentations, accessed on 28
May 2021) to evaluate the MO-Liverand MO-L.Kidneyon 139 and 137 test cases, respectively.
We excluded cases that did not have liver annotations or surgically removed left kidneys.
The MO-Pancreasmodel is evaluated on all the training cases from MSD-Pancreas set, in-
cluding 281 cases with public annotations. These CT images were acquired from patients
undergoing resection of pancreatic masses [47]. Results on unseen testing are reported in
Table 2.

3.2. Experiments

In all cases, we iterate our algorithm for a maximum of 20 iterations as shown in
Figure 5, with 300 epochs per iteration. In Table 1, we compare training with and without
using random walker (RW) regularization after each round of 3D FCN learning. The
Gaussian noise added to the extreme points during training was set to be o = 3 voxels.
During standard inference, it was set as ¢ = 0 voxels. An analysis of the effect of this
noise parameter during inference is given in Section 3.5. In addition, by running the
framework with RW regularization but without the extreme points channel, we quantify
the benefit of modeling the extreme points as an extra input channel to the network versus
only using the bounding box as in Rajchl et al. [29]. It can be further observed that the
greatest changes occur after initial random walker segmentation in the first round of FCN
training. Although the average dice score is not always enhanced by random walker
regularization alone, it helps to incorporate enough “novelty” into our learning system to
boost the overall Dice score in later iterations as shown in Figure 5. We furthermore show
the average Dice scores on the validation set after convergence when using the proposed
point loss, point loss plus attention gates as in Oktay et al. [37], and a setting when using
the point information as an additional guiding feature to the attention gates. The weight in
Equation (7) is set to be « = 0.2 in all experiments. The fully supervised case using Dice
loss with the strong label ground truth masks are shown for reference. It can be observed
that using the point channel information in the point loss function and the attention gates
generally improves the performance of the model. The addition of point loss and point
attention works best in four out of six weakly supervised cases, while the addition of point
loss alone showed an advantage in two out of the six tasks. Notice that the average Dice
score in the MO-Gallbladder task even outperforms the fully supervised setting.
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3.3. Implementation

The training and evaluation of the deep neural networks used in the proposed frame-
work were implemented based on the NVIDIA Clara Train SDK (https:/ /developer.nvidia.
com/clara, accessed on 28 May 2021) using 4 NVIDIA Tesla V100 GPUs with 16 GB mem-
ory for each round of training. All models were trained using the deterministic training
setup in Tensorflow (https://github.com/NVIDIA /tensorflow-determinism, accessed on
28 May 2021) with the same random seed initialization to guarantee comparable results
between the different variations of training. For the random walker algorithm, we use the
default parameters (https:/ /scikit-image.org/docs/dev/auto_examples/segmentation/
plot_random_walker_segmentation.html, accessed on 28 May 2021).

3.4. Analysis of Point Loss

An analysis of the impact of the point loss on our weakly supervised models’ predic-
tions is shown in Figure 6.

Figure 6. The impact of adding the point loss and point attention to our weakly supervised models. We show the results of the (top):
weak. sup. dextr3D (w RW) Dice; and (bottom): weak. sup. dextr3D (w RW) Dice + Point loss + Point Attn settings. Examples from the
MSD-Spleen (left) and MO-Pancreas (right) datasets are shown, respectively. The clicked extreme points are shown by a yellow cross.
Best viewed in color. The predictions learned together with the point loss do lie markedly closer to the clicked point locations.

3.5. Effect of Extreme Point Noise during Inference

Figure 7 shows the effect of the noise level o added to the extreme points to simulate
user interaction during inference. Here, we show the average Dice score as a value of
when evaluating the MO-Livermodel on the CT-ORG data (N = 139) unseen during training
and validation. One can observe that the model’s performance is relatively robust up to a
noise level of ¢ = 10.

Table 2. Results of our weakly supervised segmentation models on unseen testing data. N indicates
the number of test cases.

Dice CT-ORG-Liver CT-ORG-l.kidney MSD-Pancreas
Mean 0.932 0.897 0.678
Std 0.075 0.126 0.111
Median 0.947 0.930 0.706

N 139 137 281
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Figure 7. Dice score (mean and 95% confidence interval) as a value of the Gaussian noise level ¢
added to extreme points when simulating user interaction. Here, we evaluate the MO-Livermodel on
the CT-ORG data (N = 139) unseen during training and validation.

4. Discussion

We provided a method for weakly supervised 3D segmentation from extreme points.
Asking the user to simply click on the surface of the organ in each spatial dimension can
drastically reduce the cost of labeling. The point clicks can simultaneously identify the
region of interest and simplify the 3D machine-learning task. The extreme points can
also be used to create an initial noisy pseudo-label based on the extreme points using the
random walker algorithm. From our experiments, it can be observed that this initialization
is relatively robust for six different tasks from medical image segmentation.

Previous work primarily used boundary box annotations for weakly supervised
learning in 2D /3D medical imaging, such as Rajchl et al. [29]. We consider, however, that
selecting extreme points on the surface of the organ is more natural than selecting corners
of a bounding box outside the organ of interest and more efficient than adding scribbles
within and around the organ [19,21]. This is consistent with recent findings in the computer
vision literature [39]. Extreme points have also shown to be useful for further down-stream
tasks such as domain adaptation [49]. An application of our proposed approach to the 2D
tasks would be straightforward. Therefore, it could likely be used for weakly supervised
annotation and segmentation of other biomedical imaging data, such as X-rays, microscopy,
digital pathology, or even natural images.

We conducted a comprehensive ablation study of our proposed method in Table 1.
Some of these settings are similar to previous work. For example, performing the network
training without the extra point channel is equivalent to studies using bounding boxes
alone such as in Rajchl et al. [29]. From Table 1, we can see that adding the additional
point-click information in the loss and as attention mechanism is however beneficial while
not increasing the labeling cost.

The test results (see Table 2) on completely unseen datasets from different data sources
show that our trained weakly supervised annotation models can generalize to unseen data.
The performance on unseen liver and kidney cases is very comparable to the validation
performance of these models (see Table 1). Given that unseen test cases for the pancreas
model only include patients with malignant pancreatic masses, the drop in performance
compared to the validation score is understandable. The training set did not contain such
cases, but patients were typically healthy or had diseases outside the pancreas [44-46].

Limitations

Occasionally, the random walker may lack robustness for organs with very diverse
interior textures or highly concave curved shapes, for example, the pancreas (see MO-
Pancreas task in Table 1). In this situation, the shortest path result might sometimes lie
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outside the organ. A boundary search algorithm might provide a better initial segmentation
here. Still, the initial segmentation can be significantly enhanced by the first round of FCN
training. In this study, we used one dataset (MSD-Spleen) as our development set and kept
the hyperparameters of the full approach constant across different segmentation tasks and
datasets. One might achieve better performance when optimizing the hyperparameters, es-
pecially for the initial random walker, based on the task at hand. In practice, we performed
model selection for each round of training in our approach based on the pseudo-labels Y
alone. However, we do need a fully annotated validation set to practically evaluate the
overall convergence of our iterative approach for it to be clinically useful. One could use
the predictions of the first round of FCN training to build an ML-based annotation tool
that could speed up the creation of such a holdout “gold standard” validation dataset and
reduce the amount of manual labeling and editing needed in total.

5. Summary

In summary, we proposed a weakly supervised 3D segmentation framework based on
extreme point clicks. Experimentation on six datasets showed that the approach can achieve
performance close to the fully supervised setting in four tasks and even outperforms the
fully supervised training in one of them (MO-Gallbladder). In the future, an automatic
proposal network could assist the user with the region of interest and extreme point
selection to further reduce the manual burden of medical image annotation.
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