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Abstract: The self-organizing convolutional map (SOCOM) hybridizes convolutional neural net-
works, self-organizing maps, and gradient backpropagation optimization into a novel integrated
unsupervised deep learning model. SOCOM structurally combines, architecturally stacks, and al-
gorithmically fuses its deep/unsupervised learning components. The higher-level representations
produced by its underlying convolutional deep architecture are embedded in its topologically or-
dered neural map output. The ensuing unsupervised clustering and visualization operations reflect
the model’s degree of synergy between its building blocks and synopsize its range of applications.
Clustering results are reported on the STL-10 benchmark dataset coupled with the devised neural
map visualizations. The series of conducted experiments utilize a deep VGG-based SOCOM model.

Keywords: deep learning; unsupervised learning; convolutional neural network (CNN); self-organizing
map (SOM); clustering; visualization

1. Introduction

For more than a decade, deep learning has been at the forefront of the development of
methods that shift the focus towards meaningful representation discovery by algorithms.
The devised distributed layered representations, which build upon lower-level invariant
partial features, reveal higher-level abstract concepts and aspects of the data. The induced
responses, from discovered correlations within data, depend on the connectivity and
memory characteristics of the neurons. In an algorithm this is implemented as multiple
sequential causative compute events wherein each event transforms (often in a nonlinear
way) the aggregate response of the network [1]. Deep learning within this context refers to
the accurate adjustment of parameters (weights and biases) across such events.

Probably the most common bottleneck encountered in many deep learning approaches
like convolutional neural networks (CNNs) is the requirement for big labeled datasets. Con-
structing these datasets is a time-consuming costly procedure that frequently might end up
proving error-prone or even infeasible for various reasons. Even commonly used computer
vision datasets have been shown to be susceptible to such label errors [2]. The obvious (but
not necessarily simple) answer to these problems is devising deep learning models that
can be trained with unlabeled/uncategorized data; in other words, invent unsupervised
learning algorithms for such deep networks. Aligned with this ongoing research direction
one can trace a number of works that combine or hybridize self-organizing maps (SOMs)
with CNNs. The common denominator in these models is to equip CNNs with the unsu-
pervised clustering capabilities of the SOMs, or inversely, extract deep representations (e.g.,
CNN codes) and quantize them into the SOM neural map.

The range of these approaches—including the present one—is quite widespread,
spanning the range from purely unsupervised learning algorithms up to semi (or even full)
supervised ones, and from shallow networks and growing/hierarchical models [3–6] to
architectures containing multiple hidden layers; for instance [7–11]. Meeting both main
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objectives i.e., building a deep SOM and training it in a purely unsupervised way has
proven a complex and difficult task. Only a small number of models exist that can be
classified as unsupervised beyond any doubt [12–14]. Equally few are the approaches that
extend beyond the three hidden layer limit [13,15,16].

In a nutshell, the key characteristics and contributions of the proposed self-organizing
convolutional map (SOCOM) prototype are:

(1) A generic deep convolutional architecture that extends far beyond the trivial three
hidden layer limit of shallow networks.

(2) An inherent flexibility to embed existing deep convolutional models and to facilitate
transfer learning from pre-trained CNNs, these can be used either as fixed feature
extractors (yielding CNN codes) or as initial weight/parameter values for the subse-
quent backpropagation stages.

(3) An end-to-end unsupervised learning algorithm that does not necessitate the tar-
gets/labels of the training samples at any stage, and is specifically tailored to meet the
requirements of the architecture’s complexity, depth, and parameter size.

(4) A complementary neural map visualization technique that offers insight and in-
terpretation of the SOCOM clusters, or equivalently, a projection and quantiza-
tion of the achieved higher-level representations onto the array of output neurons;
this is also achieved without using any type of label information throughout the
respective processes.

The organization and structure of the remaining four sections of this paper are as
follows. Section 2 presents in detail and in-depth the SOCOM both architecturally and
algorithmically. Subsequently, this section analyzes the key components of the learn-
ing and feedforward operations. Section 3 contains experimental results with the focus
on the analysis and systematic evaluation of the devised neural map visualization tech-
nique. In addition, experimental comparisons are carried out against several related
algorithms on a deep learning benchmark dataset. Section 4 summarizes the whole paper
and draws conclusions.

2. SOCOM Prototype

A generic and at the same time characteristic SOCOM architecture consisting of
multiple convolutional, pooling, fully connected, and self-organizing layers is illustrated
in Figure 1. The mathematically expressed algorithmic learning procedures are presented
in the following subsection. This section describes the main functionality and key methods
of the SOCOM from a macroscopic operational point of view.
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Figure 1. Detailed architecture of a SOCOM paradigm consisting of an input layer (green), 3 convolutional layers (yellow) 
followed by ReLUs (blue), 2 pooling layers (red), 3 fully connected layers (turquoise), and an output neural map (purple). 

The input layer of the SOCOM accepts any type of numerical data arranged in 
vectors, matrices (e.g., grayscale images), or volumes (e.g., colored images or successive 
images that exhibit a spatiotemporal correlation). The explicit assumption of CNNs that 

Figure 1. Detailed architecture of a SOCOM paradigm consisting of an input layer (green), 3 convolutional layers (yellow)
followed by ReLUs (blue), 2 pooling layers (red), 3 fully connected layers (turquoise), and an output neural map (purple).

The input layer of the SOCOM accepts any type of numerical data arranged in vectors,
matrices (e.g., grayscale images), or volumes (e.g., colored images or successive images
that exhibit a spatiotemporal correlation). The explicit assumption of CNNs that the inputs’
elements are correlated, something that makes the information propagation more efficient
and hugely reduces the network’s parameter count, still holds in the SOCOM paradigm
but does not a priori exclude all other types of input data.
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As can be seen, a SOCOM comprises a sequence of different layers with adjustable
parameters. Each respective layer transforms one volume of activations to another via
a differentiable function, thus facilitating the use of backpropagation during training.
Stacking these layers in series eventually forms a full SOCOM architecture (Figure 1).

A SOM lattice of topologically arranged neurons acts as the output layer. Each of
its neurons receives the activations of every unit in the last fully connected layer. The
magnitude of each neuron’s activation is based on a distance metric between the input
activations and its codebook parameters. The neural mapping of the input image coincides
with the position of the neuron that produces the optimal fit with respect to the computed
activations and the neighborhood kernel (which has been defined over the topology of
the neural grid). Apart from mapping, this particular type of nonlinear projection can be
further exploited for data clustering and visualization.

It is also interesting to note that the proposed SOCOM architecture is in a position to
incorporate any number of layers (from the previous types) in any permutation. There are
only two limitations: (1) after the first fully connected layer convolutional layers cannot be
used, (2) the output layer needs to be a SOM grid.

With respect to Figure 1, let a sample be applied to the inputs of the SOCOM. A kernel
which is a part of the first (hidden) convolutional layer computes its activations by sliding
its receptive field along the width and the height of the input volume and by applying a
nonlinearity. This process is repeated for all the filters that form the first convolutional layer.
After all the activations have been gathered, they are arranged in a feature map which is
considered to be the input volume for the following layer. If the next layer is a convolutional
layer the previous process is repeated. If it is a pooling layer then the input volume is
downsampled along its width and height spatial dimensions but not along its depth. When
the representations of the last convolutional (or pooling) layer have been computed then
all the activations of the corresponding feature map are connected to every unit in the fully
connected layer. Its units perform affine transformations and their activations are calculated
by applying a nonlinear squashing function to the results of the transformations. Once
again, this procedure is repeated per layer until the defined number of fully connected
layers has been incorporated. In the end, the neurons of the output lattice receive the
activations from the last hidden fully connected layer. By taking into consideration their
codebook weights and their position onto the grid an activation (or response) is computed.
After comparing all the activations, the neuron (viz. its position onto the self-organizing
grid) yielding the optimal response identifies with the projection of the input sample
onto the output layer. Clusters around paradigms (encoding underlying patterns and
distributions) of the input samples are formed by accumulating their respective projections
onto the output plane.

SOCOM transforms the initial input image layer by layer to the final output mapping.
The layers that contain tunable parameters are the convolutional, the fully connected,
and the self-organizing; the gradient descent backpropagation algorithm is utilized for
performing the necessary learning adjustments. On the contrary, the ReLU and pooling
layers do not require any training because they implement fixed functions that do not have
any modifiable parameters.

2.1. SOM Review

Studies have convincingly shown that the best self-organizing results are obtained if
the following two partial processes are implemented in their purest forms [17]:

(1) Decoding of that neuron that has the best match with the input data pattern (the
so-called winner);

(2) Adaptive improvement of the match in the neighborhood of neurons centered around
the winner.
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The SOM may be described formally as a nonlinear, ordered, smooth mapping of input
data onto the elements (denoted as e) of a regular, low-dimensional array. The mapping is
implemented in the following way, which resembles the two aforementioned processes.
Assume first that x is an input vector. With each element e in the SOM array a vector ue
(codebook) is associated. Considering the Euclidean distances of x given each ue the image
of the input vector on the SOM array is defined as the neuron (denoted as c) yielding the
smallest Euclidean distance:

c = argmin
e

∣∣∣∣∣∣x− ue

∣∣∣∣∣∣. (1)

Subsequently, the classical rule for updating the neurons’ codebook parameters is:

u(next)
e = ue + ηhc,e(x− ue) (2)

where η is the learning rate and hc,e is the neighborhood function/kernel. The core idea is
to optimize proportionally the parameters of the neurons lying in the vicinity of the winner
so as to gain some knowledge from the same input x.

The SOM, in its basic form, produces a nonlinear projection of input data. It converts
the complex statistical relationships between data into simple geometric relationships
of their image points on a low-dimensional display, usually a regular two-dimensional
grid of neurons. As the SOM thereby compresses information, while preserving the most
important topological and statistical relationships of the primary data elements on the
display, it may also be thought to produce some kind of abstractions. These characteristics,
abstraction, dimensionality reduction, and visualization in synergy with clustering, have
been utilized in a widespread and extensive set of data analysis tasks.

2.2. Forward Propagation

A generic SOCOM architecture consists of an input layer, L hidden layers (convolutional,
pooling, and fully connected ones), and an output layer (viz. lattice of ordered neurons).

2.2.1. Convolutional Layer

wl,p
m,n,d is the m-th, n-th, and d-th element of weight matrix of filter p connecting

neurons of layer l with neurons of layer l− 1. Kernel or filter p is of dimension k1 × k2 ×D.
Consequently, at each layer l for the bank of P filters we have w ∈ Rk1×k2×D×P and biases
b ∈ RP. At such a layer a convolution operation is carried out (e.g., Figure 2), which is the
same as a cross-correlation with a rotated kernel. The convolved input vector of filter p at
layer l plus the bias is represented as xl,p

i,j and is calculated according to:

xl,p
i,j =

k1−1

∑
m=0

k2−1

∑
n=0

D−1

∑
d=0

wl,p
m,n,dOl−1,d

i+m,j+n + bl,p (3)

where Ol−1,d is the output of the d-th filter at layer l − 1. Particularly at the first layer (viz.
the input layer) we feed an image (or a sequence of images) with height H1, width H2 and
depth D such that I ∈ RH1×H2×D. At the first hidden convolutional layer this results in:

x1,p
i,j =

k1−1

∑
m=0

k2−1

∑
n=0

D−1

∑
d=0

w1,p
m,n,d Ii+m,j+n,d + b1,p. (4)

Frequently the convolution layer is coupled with (viz. followed by) a non-saturating
activation function which is applied element-wise thresholding to zero (Figure 2). The
ReLU activation function induces sparsity to the hidden units thus resulting in more
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valuable representations. The output at layer l is the outcome of the application of the
activation layer to the convolved layer:

Ol,p
i,j = f

(
xl,p

i,j

)
= max

(
0, xl,p

i,j

)
=

 xl,p
i,j , xl,p

i,j > 0

0, xl,p
i,j ≤ 0.

(5)
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Figure 2. Example of a convolutional layer comprised of 2 filters (yellow) that are applied to a 3 channel input volume.
Subsequently, each element of the resulting feature maps is fed through a ReLU (blue).

2.2.2. Pooling Layer

Periodically a pooling layer is inserted in between successive convolutional layers
(Figure 3), its aim is to progressively reduce the spatial size of the representation; thus,
(a) reducing the number of parameters and computation in the following layers and
(b) controlling overfitting. The max operation is used more frequently, other types of
pooling like average or L2 norm pooling have been shown to not work equally well. Let a
pooling layer of size kp × kp that slides over its input with a stride equal to sp thus reducing
kp × kp blocks to a single value.

The outcome of the pooling layer is calculated according to:

Ol,p
i,j = max

0≤a≤kp−1,0≤b≤kp−1

(
Ol−1,p

i·sp+a,j·sp+b

)
. (6)

Nearly always the choice at the pooling layer is either a 2× 2 region filter with a stride
of 2 or an overlapping pooling operation with a 3 × 3 filter size and a stride of 2.
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2.2.3. Fully Connected Layer

In this case, each unit at a given layer l is connected to every unit in the previous
layer l − 1. The weight (or parameter) associated with the connection between unit j′s
output (at layer l − 1) and the unit i in layer l is denoted as wl

i,j. Additionally, bl
i is the

bias associated with unit i in layer l. Apart from the ReLU other common choices for the
nonlinear activation function f () (particularly in multilayer perceptrons and autoencoders)
are the sigmoid and the hyperbolic tangent. The computation that each individual unit
represents is essentially a weighted sum of the unit’s inputs including the bias term:

xl
i =

P−1

∑
j=0

wl
i,jO

l−1
j + bl

i (7)

Ol
i = f

(
xl

i

)
(8)

where P is the total number of units in layer l − 1. As can be seen, starting with some set of
activations from the previous layer the inputs to the units at the next layer are computed
(Figure 4) and after applying the nonlinearity this pattern of propagation is continued until
the desired layer is reached.
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Between the last convolutional layer (or probably, the last pooling layer) and the first
fully connected layer, a different connectivity pattern exists between the elements and
the units of the underlying and the overlying layers (Figure 4). Practically, in terms of
formulation this can either be accomplished by algorithmically converting fully connected
layers to convolutional layers or alternatively by squashing the feature maps’ elements
into a single vector:

Ol
j+i·H2+p·H1·H2

= Ol,p
i,j (9)

where, in this particular case, l is assumed to be the last convolutional layer consisting of
H1 × H2 feature maps.

2.2.4. Output Layer

The output layer that consists of G topologically arranged neurons performs a map-
ping of its input representations onto its neural map (Figure 5). More specifically, the
projection of an input representation on the SOCOM plane is defined as the neuron yield-
ing the lowest weighted squared Euclidean distance between the last hidden layer’s outputs
OL

i and its corresponding codebook parameters ug,i where weighting refers to the neigh-
borhood kernel/function he,g defined over the topology of the neural grid. Frequently,
this neuron (denoted as c) is referred to as the winner. Algorithmically, this best-matching
winner neuron is given by:

c = argmin
e

G−1

∑
g=0

he,g

P−1

∑
i=0

(
OL

i − ug,i

)2
(10)

where P is the total number of units in the last layer L. Additionally, this particular
type of nonlinear projection can be further exploited for data clustering and visualization
procedures. Additionally, if the unimodal neighborhood function’s radius is narrow
enough, so as to contain mainly the closest neighbors, then in the landslide of cases the
previously detected best-matching neuron coincides with the usual winner neuron of the
original SOM learning algorithm.

More particularly, in the mapping and in the (complementary) learning processes the
function he,g(y) has a very central role; it acts as the neighborhood function, a smoothing
kernel defined over the lattice neurons. y symbolizes time, or equivalently, the correspond-
ing iteration. For convenience, it is necessary that he,g(y)→ 0 when y→ ∞ . Usually
he,g(y) = h

(∣∣∣∣re − rg
∣∣∣∣, y

)
, where re, rg ∈ R2 are the location vectors of neurons e and g on

the lattice. With increasing
∣∣∣∣re − rg

∣∣∣∣ the function he,g(y)→ 0 . The width and form of
he,g(y) define the stiffness of the elastic surface to be fitted to the input representations. In
the literature, the most frequently used neighborhood kernel can be written in terms of the
Gaussian function:

he,g(y) = exp

(
−
∣∣∣∣re − rg

2
∣∣∣∣

2σ(y)2

)
(11)

where the square root of the variance σ(y) defines the width of the kernel (radius) and is a
monotonically decreasing function of time.

2.3. Backpropagation

The purpose of being in a position to compute the error is dual. First, a quantifica-
tion/estimation of the network’s performance is obtained. Second, learning takes place via
the optimization of the network’s weights to minimize this specific error. This error func-
tion can be a number of different things, such as binary cross-entropy or sum of squared
residuals. Differently from supervised approaches, learning in the case of SOCOM does
not necessitate any type of desired or target values at any stage; thus giving rise to an
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end-to-end unsupervised deep learning algorithm. The corresponding error/cost/loss
function (or alternatively, the penalty term) is symbolized as E and is defined as:

E =
G−1

∑
c=0

N(c)
G−1

∑
d=0

hc,d
1
2

P−1

∑
i=0

(
OL

i − ud,i

)2
(12)

where

N(c) =

1, c = argmin
e

G−1
∑

d=0
he,d

1
2

P−1
∑

i=0

(
OL

i − ud,i
)2

0, otherwise.
(13)
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For gradient descent backpropagation the updates that need to be performed are
for the weights, the biases, and the deltas (i.e., the tunable parameters of the SOCOM
algorithm). The utilized energy formula by the SOCOM is in accordance with the variation
proposed in [18] and has been also adopted by our previous hybrid SOM networks [19,20].

The benefits of the utilized energy function are noticeable: (1) The derived learning
equations are no longer heuristic (as in the classical SOM approaches) but instead they
are fully proven mathematically. (2) By conceptualizing (a priori) what in fact the training
rules minimize, one has access to a global measure of learning performance. (3) Since
due to its construction the cost function is differentiable, the corresponding partial, and
total derivatives can be computed in a straightforward way, something that provides the
capability to devise gradient backpropagation-based training algorithms.

In general, the benefit of having a differentiable loss function for a model currently
becomes even more important since the two major machine learning libraries Pytorch
and Tensorflow have built-in capabilities for automatic differentiation (torch.autograd
and tf.GradientTape, respectively). For instance, according to Pytorch’s documentation
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“torch.autograd provides classes and functions implementing automatic differentiation
of arbitrary scalar valued functions”. The automatic differentiations of all operations on
tensors simplify the required backward executions/passes. This facilitates the realiza-
tion of gradient backpropagations which are essential parts for a number of stochastic
gradient descent learning/optimization algorithms. As a result, the synergy of the SO-
COM’s loss function with the automatic differentiation capabilities of Pytorch brings forth
optimization/learning capabilities that were not applicable to SOM approaches of the past.

3. Experiments
3.1. Neural Output Visualization

Intrinsically, the spatial arrangement of the neurons in the output plane of the clas-
sical SOM lends itself to a wide and rather diverse range of techniques that aim to visu-
ally present aspects of the trained model’s projections and clustering results. The two-
dimensional neural planes (and less frequently the three-dimensional neural volumes) of
the SOM outputs that differentiate them from other well-established clustering algorithms,
provide the basis for analyzing/summarizing domain space information, interpreting
the produced results, studying the hidden relations, and drawing conclusions on the un-
derlying (possibly latent) structures and patterns of the data under consideration. As a
result, during the past years, there has been a constant flow of SOM-specific visualization
techniques being published. U-matrix, P-matrix [21], U*-Matrix [22], cumulative/stacked
representation planes [20], sequence likelihood projection [23], connectivity strength matrix
visualization [24], Clusot surfaces [25], gradient fields and borderline visualizations [26],
visualization induced SOMs [27], smoothed data histograms [28], and component planes
and response surfaces [29], are only a few of the techniques that have been proposed during
the past two decades. The common denominator in the above and similar approaches is
that they exploit the structurally direct connections between the inputs and the outputs
for devising projections onto the output grids, for enriching and refining the produced
clusterings, and for demonstrating data relationships and patterns visually. Apart from
those that solely operate on the output layer and fully ignore input information, like for
instance the U-matrix, the rest are not applicable to SOMs with deeper architectures. The
techniques based both on the neural output and the input feature space, that exploit their
in between relationships and correlations, fail in the cases where the gradual architectural
shifting from no hidden layers to deep networks makes the input space–output plane
correspondences hard to detect and quantify.

On the contrary, there has been a number of successful approaches when it comes to
understanding and gaining insight into what the various features and representation layers
of CNNs encode. These techniques, exactly because CNN architectures are specifically
tailored for images (or image-like input data), produce results in the form of images that
are readily interpretable by humans; something which is usually not possible for other
types of data.

The underlying idea in [30] is to find the input features’ values (i.e., patterns) that
maximize the activation of each specific neuron along the CNN architecture. Extending the
activation maximization idea [31] described a technique for visualizing the class models
(i.e., output layer) by computing an appropriately regularized image. The authors of [32]
further refined this approach to incorporate the activations of each neuron to different
types of features; its multiple facets were used to create a synthetic visualization. A
number of additional regularization methods to bias images towards being more visually
interpretable are contained in [33]. In addition to richer regularizers (viz. total variation,
jitter) the work in [34] follows a per-layer response inversion approach (using natural
pre-images) to gain insight into what a CNN models. A complementary technique is
visualizing the interactions between neurons (viz. activation space) in an effort to better
understand neural networks [35]. This is extended by visualizing groups of neurons that
are together strongly activated [36]. The activation atlas [37] is the result of visualizing
the space jointly represented by common interactions between neurons. On a slightly
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different path, a technique is proposed in [38] that utilizes a multilayered deconvolutional
network to project the representation activations back to the input pixel space so as to
trace the activity within the model in a visually interpretable way. The work in [39]
proposes a visualization method that detects/highlights which pixels of an input image are
particularly influential (or not at all influential) for a node in the network. The problem of
estimating the contributions of a feature to the overall classification score is also examined
in [40] and these contributions are further visualized as heatmaps.

The devised neural map visualization (NMV) uses the activation maximization tech-
nique as its main building block and aligns it with the structural and algorithmic character-
istics of the neural output map. As a visualization mechanism, its goal is to provide insight
into the inferred representations and clustering results of the SOCOM. With regards to the
published methodologies, it follows the same substratal reasoning that a pattern to which
a neuron responds maximally is a reasonable approximation of what a unit is doing. For
each neuron g in the SOCOM output layer, the optimization problem posed it to find the
image(s)

...
y that:

s =

{
j : arg topk

0≤j≤P

(
ug,j, k

)}
(14)

...
y = argmax

y

(
∑
i∈s

OL
i (y)− λ||y||22

)
(15)

where P is the total number of units in the last hidden layer L, ug,i if the ith codebook
parameter of neuron g, k represents the number of elements returned by the topk() function
that finds the top maximum valued elements in the given vector/matrix, and λ is the
coefficient that controls the magnitude of the weight decay.

As can be seen, the optimization objective is comprised of a summation of the most
important features fed to an output neuron coupled with an L2 weight decay regulizer. The
reasoning behind this strategy is that the SOCOM’s output is based on Euclidean distances
between codebook parameters and the last hidden layer’s activations something that
deviates from the mechanism found in the fully connected layers preceding the output; the
highest valued codebook parameters of a specific neuron reveal which activations from the
last hidden layer play a prominent role in rendering the specific neuron the best-matching
winner, and consequently, they should be taken into consideration during the optimization
process. It should be noted that such an approach is not entirely new since it is inspired by
the supervised activation maximization counterparts where the (unnormalized) class scores
are used instead of the class posteriors returned by the soft-max layer so as to avoid the
phenomenon of maximizing the class posterior by minimizing the scores of other classes
and not concentrating on maximizing the class in question.

A crucial problem that arises when activation maximization visualizations come into
play is that “it is easy to produce images that are completely unrecognizable to humans,
but state-of-the-art deep neural networks believe to be recognizable objects” [41]. Addi-
tional/alternative explanations of this phenomenon and of the closely related problem of
adversarial examples’ misclassification are given in [33,42,43]. The proven answer/solution
as far as activation maximization is concerned is to impose regularizations during the opti-
mization process to bias images in becoming more visually interpretable. When NMV was
applied without a regularization method, the aforementioned problem also surfaced. In
order to address it, certain types of regularization were brought into the test. Possibly the
most popular in the literature i.e., the L2 regularization, which tends to suppress the small
number of extreme pixel values from distorting the output image, produced comparably
better results. Furthermore, as can be seen in (15), the L2 regularization was part of the
objective function and was adjusted accordingly via the weight decay parameters of the
SGD algorithm that was employed for performing the necessary optimization steps. On
a side note, Adam and Adamax [44,45] both of which performed far better during the
training procedures of SOCOM did not demonstrate equally higher performance and as a
result, the simpler SGD [46] was qualified for the optimization required by the NMV.
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The experimental setup and in particular the utilized dataset for the present series of
experiments were chosen to serve a dual purpose. The first objective is to comply with the
justifiable expectation of testing modern models on datasets that exhibit a certain level of
difficulty and complexity. In particular, when it comes to images, the starting point during
the proof-of-concept stages of algorithm development and testing is the MNIST dataset
(and similar ones like the Fashion-MNIST, Kuzushiji-MNIST, and EMNIST). They have
been well studied and their early-stage testing value is undoubtable, but when used in
isolation they might offer a partial biased view of a model’s capabilities. For instance, their
grayscale characteristic (i.e., that they consist of single-channel images) conceals the fact
that a substantial number of deep SOMs are not in a position to process and model colored
images whereas a handful of advanced ones like [14–16,47] succeed in doing. Nevertheless,
preliminary results for the MNIST benchmark of a pilot SOCOM study can be found in [48].

The more challenging STL-10 benchmark dataset [49] was used in this experimental
setup. More specifically, STL-10 consists of colored 96 × 96 pixel images: 5000 labeled
training images, 8000 labeled testing images, and 100,000 unlabeled images. This choice
apart from testing SOCOM’s performance on a more difficult dataset was also dictated by
the need to work with and demonstrate NMVs with higher resolution images.

The visualization-oriented experiments involved SOCOMs using the vgg11 [50] as
their backend architecture. Including the parameters of the neural output, the overall
architectures have 12 layers of tunable weights. As is frequently the case in the litera-
ture [31,39,51,52], the vgg backend architecture was selected because the activation maxi-
mization results are visually more recognizable and better interpretable. Since Pytorch’s
vgg11 model is pre-trained on the Imagenet dataset images were resized to 224 × 224.
Certain modifications have been carried out on the vgg11 so as to give rise to the final
structure of the SOCOM. (1) The vgg11’s last fully connected layer receiving 4096 inputs
(feature values) and yielding 1000 activations alongside its complementary soft-max com-
ponent were replaced by a hexagonal lattice of neurons. (2) A 1D pooling layer, receiving
the weighted outputs of the lattice, has been added for facilitating the devised backprop-
agation optimization algorithm. Subsequently, exactly because SOCOM’s construction
provides this capability, transfer learning [53,54] was utilized for obtaining the initial
weight/parameter values of the hidden layers that are shared with the vgg11 architecture.
Having a far better starting point for the parameters’ estimations in contrast to random
initializations has definitely accelerated all the stages of the training procedures. The
codebook parameters have been initialized according to the methodology described in [55],
using a uniform distribution.

There is one more structural hyperparameter: the number of neurons in the output
layer. A specific number for the neural map’s (per row and column) dimensionalities is not
crucial, actually, a wide range of grid sizes result in equally performing SOCOMs. As long
as the total number of neurons remains above the number of data categories/labels, no
evident deterioration is observed. Obviously, larger maps provide more space for repre-
senting intra-cluster homogeneity and wider margins for expressing inter-cluster distances,
but this comes at the expense of additional computation time and of neurons being the
best match for few or no samples. A characteristic 8 × 6 hexagonal array of neurons has
been chosen for visualization reasons. The resultant network was trained/adapted by
the SOCOM unsupervised training algorithm where modifications were allowed down
to the first fully connected layer. This approach was followed so as to have a common
set of identical features, stemming from the convolutional layers, between the SOCOM
and the classification models, so as to be in a position to compare the corresponding acti-
vation maximization images of the classifier’s output units and the NMV images of the
cluster neurons.

Overall, the learning hyperparameter selection strategies that have been used could
be summarized as follows. In accordance with the tenfold cross-validation technique, grid-
based parameter configurations were evaluated/compared using purity as a performance
measure. For certain hyperparameters like the learning rate, weight decay, and momentum,
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the upper and lower limits of their value ranges have been further refined according to
the graph-based technique described in [56]. The top-performing (in certain cases by a
large margin) SOCOM learning algorithms incorporated either the Adam or Adamax
optimizers. It is interesting to note that this finding is in agreement with the observation
that “Adam has been empirically shown to outperform most other optimizers in deep
learning networks” [57]. Eventually, the neural output map’s training hyperparameters that
were selected were learning rate = 0.2 and weight decay = 0.001. The backend architecture’s
tuning hyperparameters were learning rate = 5·10−5 and weight decay = 0.01. Sigma
decreased linearly from 0.55 to 0.35, when it reached 0.35 it remained constant for the
remaining duration of the training phase. Training batches comprised of 200 randomly
selected samples and the total duration of the learning phase was set to 1000 steps. The
reason for opting for bigger batch sizes is that they had a stabilizing effect on the learning
curve by limiting fluctuations, and frequently, achieved a better performance overall.

In a similar fashion, a grid-based search was also conducted for finding a set of hyper-
parameters (learning rate, weight decay, momentum, adaptation steps), with respect to the
optimization dictated by the (14) and (15) equations that produced visually recognizable
images. In each independent run, the starting point was a colored image normalized
around zero. Excluding extreme hyperparameter choices, hyperparameter values that
complemented each other nearly always resulted in interpretable visualizations. One
such indicative NMV is illustrated in Figure 6. The first expected, but at the same time
important, point to make is that the images characterizing each neuron on the grid are
in a one-to-one correspondence with the calculated cluster categories as these have been
defined by posterior majority voting over the assigned training samples at each neuron.

Nearly always, the majority of each neuron’s samples determine the contents of the
produced image. It is also interesting to note that classes that share common visual charac-
teristics like deer-horse, cat-dog, and truck-airplane reside in adjacent neurons/clusters,
something that further supports the continuity characteristic of the SOCOM mappings.

Figure 7 contains juxtapositions between parts from the NMV that describe individual
neurons of the SOCOM and the units of the vgg11 classifier that encode the same categories
as the neurons do. By inspecting the respective pairs it can be seen that they are closely
correlated in the sense that they focus on the same characteristics in each image category.
Additionally, as expected, identical hyperparameter sets yield similar images with similar
quality and comparable depicted information. From a more macroscopic point of view, one
could notice that both networks seem to focus on the same aspects of the input samples in
order to achieve the respective clustering and classification results. In the case of animals,
these are mainly distinctive parts of the head whereas in the case of vehicles these are
(oblong) straight or diagonal edges. The aforementioned remarks might seem trivial
but when the different network output mechanisms are taken into consideration (affine
transformations followed by a soft-max nonlinearity vs. competition based on weighted
distances over a topologically arranged lattice) then the results provide additional proof
in favor of the activation maximization technique, as far as the robustness and generality
of its use are considered. Since both the SOCOM and the CNN classifier share the same
backbone architecture, this argument could be extended to include the image modeling
capabilities of CNNs.
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Figure 6. Neural map visualization (NMV) of the 8 × 6 neural output map of a SOCOM trained on the STL-10 benchmark
dataset. Each individual neuron of the grid is represented by a synthetic image that depicts what the neuron models and which
are the representations/patterns maximizing its response. As can be seen, there is a one-to-one correspondence between the
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individual cluster/neuron visualizations and the respective categories obtained after posterior labeling of each neuron
by applying the majority voting scheme. With respect to the topographical arrangement of the neural output map this
posterior labeling is the following.
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as the robustness and generality of its use are considered. Since both the SOCOM and the 
CNN classifier share the same backbone architecture, this argument could be extended to 
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The projection shown in Figure 8 has been constructed to further demonstrate 
SOCOM’s clustering continuity and self-organizing capabilities. Essentially, the same 8 × 
6 neural map is depicted, but in this case, each neuron is represented by the unique 
individual images, from the testing batch of the STL-10, that demonstrate the best/optimal 
fit with respect to the devised energy formula (viz. mapping schema). Apart from the 
evident correspondence between the synthetic images of Figure 6, the actual images of 
Figure 8, and the posterior labeling of the output neurons, an additional observation needs 
to be made. Not only do common/shared visual characteristics result in mappings that are 
adjacent on the SOCOM neural map but even more subtle differences like perspective, 
orientation, or focus are distinguished and are subsequently assigned to different but still 
neighboring neurons. For instance, the neurons clustering/describing cars (on the bottom 
right of the mapping) specialize accordingly in modeling either the side of the vehicle, its 
front-back, or close-up viewing points. It is also interesting to point out that the number 
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Figure 7. Upper row: selected synthetic images (taken from the overall NMV) of SOCOM neurons representing monkeys, 
airplanes, and cats. Lower row: the analogous synthetic images of the output units of the vgg11 classifier that represent 
the exact same categories of data. As can be seen, without being identical, they focus on the same characteristics and 
patterns of the input data (edges, parts of the head, vertices at different scales, and orientations) to achieve the respective 
clustering and classification results, despite the fact that the underlying mechanisms of their output layers are different. 

A key characteristic of the NMV that should be pointed out is that it does not require 
any type of class/category assignments, or posterior information in general, at any stage 
of its operation. This is fully aligned with the end-to-end unsupervised property of the 
SOCOM learning algorithm. The combination of these two algorithmic components of the 
SOCOM brings forth a network that is in a position to train, produce 
clusterings/mappings, and visualize them without using any type of label information at 
any stage of the whole procedure. The NMV offers an unsupervised visual interpretation 
of what the SOCOM models, or equivalently, a projection of the achieved higher-level 
representations onto the output neural map. 

Figure 7. Upper row: selected synthetic images (taken from the overall NMV) of SOCOM neurons representing monkeys,
airplanes, and cats. Lower row: the analogous synthetic images of the output units of the vgg11 classifier that represent the
exact same categories of data. As can be seen, without being identical, they focus on the same characteristics and patterns of
the input data (edges, parts of the head, vertices at different scales, and orientations) to achieve the respective clustering
and classification results, despite the fact that the underlying mechanisms of their output layers are different.

The projection shown in Figure 8 has been constructed to further demonstrate SOCOM’s
clustering continuity and self-organizing capabilities. Essentially, the same 8 × 6 neural map
is depicted, but in this case, each neuron is represented by the unique individual images,
from the testing batch of the STL-10, that demonstrate the best/optimal fit with respect to
the devised energy formula (viz. mapping schema). Apart from the evident correspondence
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between the synthetic images of Figure 6, the actual images of Figure 8, and the posterior
labeling of the output neurons, an additional observation needs to be made. Not only do
common/shared visual characteristics result in mappings that are adjacent on the SOCOM
neural map but even more subtle differences like perspective, orientation, or focus are
distinguished and are subsequently assigned to different but still neighboring neurons.
For instance, the neurons clustering/describing cars (on the bottom right of the mapping)
specialize accordingly in modeling either the side of the vehicle, its front-back, or close-up
viewing points. It is also interesting to point out that the number of outliers is significantly
low and the few ones that can be traced are located at the boundaries of their respective
clusters (for instance between the neurons which model cats and dogs lying on the floor).

A key characteristic of the NMV that should be pointed out is that it does not require
any type of class/category assignments, or posterior information in general, at any stage
of its operation. This is fully aligned with the end-to-end unsupervised property of the
SOCOM learning algorithm. The combination of these two algorithmic components of the
SOCOM brings forth a network that is in a position to train, produce clusterings/mappings,
and visualize them without using any type of label information at any stage of the whole
procedure. The NMV offers an unsupervised visual interpretation of what the SOCOM
models, or equivalently, a projection of the achieved higher-level representations onto the
output neural map.

3.2. Quantitative Analysis

For evaluating the quality of the clustering output, and more specifically in the case
of SOMs, the quality of the mapping output various internal and external criteria have
been introduced. Internal criteria are more qualitative in the sense that they evaluate
clustering results indirectly (e.g., by means of organization, compactness/sparseness,
isolation, and preservation), whereas external are more quantitative since by measuring the
match between clustering and external (e.g., human-based) categorizations they are in a
position to provide more precise assessments. Despite the fact that in the general case there
is no binding rule stating that class categorizations are in a one-to-one correspondence with
potential cluster assignments, nearly always in the related literature the preferred criterion
is purity; an external type criterion:

PUR =
1
S

P

∑
p=1

max
1≤t≤T

∣∣sp ∩ st
∣∣. (16)

The subscript p denotes the partitioning of a set of S samples into P distinct clusters
(a posteriori estimated by the model); similarly, the subscript t denotes the assignment of
these samples into T categories (a priori defined in the dataset). As expected, its resulting
values lie in the [0, 1] interval. Obviously, purity identifies with accuracy given that the
majority voting principle is utilized for labeling each individual cluster. Although purity
intuitively is rather straightforward/precise, it tends to favor small (in sample numbers)
clusters like singletons.

Training trajectories showing the error (12) and the purity/accuracy (16) graphs from
indicative top-performing SOCOM’s are given in Figure 9. Two SOCOM models are de-
picted, a network initialized with transfer learning from a problem-specific vgg11 classifier
(SOCOM-PSTL) and one without (SOCOM). As it is reasonable to expect, the former
demonstrates better performance (both in terms of error and accuracy) in comparison to the
latter whereby it also converges faster to a higher accuracy value. As can be observed, in
either case, the coarse phase appears to last less than 15 epochs followed by the fine-tuning
(viz. convergence) phase of the SOCOM learning procedure. It is also interesting to note
that despite the fact that the SOCOM’s error drops faster it does not reach the low values of
SOCOM-PSTL; nevertheless, with respect to accuracy it manages to improve significantly
later along in the training procedure.
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Figure 9. Training evolution of two characteristic types of SOCOMs, alongside the trajectories of the respective performance
criteria. (Left) The networks’ error/loss values across training time (i.e., epochs). (Right) The achieved accuracies at each
stage of the unsupervised learning procedure.

The 8000 test images that have been ignored/excluded during training, were used
for estimating SOCOM’s accuracy. A list of top-performing (also in terms of accuracy)
characteristic deep SOMs, (partially) unsupervised learning CNNs, and CNN clustering
techniques is summarized in Table 1. As can be seen, SOCOM belongs to the top-performing
group of algorithms. Moreover, differently from the rest of the top-performing models, it
achieves the reported accuracy rate by following an end-to-end unsupervised approach
throughout both its learning phase and clustering operations.

One needs to be clear from the beginning with regards to the key difference between
obtaining accuracies with a posterior labeling of neurons (as is the case for IIC, ADC,
DAC, DEC, and SOCOM) and obtaining accuracies with the addition of a supervised
model/layer (like MLP, SVM or fully connected soft-max network). For instance “in this
work we propose an evaluation procedure consisting of applying the result (the feature
vector) in a classification system and comparing it to other classifiers under the same
datasets” [59]. Deterministically, the supervised layer approaches’ results are expected to
be higher-better since the unsupervised networks’ outputs are treated as input features
to a supervised network (which is obviously trained in a supervised manner). This type
of experimental testing does reveal characteristics of the unsupervised module’s output
feature space but it offers an over-optimistic view of the network’s clustering capabilities
and performance. The end-to-end unsupervised learning networks that resort to this kind
of feature space validation are all those scoring above 66%; this fact renders SOCOM as
the only algorithm in the group capable of producing clustering and (indirectly through
neuron posterior labeling) classification results without the requirement of a front-end
output supervised layer. Actually, under a puristic unsupervised learning comparison, the
models that utilize class-label information at whichever part of their operation should be
excluded. Strictly speaking, this exclusion would also involve SOCOM-PSTL since it is
initialized with transfer learning from a problem-specific supervised classifier. The only
algorithms conforming to such strict unsupervised learning and operating criteria are the
SOCOM, IIC, ADC, DAC, and DEC. With respect to this experimental comparison setup,
the SOCOM outperforms the rest by at least 18%.

The main objective of the present experimental series was to set in motion SOCOM’s
algorithmic mechanisms in an effort to tangibly demonstrate and verify its capabilities and
clustering performance. The primary goal of the reported results was to complement the
theoretical merits of the proposed model with their practical applications.
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Table 1. The reported accuracies of deep SOMs, (partially) unsupervised learning CNNs, and
CNN clustering techniques on the STL-10 dataset. If a methodology necessitates an additional
supervised training layer applied to its features for producing the reported results then this is
specifically indicated in the last column and the exact types of the supervised layers are shown in
the parentheses.

Model/Network Accuracy (%)
End-to-End

Unsupervised
Learning

Unsupervised
Clustering and
Classification

Operations

SOCOM-PSTL 84.19 • •
Spatial Contrasting Initialization
(Soft-max classifier) [58] 81.34 • —

UDSOM (SVM classifier) [59] 80.19 • —

SOCOM 78.7 • •
Exemplar CNN
(SVM classifier) [60] 74.2 • —

Convolutional k-Means Clustering
(Linear classifier) [61] 74.1 • —

Zero-bias CNN ADCU
(Soft-max classifier) [62] 70.2 • —

MSRV+C-SVDDNet
(SVM and soft-max classifier) [63] 68.23 • —

Committees of Deep Networks
(SVM classifier) [64] 68.0 • —

Unsupervised Feature Learning by
Augmenting Single Images
(SVM classifier) [65]

67.4 • —

Hierarchical Matching Pursuit
(SVM classifier) [66] 64.5 • —

Discriminative Convolution with
Fisher Weight Map
(Logistic regression classifier) [67]

66.0 • —

IIC [68] 59.8 • •
ADC [69] 53.0 • •
DAC [70] 47.0 • •
DEC [71] 35.9 • •

4. Conclusions

The SOCOM prototype is in a position, in theory and in practice, to incorporate deep
convolutional networks and to train them with a gradient backpropagation algorithm
specifically tailored to meet the requirements of the architectures’ complexity, depth, and
parameter size. The construction of the SOCOM intrinsically offers the capability to
make use of transfer learning from pre-trained CNNs. Furthermore, the low-dimensional
spatially ordered array of output neurons, which is overlaid above the embedded hidden
layer features/representations of multi-channel inputs (e.g., colored images or sequences
of images/signals), provides topology-driven clusterings and visualizations. In particular,
the devised unsupervised learning visualization technique apart from offering insight and
interpretation of the SOCOM’s clustering operation and neural mapping also provides
defensible indications regarding the formation of higher representations that comprise
low-level distributed partial features.
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Finally, it is reasonable to expect that the present self-contained study of the SOCOM
prototype could give rise to a number of closely related research directions pointing towards
enriching and diversifying the model, and towards promoting accessibility and ease-of-use
of the SOCOM variants to the scientific research community. We believe that promising
research paths to follow have been identified. We are undertaking certain parts of this
research work, which we will make publicly available in the nearest future.

Author Contributions: Conceptualization, C.F., Y.P., S.P.S. and S.A.M.; formal analysis, C.F. and Y.P.;
investigation, C.F. and Y.P.; methodology, C.F., Y.P., S.P.S. and S.A.M.; project administration, S.A.M.;
software, C.F. and Y.P.; supervision, S.P.S. and S.A.M.; validation, C.F. and Y.P.; visualization, C.F. and
Y.P.; writing—original draft, C.F. and S.A.M.; writing—review and editing, Y.P. and S.P.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme “Human Resources Development, Education and Life-
long Learning 2014–2020” in the context of the project “Self-Organizing Convolutional Maps”
(MIS 5050185).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
2. Northcutt, C.G.; Athalye, A.; Mueller, J. Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv 2021,

arXiv:2103.14749.
3. Malondkar, A.; Corizzo, R.; Kiringa, I.; Ceci, M.; Japkowicz, N. Spark-GHSOM: Growing hierarchical self-organizing map for

large scale mixed attribute datasets. Inf. Sci. 2019, 496, 572–591. [CrossRef]
4. Forti, A.; Foresti, G.L. Growing Hierarchical Tree SOM: An unsupervised neural network with dynamic topology. Neural Netw.

2006, 19, 1568–1580. [CrossRef]
5. Jin, H.; Shum, W.-H.; Leung, K.-S.; Wong, M.-L. Expanding self-organizing map for data visualization and cluster analysis. Inf.

Sci. 2004, 163, 157–173. [CrossRef]
6. Hsu, A.L.; Tang, S.-L.; Halgamuge, S.K. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery

and marker gene identification in microarray data. Bioinformatics 2003, 19, 2131–2140. [CrossRef]
7. Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural

Netw. 1997, 8, 98–113. [CrossRef]
8. Liu, N.; Wang, J.; Gong, Y. Deep self-organizing map for visual classification. In Proceedings of the 2015 International Joint

Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015.
9. Hankins, R.; Peng, Y.; Yin, H. Towards complex features: Competitive receptive fields in unsupervised deep networks. In

Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Madrid, Spain, 21–23
November 2018.

10. Wickramasinghe, C.S.; Amarasinghe, K.; Manic, M. Deep self-organizing maps for unsupervised image classification. IEEE Trans.
Ind. Inform. 2019, 15, 5837–5845. [CrossRef]

11. Aly, S.; Almotairi, S. Deep convolutional self-organizing map network for robust handwritten digit recognition. IEEE Access 2020,
8, 107035–107045. [CrossRef]

12. Friedlander, D. Pattern Analysis with Layered Self-Organizing Maps. arXiv 2018, arXiv:1803.08996.
13. Pesteie, M.; Abolmaesumi, P.; Rohling, R. Deep neural maps. arXiv 2018, arXiv:1810.07291.
14. Stuhr, B.; Brauer, J. Csnns: Unsupervised, backpropagation-free convolutional neural networks for representation learning. In

Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL,
USA, 16–19 December 2019.

15. Part, J.L.; Lemon, O. Incremental on-line learning of object classes using a combination of self-organizing incremental neural
networks and deep convolutional neural networks. In Proceedings of the Workshop on Bio-Inspired Social Robot Learning in
Home Scenarios (IROS), Daejeon, Korea, 9–14 October 2016.

16. Wang, M.; Zhou, W.; Tian, Q.; Pu, J.; Li, H. Deep supervised quantization by self-organizing map. In Proceedings of the 25th
ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017.

17. Kohonen, T. Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995.
18. Heskes, T. Energy functions for self-organizing maps. In Kohonen Maps; Elsevier: Amsterdam, The Netherlands, 1999; pp. 303–315.

http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1016/j.ins.2018.12.007
http://doi.org/10.1016/j.neunet.2006.02.009
http://doi.org/10.1016/j.ins.2003.03.020
http://doi.org/10.1093/bioinformatics/btg296
http://doi.org/10.1109/72.554195
http://doi.org/10.1109/TII.2019.2906083
http://doi.org/10.1109/ACCESS.2020.3000829


Mach. Learn. Knowl. Extr. 2021, 3 898

19. Ferles, C.; Stafylopatis, A. Self-organizing hidden markov model map (SOHMMM). Neural Netw. 2013, 48, 133–147. [CrossRef]
[PubMed]

20. Ferles, C.; Papanikolaou, Y.; Naidoo, K.J. Denoising autoencoder self-organizing map (DASOM). Neural Netw. 2018, 105, 112–131.
[CrossRef]

21. Ultsch, A. Maps for the visualization of high-dimensional data spaces. In Proceedings of the Workshop on Self Organizing Maps,
Hibikono, Japan, 11–14 September 2003.

22. Ultsch, A. Clustering with SOM: Uˆ* C. In Proceedings of the Workshop on Self-Organizing Maps, Paris, France,
5–8 September 2005.

23. Ferles, C.; Beaufort, W.-S.; Ferle, V. Self-Organizing Hidden Markov Model Map (SOHMMM): Biological sequence clustering and
cluster visualization. In Hidden Markov Models; Springer: Berlin/Heidelberg, Germany, 2017; pp. 83–101.

24. Tasdemir, K.; Merényi, E. Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Trans. Neural
Netw. 2009, 20, 549–562. [CrossRef] [PubMed]

25. Brugger, D.; Bogdan, M.; Rosenstiel, W. Automatic cluster detection in Kohonen’s SOM. IEEE Trans. Neural Netw. 2008, 19,
442–459. [CrossRef] [PubMed]

26. Pölzlbauer, G.; Dittenbach, M.; Rauber, A. Advanced visualization of self-organizing maps with vector fields. Neural Netw. 2006,
19, 911–922. [CrossRef] [PubMed]

27. Yin, H. ViSOM-a novel method for multivariate data projection and structure visualization. IEEE Trans. Neural Netw. 2002, 13,
237–243.

28. Pampalk, E.; Rauber, A.; Merkl, D. Using smoothed data histograms for cluster visualization in self-organizing maps. In
Proceedings of the International Conference on Artificial Neural Networks, Madrid, Spain, 28–30 August 2002.

29. Vesanto, J. SOM-based data visualization methods. Intell. Data Anal. 1999, 3, 111–126. [CrossRef]
30. Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing higher-layer features of a deep network. Univ. Montr. 2009, 1341, 1.
31. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and

saliency maps. arXiv 2013, arXiv:1312.6034.
32. Nguyen, A.; Yosinski, J.; Clune, J. Multifaceted feature visualization: Uncovering the different types of features learned by each

neuron in deep neural networks. arXiv 2016, arXiv:1602.03616.
33. Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding neural networks through deep visualization. arXiv 2015,

arXiv:1506.06579.
34. Mahendran, A.; Vedaldi, A. Understanding deep image representations by inverting them. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005.
35. Olah, C.; Mordvintsev, A.; Schubert, L. Feature visualization. Distill 2017, 2, e7. [CrossRef]
36. Olah, C.; Satyanarayan, A.; Johnson, I.; Carter, S.; Schubert, L.; Ye, K.; Mordvintsev, A. The building blocks of interpretability.

Distill 2018, 3, e10. [CrossRef]
37. Carter, S.; Armstrong, Z.; Schubert, L.; Johnson, I.; Olah, C. Activation atlas. Distill 2019, 4, e15. [CrossRef]
38. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on

Computer Vision, Zürich, Switzerland; 2014.
39. Zintgraf, L.M.; Cohen, T.S.; Welling, M. A new method to visualize deep neural networks. arXiv 2016, arXiv:1603.02518.
40. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.-R.; Samek, W. On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation. PLoS ONE 2015, 10, e0130140. [CrossRef] [PubMed]
41. Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 12 2015.
42. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
43. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.

arXiv 2013, arXiv:1312.6199.
44. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
45. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
46. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings

of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.
47. Braga, P.H.; Medeiros, H.R.; Bassani, H.F. Deep Categorization with Semi-Supervised Self-Organizing Maps. In Proceedings of

the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020.
48. Ferles, C.; Papanikolaou, Y.; Savaidis, S.P.; Mitilineos, S.A. Deep learning self-organizing map of convolutional layers. In

Proceedings of the 2nd International Conference on Artificial Intelligence and Big Data (AIBD 2021), Vienna, Austria, 20–21
March 2021; pp. 25–32.

49. Coates, A.; Ng, A.; Lee, H. An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011. JMLR Workshop
and Conference Proceedings.

50. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
51. Yu, W.; Yang, K.; Bai, Y.; Xiao, T.; Yao, H.; Rui, Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In

Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

http://doi.org/10.1016/j.neunet.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/24001407
http://doi.org/10.1016/j.neunet.2018.04.016
http://doi.org/10.1109/TNN.2008.2005409
http://www.ncbi.nlm.nih.gov/pubmed/19228556
http://doi.org/10.1109/TNN.2007.909556
http://www.ncbi.nlm.nih.gov/pubmed/18334364
http://doi.org/10.1016/j.neunet.2006.05.013
http://www.ncbi.nlm.nih.gov/pubmed/16782304
http://doi.org/10.3233/IDA-1999-3203
http://doi.org/10.23915/distill.00007
http://doi.org/10.23915/distill.00010
http://doi.org/10.23915/distill.00015
http://doi.org/10.1371/journal.pone.0130140
http://www.ncbi.nlm.nih.gov/pubmed/26161953


Mach. Learn. Knowl. Extr. 2021, 3 899

52. Nam, W.-J.; Choi, J.; Lee, S.-W. Interpreting Deep Neural Networks with Relative Sectional Propagation by Analyzing Comparative
Gradients and Hostile Activations. arXiv 2020, arXiv:2012.03434.

53. Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 28 June 2014;
pp. 806–813.

54. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792.
55. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010. JMLR Workshop and Conference
Proceedings.

56. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE winter conference on applications
of computer vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017.

57. Pointer, I. Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications; O’Reilly Media, Inc.: Newton,
MA, USA, 2019.

58. Hoffer, E.; Hubara, I.; Ailon, N. Deep unsupervised learning through spatial contrasting. arXiv 2016, arXiv:1610.00243.
59. Sakkari, M.; Zaied, M. A Convolutional Deep Self-Organizing Map Feature extraction for machine learning. Multimed. Tools Appl.

2020, 79, 19451–19470. [CrossRef]
60. Dosovitskiy, A.; Fischer, P.; Springenberg, J.T.; Riedmiller, M.; Brox, T. Discriminative unsupervised feature learning with exemplar

convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1734–1747. [CrossRef]
61. Dundar, A.; Jin, J.; Culurciello, E. Convolutional clustering for unsupervised learning. arXiv 2015, arXiv:1511.06241.
62. Paine, T.L.; Khorrami, P.; Han, W.; Huang, T.S. An analysis of unsupervised pre-training in light of recent advances. arXiv 2014,

arXiv:1412.6597.
63. Wang, D.; Tan, X. Unsupervised feature learning with C-SVDDNet. Pattern Recognit. 2016, 60, 473–485. [CrossRef]
64. Miclut, B. Committees of deep feedforward networks trained with few data. In Proceedings of the German Conference on Pattern

Recognition, Münster, Germany, 2–5 September 2014.
65. Dosovitskiy, A.; Springenberg, J.; Brox, T. Unsupervised feature learning by augmenting single images. arXiv 2014,

arXiv:1312.5242.
66. Bo, L.; Ren, X.; Fox, D. Unsupervised feature learning for RGB-D based object recognition. In Experimental Robotics; Springer:

Berlin/Heidelberg, Germany, 2013.
67. Nakayama, H. Efficient Discriminative Convolution Using Fisher Weight Map. In Proceedings of the BMVC, Bristol, UK, 9–13

September 2013.
68. Ji, X.; Henriques, J.F.; Vedaldi, A. Invariant information clustering for unsupervised image classification and segmentation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019.
69. Haeusser, P.; Plapp, J.; Golkov, V.; Aljalbout, E.; Cremers, D. Associative deep clustering: Training a classification network with

no labels. In Proceedings of the German Conference on Pattern Recognition, Stuttgart, Germany, 9–12 October 2018.
70. Chang, J.; Wang, L.; Meng, G.; Xiang, S.; Pan, C. Deep adaptive image clustering. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017.
71. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International

Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

http://doi.org/10.1007/s11042-020-08822-9
http://doi.org/10.1109/TPAMI.2015.2496141
http://doi.org/10.1016/j.patcog.2016.06.001

	Introduction 
	SOCOM Prototype 
	SOM Review 
	Forward Propagation 
	Convolutional Layer 
	Pooling Layer 
	Fully Connected Layer 
	Output Layer 

	Backpropagation 

	Experiments 
	Neural Output Visualization 
	Quantitative Analysis 

	Conclusions 
	References

