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Abstract: Complex weather conditions—in particular clouds—leads to uncertainty in photovoltaic
(PV) systems, which makes solar energy prediction very difficult. Currently, in the renewable energy
domain, deep-learning-based sequence models have reported better results compared to state-of-the-
art machine-learning models. There are quite a few choices of deep-learning architectures, among
which Bidirectional Gated Recurrent Unit (BGRU) has apparently not been used earlier in the solar
energy domain. In this paper, BGRU was used with a new augmented and bidirectional feature
representation. The used BGRU network is more generalized as it can handle unequal lengths of
forward and backward context. The proposed model produced 59.21%, 37.47%, and 76.80% better
prediction accuracy compared to traditional sequence-based, bidirectional models, and some of
the established states-of-the-art models. The testbed considered for evaluation of the model is far
more comprehensive and reliable considering the variability in the climatic zones and seasons, as
compared to some of the recent studies in India.

Keywords: GHI forecasting; time series; bidirectional features; bidirectional GRU

1. Introduction

Solar energy is one of the important components of the alternative sources of energy [1].
India is ranked third after China and the United States of America (USA) in terms of solar
energy development [2]. Precise prediction of solar energy is very important for several
applications, such as electricity grid management, the trading of solar energy, etc. [3,4]. The
Global Horizontal Irradiance (GHI) is often taken as a proxy for solar energy generation
and used for the prediction task [5–12]. A considerable amount of uncertainty is present in
solar energy due to its strong dependence on atmospheric conditions, which makes the
prediction task challenging [13–15].

In [10], the authors categorized solar forecasting horizons into short-term, medium-
term, and long-term forecasting. For one to few hours ahead of solar forecasting, i.e.,
for short-term forecasting, currently, machine-learning models are the state-of-the-art
models [14]. In [16], the authors stated that short-term solar forecasting is essential for
balancing demand and supply and decreasing the storage requirement, unit commitment,
etc. From the literature study, we found that statistical and Artificial Neural Network
(ANN)-based models were effective in intra-hour (short-term) or intra-day (medium-term)
solar forecasting.

Many of the current works suggest that deep-learning-based approaches are very
suitable for time-series forecasting [5,17–21]. In [22], the authors suggested that, in several
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application domains, deep learning algorithms dominate machine learning approaches
and have a superior ability to learn the non-linear structure between the input and output.

Long Short-Term Memory (LSTM) is one of the deep-learning models, specifically
designed to handle sequential data. GRU is a more recent addition to deep-learning-
based sequence models, and it simplifies the architecture of LSTM to an extent. In recent
papers [5,8,9,23–25], the authors used traditional unidirectional LSTM and GRU to forecast
solar irradiation, and they demonstrated that both LSTM and GRU dominate standard
statistical techniques as well as state-of-the-art machine-learning models. For time-series
data, LSTM is most popularly used for intra-hour (short-term) solar forecasting [26]. Sub-
sequently, in some of the recent research papers [27,28], the authors demonstrated that,
by replacing traditional LSTM with bidirectional LSTM, they produced better forecasting
performance for the energy domain.

A bidirectional deep-learning model is a combination of two sequential layers: one
layer is trained with the preceding values, (t − k) to (t − 1)th term of the sequence, referred
to as the past context to predict the tth term. This is typically called the forward layer. The
other layer uses (t + 1) to (t + k)th term of the sequence referred as the future context to
predict the tth term. This is known as the backward layer. The above process is described
by taking the window size of k. Both these contexts are available when we are predicting
missing values or finding representation of words by context. Understandably for a typical
forecasting task, the future context is unavailable. In some of the recent works [27,28],
the authors used the same past context as both the past and future context and reported
better results.

In this paper, we propose a feature representation, called a bidirectional feature, that
augments the past context and uses a simple technique to construct the future context. This
representation is further discussed in subsequent sections.

The main contributions of this paper are summarized as follows:

• Bidirectional GRU is applied for the first time to solar energy forecasting, and it
is shown to be better performing than other common sequence models, such as
unidirectional LSTM, Bidirectional-LSTM (BLSTM), and Unidirectional GRU.

• A new feature representation with a bidirectional nature is proposed, which fur-
ther augments the performance of BGRU. The model shows improved performance
compared to two state-of-the-art models.

• The performance of the model is validated on real-life data from six solar stations
from three climatic zones and in two seasons in India.

The rest of the paper is organized as follows. In Section 2, the recent forecasting models
for renewable energy are outlined. In Section 3, the detailed architecture of BLSTM and
BGRU with the proposed bidirectional feature representation are elaborated. In Section 4,
the materials and methods employed in setting up the empirical study is discussed. In
Section 5, the results of the prediction models are presented along with critical analysis
and discussion. Finally, in Section 6, our concluding remarks are presented.

2. Forecasting Models for Renewable Energy

In this section, some of the recent research efforts in the domain of renewable energy
forecasting are presented. They are classified broadly in the following two categories,
namely (a) machine-learning-based models and (b) deep-learning-based models.

2.1. Machine Learning Based Models

In [10], the authors reported that, compared to SVR, decision tree regressor and k-
nearest neighbors (kNN), Multilayer Perceptron (MLP) performed the best to forecast
solar irradiation for one-hour-ahead prediction. In [29], the authors proposed a unique
re-sampling technique to design a uni-variate solar PV power forecasting model using ma-
chine learning algorithms for a forecasting horizon of length of five minutes to three hours.

Out of Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), Random
Forest (RF), and Multiple Linear Regression (MLR), RF was reported to have the best
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accuracy compared to the others. In [30], the authors predicted three components of hourly
solar irradiation, namely global horizontal, beam normal, and diffuse horizontal for a
horizon of 6 h. The authors used three different models, namely smart persistence, ANN
and RF. They observed that RF showed the best performance for all three components of
solar irradiation.

Some of the approaches can be classified as hybrid using both ANN and ML. As exam-
ple, In [31] the authors used a radial basis neural network for solar power prediction in the
Netherlands, where the parameters were tuned using swarm optimization. In paper [32],
the authors advocated the use of an Ensemble model for both wind and solar energy
prediction as they can reduce variance of the base learners. It can be observed that most of
the research has been conducted for short-term solar forecasting [10,29–31]. Currently, RF
has been popularly used in certain studies [29,30,32] for short-term solar forecasting.

2.2. Deep-Learning-Based Models

In [5],the authors used LSTM to implement a solar irradiation prediction model. They
reported that LSTM outperformed other models, such as ANN, support vector machines
(SVM), and autoregressive moving average (ARMA). In [9], the authors proposed a uni-
directional LSTM-based day-ahead hourly solar forecasting model to forecast irradiation
along with other meteorological features. In [8], an hourly univariate photovoltaic power
forecasting model was proposed based on LSTM-RNN.

In [33], the authors reported a day-ahead hybrid PV power forecasting model, where
the authors used LSTM and Convolutional neural network (CNN) to build the model.
In [34], the authors observed that the LSTM model does not need pre-processing and works
best with stateful models. In deep-learning-based approaches, there are also approaches
based on CNN, where the authors attempted to focus on the global information unlike the
sequence models [35].

It can be observed that, currently, unidirectional LSTM has proved its excellence over
many state-of-the-art machine learning as well as statistical models in the context of short-
term solar forecasting [5,9,33]. In paper [27], the authors developed a hourly PV power
forecasting model. In this context, the authors studied the effectiveness of different time
series prediction models divided into two classes statistical (ARMA, ARIMA, SARIMA)
and Neural Network (NN)-based models (LSTM, Bidirectional-LSTM).

It has been shown that NN-based models, specifically Bidirectional-LSTM outper-
formed others. They concluded that, for one-hour-ahead prediction, NN-based models
performed considerably well. In [28], the authors proposed a solar power prediction model
based on different variants of LSTM and as well as different Bidirectional LSTM variants
with two choices of architectures single layer and double layer. The authors claimed that
bidirectional LSTM of a single layer outperformed others and also they validated their
proposed model against four different seasons.

In Table 1, we summarize the above-discussed research works in terms of several
attributes, such as the type of the research data, proposed technique, length of the forecast-
ing window, the country, correctness, and advantages or disadvantages. Recent papers
adopted Bidirectional LSTM and reported better results. Nevertheless, we observed that
Bidirectional GRU were not applied, and the same set of observations were used for both
forward and backward context.
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Table 1. Studies based on currently implemented models on solar irradiation prediction.

Citation Data Model Name Forecasting
Window

Country Correctness A/D

[8] Time Series LSTM (Unidirectional) Hourly Egypt The claimed forecast-
ing error is 82.15, and
136.87 in terms of RMSE

Perfromed better
compared to MLR,
BRT, and NN

[27] Time Series Bi-LSTM (Bidirectional) Hourly China BI-LSTM produced cor-
relation coefficient of
98%, and RMSE of 0.791

Same past context
used for both the
forward and the
backward mode

[28] Time Series PSO-LSTM
(Bidirectional)

Multiple days China PSO-LSTM achieved
the lowest MAE, and
RMSE as 8.14, and 19.41

Same past context
used for both the
forward and the
backward mode

[36] Time Series CNN-LSTM
(Unidirectional)

1-Day, 1-Week, 2-
Week and 1-Month

Australia It achieved lower
MAPE < 11%, and
RRMSE < 15%
compared to bench-
mark models

This study is
limited to one solar
station

[33] Time Series LSTM-CNN (Unidirec-
tional)

Multiple days China LSTM-CNN achieved
the best MAE, RMSE,
and MAPE as 0.221,
0.621, and 0.042

This study is
limited to one
solar station

[6] Time Series MLP (Unidirectional) Monthly UAE MLP has shown the
best MBE, ans RMSE as
0.0003, and 0.179

The model is vali-
dated for three so-
lar stations

[30] Time Series RF 1 h to 6 h France RF achieved the low-
est forecasting error as
19.65% to 27.78% in
terms of RMSE

This study is re-
stricted to one solar
station

[10] Aerosol Optical
Depth (AOD) and
the Angstrom
Exponent data

MLP (Unidirectional) 1 h Saudi Arabia MLP achieved lower
RMSE under 4%
and forecast skill of
over 42%

The study is re-
stricted to one solar
site

[29] Time Series RF 5 min to 3 h Australia RF achieved the lowest
overall MAE, and MRE
as 110.46, and 10.5%

The proposed
model is univariate,
and restricted to
one solar site

3. Detailed Working of the Deep-Learning-Based Models

This section has two subsections. In the first part, a description of the sequence
models is provided. In the second part, the different feature representation options for
the sequence models are elaborated. In Section 3.2, the proposed augmented bidirectional
feature representation is explained, which is one of the main contributions of the paper.

3.1. Sequential Deep Learning Models

Sequence or ordered data is present in various application domains namely, climate,
finance, medical diagnosis, astronomy, bio-informatics, etc. Traditional machine-learning
models consider all features to be independently and identically distributed (iid), which
do not apply here. Recurrent Neural Networks (RNN) are deep-learning models designed
to handle sequence data. In RNN, the next step output is dependent on the current input
as well as the previous step output.

This was much better than sequence data but was prone to a problem known as the
Vanishing Gradient problem. As a result of which, RNN was incapable of remembering
long-term dependency. LSTM [37], is a special type of RNN, where the hidden memory
state update is customized through some unique gates. Hence, LSTM shows a better un-
derstanding in the case of long-range dependencies and is effective with the vanishing [38]
and exploding gradient problem [39].

GRU [40] is mostly similar to LSTM and was proposed by [41]. However, it has some
specific advantages over LSTM. GRU is less complicated than LSTM, and it uses fewer
parameters compared to LSTM. Hence, it is faster than LSTM. LSTM uses both input and
forget gate while GRU performs both these operations using the reset gate. The function
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of the reset gate is to decide how to combine the current input with the old memory. The
update gate decides what amount of previous memory needs to maintain. The equations
that govern the working of GRU are given as follows:

Reset gate(rt) = σ(Wrht−1 + UrXt) (1)

Update gate(zt) = σ(Wzht−1 + UzXt) (2)

Cell state(ct) = tanh(Wc(rt ◦ ht−1) + UcXt) (3)

New state(ht) = (zt ◦ ct) + ((1 − zt) ◦ ht−1) (4)

Here, Xt is the input vector at timestamp t, and σ denotes the sigmoid activation
function. ht and ht−1 are the hidden state vectors. Wr, Wz and Wc are the parameter
matrices related to hidden state vector ht−1 for reset gate, update gate, and the current cell
state. Ur, Uz, and Uc are the parameter matrices related to the input vector Xt for reset gate,
update gate and the current cell state. ◦ implies element-wise matrix multiplication, and
the new state ht is the final output vector.

• The GRU model, rather than any sequential model, is trained by selecting a continuous
portion or window from the input data. Instead of taking all such windows for
training, it is often broken into batches.

• If the batches are considered dependent on each other, then it is called a stateful model.
• Typically, when dealing with the sequence data, the hidden layer nodes are any

sequential cells. In Figure 1, a simple schematic diagram of a deep neural network
is shown, whereas a basic building block in the hidden layers, the GRU cells are
used. The inputs and the outputs are denoted as [I1, I2, I3, . . . , In], and [O1, . . . , Om]
respectively.

• As with traditional neural networks, gradient-descent and back-propagation are used
to learn the parameters of the network. Some of the state-of-the-art optimizers are
ADAM, RMSProp, Stochastic Gradient Descent [42–44], etc.

Figure 1. A neural network based on GRU cells.

In the sequence, a few preceding values of the sequence were used to predict the
current value. For tasks, such as missing data prediction, suitable text representation,
speech recognition, etc., instead of only the preceding sequence, the succeeding sequence
data is available. BLSTM [45,46] and BGRU are specifically designed for the same. In
Figure 2a, the detailed generic architecture of BGRU is shown where the length of the
forward and backward context is identical. In Figure 2b, the length of the forward and
backward context is different.

The functionality of BGRU is as follows:

• BGRU is a fusion of two independent unidirectional GRU layers when one layer
maintains the forward hidden states whereas the other maintains the backward
hidden states. In the forward pass, BGRU processes inputs sequence as . . . , Xt−3,
Xt−2, Xt−1, Xt for the time steps . . . , t − 3, t − 2, t − 1, t, and, in the backward pass,
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BGRU processes the input sequence for the time steps t, t − 1, t − 2, t − 3, . . . in the
reverse direction.

• After both forward and backward passes were completed, the hidden states are
concatenated to form a final single set of hidden states.

• Then, the final hidden states go through a densely connected layer to produce the
output sequence as . . . , yt−3, yt−2, yt−1, yt.

(a)

(b)

Figure 2. A network of bidirectional GRU (a) contexts with similar lengths and (b) contexts with
different length.

3.2. Feature Preparation for Sequential Models

In this section, four different types of feature representations are explained. The mod-
els trained with these different feature representations are named ULSTM (Unidirectional
LSTM + Unidirectional Feature), M-ULSTM (Unidirectional LSTM + Augmented Feature),
BLSTM, BD-BLSTM (Bidirectional LSTM + Proposed Bidirectional Feature), and BD-BGRU
(Bidirectional GRU + Proposed Bidirectional Feature). In Table 2, the models are compared
based on several attributes, such as type of the model, feature type, and the input feature
representation, and also we explain the generic architecture of each model in the following:

1. ULSTM: In Figure 3a, the high-level block diagram of ULSTM is presented. In this
case, to predict solar irradiation for the time step t as Xt, usually, the past context of
the same day is used. For example, to predict Xt, the input sequence is defined as
[Xt−m,. . . ,Xt−2,Xt−1]. The traditional sliding window approach was used to represent
the whole feature set. The length of the window is denoted as m.
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2. M-ULSTM: As with the previous feature representation, this also uses past values,
and hence is a unidirectional model. However, the past context is augmented here,
with the previous values, corresponding to the same time. In Figure 3b, the high-
level block diagram of M-ULSTM is presented. For example, for predicting solar
irradiation for the time step t as Xt for Day0 we not only used the same day past
sequence denoted as Day0[Xt−m,. . . ,Xt−2,Xt−1] but also values from previous day
denoted as Day−1[Xt−m,. . . ,Xt−2,Xt−1].

3. BLSTM: This is the traditional variant of bidirectional LSTM, where the same context
is used to train the model both from forward and backward directions. Figure 3
b depicts the block diagram of BLSTM. In this architecture, the same augmented
features were used in both the left and right contexts.

4. BD-BLSTM and BD-BGRU: In the case of time-series prediction problems, such as
text data, traditional bidirectional deep-learning models use the same past sequence
for both the forward and backward context. In this paper, a simple technique is
proposed, first to augment the past context and next to construct future context from
previous day. The model used here is more generalized allowing the past and future
context to be of unequal length. In Figure 3d, the block diagram of this proposed bidi-
rectional feature set with BLSTM and BGRU is presented. The right or backward con-
text is collected from the previous day denoted as Day−1[Xt+1,. . . ,Xt+m−2,Xt+m−1].

Table 2. Comparison of models with different input feature representations.

Models Input Sequence Remarks

ULSTM Day0[Xt−m,. . . ,Xt−2,Xt−1] Same day m input time steps

M-ULSTM

Augmented Feature
{Day−1[Xt−m,. . . ,Xt−2,Xt−1]
Day0[Xt−m,. . . ,Xt−2,Xt−1]}

Same day m input time steps are
augmented with previous day

m time steps

BLSTM

Lcontext = Augmented Feature
{Day−1[Xt−m,. . . ,Xt−2,Xt−1]
Day0[Xt−m,. . . ,Xt−2,Xt−1]}

Rcontext = Augmented Feature
{Day−1[Xt−m,. . . ,Xt−2,Xt−1]
Day0[Xt−m,. . . ,Xt−2,Xt−1]}

Same day m input time steps
along with previous day m time steps

is used as both forward
and backward context

BD-BLSTM/
BD-BGRU

LcontextAugmented Feature
{Day−1[Xt−m,. . . ,Xt−2,Xt−1]
Day0[Xt−m,. . . ,Xt−2,Xt−1]}

Rcontext
Day−1[Xt+1,. . . ,Xt+m−2,Xt+m−1]

Same day m input time steps along with
previous day m time steps is used as
forward context and augmented with

previous day m future time
steps as backward context
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(a)

(b)

(c)

(d)

Figure 3. Schematic diagram of (a) ULSTM (b) M-ULSTM (c) BLSTM (d) BD-BLSTM/BD-BGRU.

4. Materials and Methods

This section has five subsections. In the first subsection, how the data is collected and
its different characteristics are described. In the second subsection, the pre-processing
steps are discussed that are applied to the data. In the third section, the experimental
setup of the models is discussed. In the fourth section, the reference models are briefly
discussed, and also they been used for comparison, and finally, in the fifth subsection,
various performance metrics are enclosed that are employed for evaluation and comparison
of the models.

4.1. Data-Set Description

We used the application programming interface (API) provided by the Center for
Wind Energy Technology (C-WET) to crawl solar irradiation data for Solar Radiation
Resource Assessment (SRRA) stations across India. In this paper, data from 2016 is used
for three climatic zones (Hot and Dry, Warm and Humid, and Cold and Cloudy), and
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six stations located at Chennai (Tamil Nadu), Howrah (West Bengal), Guntur (Andhra
Pradesh), Kotada Pitha (Gujrat), and Ajmer (Rajasthan).

Figure 4, depicts solar stations in different climatic zones. Table 3 describes the details
of the solar stations, location, etc. For each of the stations, we chose a month each from the
rainy and winter season because the rainy season is known for its high variability due to
cloud and rain, on the other hand, in winter comparatively, the uncertainty is less. C-WET
provides data with a one-minute resolution. In our work, this was aggregated into a five
minute resolution.

Table 3. Description of the data.

City with Month Longitude Latitude Standard Deviation Climatic Zone

Ajmer (January) 74.66◦ E 26.40◦ N 47.64 Hot and dry
Chennai (December) 80.22◦ E 12.96◦ N 48.26 Warm and humid
Dehradun (January) 77.97◦ E 30.42◦ N 46.94 Cold and cloudy

Guntur (January) 80.53◦ E 16.37◦ N 49.46 Warm and humid
Howrah (December) 88.31◦ E 22.55◦ N 45.16 Warm and humid

Kotada Pitha (January) 71.21◦ E 21.95◦ N 48.55 Hot and dry
Ajmer (August) 74.66◦ E 26.40◦ N 78.33 Hot and dry

Chennai (November) 80.22◦ E 12.96◦ N 51.88 Warm and humid
Dehradun (August) 77.97◦ E 30.42◦ N 74.78 Cold and cloudy

Guntur (August) 80.53◦ E 16.37◦ N 90.36 Warm and humid
Howrah (August) 88.31◦ E 22.55◦ N 80.22 Warm and humid

Kotada Pitha (August) 80.53◦ E 16.37◦ N 82.91 Hot and dry

Figure 4. Solar stations based on climatic zones.

4.2. Data Pre-Processing

Following pre-processing on the raw data [47]:
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1. For each station–month combination, to remove night hours, only the measurements
of GHI between 7 a.m. to 7 p.m. were used.

2. After that, the GHI values for each day were aggregated into five minutes, and then
merged for all the days in a single time-series. The time-series should be formatted
as a three-dimensional array, where the three dimensions are the size of the batch,
number of time-steps (Window Size), and number of input features. In a single
window, 20 time-steps of GHI were used. Batch size refers to the number of training
samples used at the time of the training phase for one iteration. We used 100 training
samples in a batch. During the learning process, successive batches are used to train
the network.

3. Finally, GHI values were normalized in between [−1,1] using the following transfor-
mation (5).

X̂t =
Xt − Xmin

Xmax − Xmin
(5)

4.3. Experimental Setup

To predict GHI 20 steps (1 h 40 min) ahead, historical solar irradiance data was used.
The whole time-series data is decomposed into train and test set with the proportion of
80% and 20%. A subset of training data is used as a validation set (20% of the training set)
to validate the model. In this work, different variants of LSTM and GRU architectures were
implemented, and the prediction performance is compared against two recent benchmark
models. In the following section, the technical details of all implemented models are
described briefly.

• Different architectures of LSTM and GRU were developed using the Keras [48] API in
python. For bidirectional models, three hidden layers, and for the traditional LSTM,
two hidden layers were used.

• In the input layer of both LSTM and GRU, different choices of input size, i.e., sequential
length were varied from 20 to 60 steps.

• In the output layer, the 20-time steps were predicted, which is 100 min in this case.
• For the bidirectional models, two sequential models were applied separately. Predic-

tion were made from the forward direction by one model and from the backward
direction by the other model. Finally, by combining both predictions, the actual
decision is made.

• In the output layer, 20 neurons with linear activation were used. For traditional LSTM,
the same non-linear activation tanh [49] was used, and in the output layer, linear
activation was used.

• All models are trained on Adaptive Moment Estimation (Adam) [50] optimizer. For
all the implemented models, different hyper-parameters [51], such as learning rate,
the number of nodes in different hidden layers, batch size, and the number of epochs
were optimized using Bayesian Optimization [52] approach. In this context, the Tree-
structured Parzen Estimator (TPE) [53] algorithm of Hyperopt [54] package in python
is used. In Table 4, the details of all the hyper-parameters were enlisted.

Table 4. Hyper-parameters to optimize.

Models Hyper-Parameters Values

Number of hidden layers 1, 2, 3
Nodes in hidden layer 25, 50, 100

BLSTM/BD-BLSTM/BD-BGRU/ULSTM/M-ULSTM Learning rate 0.1, 0.01, 0.001
Batch size 1, 10, 20, 50, 100

Epoch 20, 40, 60, 60, 80, 100
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4.4. Comparison with Other Models

The prediction performance of the proposed methods BD-BLSTM and BD-BGRU
are compared with two recently published works on solar power forecasting. In the first
reference model [29], the authors used RF from the SciKit-learn package [55].

They reported a multi-step ahead prediction model, where RF was applied for each
output step individually. It is to be noted, for each RF model, separately, multiple hyper-
parameters, such as n_estimators (number of trees in the forest), min_samples_split (mini-
mum number of samples required to split an internal node), and min_samples_leaf (mini-
mum number of samples required to be at a leaf node) were tuned using the Grid Search [56]
approach with 10-fold cross-validation. To represent input features for each output step sep-
arately, they proposed a unique resampling technique for each RF model. In [8], the authors
used the traditional LSTM with two sequential layers to design the forecasting model.

In Table 5, the architectural details of all the reference models and the proposed
model are presented. From the table, some notable findings can be made, which are listed
as follows:

• The reference models [8,29], used univariate time series data, such as the proposed
model.

• In [8], the authors used raw time series (Non-stationary) to design the forecasting
model, similar to this work.

Table 5. Architectural similarity and dissimilarity of the proposed model compared to the refer-
ence models.

Model Attributes [29] [8] BD-BLSTM/BD-BGRU *

Similarities

Domain: Solar prediction Solar prediction Solar prediction
Input data: Time series Time series Time series

Prediction type: Uni-variate Uni-variate Uni-variate
Series type: Non-stationary Non-stationary Non-stationary

Dissimilarities

Model type: Random Forest Neural Network Neural Network
Sequential model: × X X

Memory: × X X
Stateful: × × X

Activation: × Default tanh
Bidirectional: × × X

Bidirectional feature: × × X
Stateful: × × X

4.5. Performance Metrics

In Equation (6), the computation of the Normalized Root Mean Squire Error (nRMSE)
is shown. nRMSE is known for its scale independence property. GHIt is the tth actual
value, and the corresponding predicted value is represented as ĜHIt. This always returns
a non-negative value. The closer the value to zero, the better is the fit of the model with
the data.

nRMSE =

√
∑n

i=1(GHIt−ĜHIt)2

n

∑n
i=1 GHIt

(6)

5. Results and Discussions

This section has five subsections. In the first subsection, the prediction performance
of M-ULSTM is analyzed compared to ULSTM. After that, in the second subsection, the
prediction performance of BLSTM is compared to M-ULSTM. In the third subsection, the
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forecasting accuracy of BD-BLSTM and BD-BGRU is compared against BLSTM. Then, in the
fourth subsection, the overall forecasting performance of BD-BGRU is presented. Finally, in
the fifth subsection, the forecasting performance of the proposed model, namely BD-BGRU
is compared with some recent works.

5.1. Forecasting Performance of M-ULSTM over ULSTM

In this section, the forecasting performance of M-ULSTM is compared with ULSTM
based on nRMSE. In Table 6, the season-specific nRMSE scores for all the stations are
presented. The model-specific standard deviation is included in the table to analyze the
prediction variability.

Winter: For all the stations, on average M-ULSTM outperformed ULSTM by 83.28%.
Rainy: ULSTM outperformed by M-ULSTM by 38.87%.
Variability: M-ULSTM achieved a much lower standard deviation than ULSTM.

Table 6. The forecasting performance of M-ULSTM and ULSTM measured on nRMSE.

Ajmer Chennai Dehradun Guntur Howrah Kotada Pitha σ
Models Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy

ULSTM 0.042 0.103 0.035 0.064 0.042 0.056 0.059 0.212 0.023 0.158 0.031 0.131 0.0581
M-ULSTM * 0.010 0.064 0.001 0.017 0.007 0.039 0.012 0.185 0.001 0.083 0.010 0.121 0.038

5.2. Forecasting Performance of BLSTM over M-ULSTM

In this section, the overall season specific forecasting performance of BLSTM is com-
pared against M-ULSTM. In Table 7, for all station–season combinations, the forecasting
performance is calculated based on nRMSE. The model-specific standard deviation is
computed.

Winter: We observed that BLSTM outperformed M-ULSTM by 11.64%.
Rainy: In the rainy season, BLSTM dominated M-ULSTM by 59.53%.
Variability: BLSTM achieved a lower standard deviation in its prediction compared

to M-ULSTM.

Table 7. The forecasting performance of BLSTM and M-ULSTM measured on nRMSE.

Ajmer Chennai Dehradun Guntur Howrah Kotada Pitha σ
Models Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy

M-ULSTM 0.010 0.064 0.001 0.017 0.007 0.039 0.012 0.018 0.001 0.083 0.010 0.121 0.038
BLSTM * 0.009 0.057 0.002 0.015 0.007 0.039 0.014 0.147 0.001 0.056 0.012 0.078 0.025

5.3. Forecasting Performance of BD-BLSTM and BD-BGRU over BLSTM

In Table 8, the forecasting performance of BD-BLSTM and BD-BGRU is compared
against BLSTM, where the forecasting accuracy is measured on nRMSE.

• BD-BLSTM:
Winter: In the winter season, BD-BLSTM dominated BLSTM by 4.04%.
Rainy: In the rainy season, BD-BLSTM outperformed BLSTM by 31.81%.
Variability: BD-BLSTM achieved lower standard deviation compared to BLSTM.

• BD-BGRU:
Winter: In the winter season, BD-BGRU outperformed BLSTM by 21.49%.
Rainy: In the rainy season, BD-BGRU outperformed BLSTM by 53.45%.
Variability: BD-BGRU achieved a lower standard deviation compared to BLSTM.

Hence, the above experimental result suggested that, when the proposed bidirectional
feature representation was used, BD-BLSTM and BD-BGRU can forecast GHI with higher
accuracy compared to BLSTM.
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Table 8. The forecasting performance of BLSTM, BD-BLSTM, and BD-BGRU measured on nRMSE.

Ajmer Chennai Dehradun Guntur Howrah Kotada Pitha σ
Models Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy

BLSTM 0.009 0.057 0.002 0.015 0.007 0.039 0.014 0.147 0.001 0.056 0.012 0.078 0.025
BD-BLSTM 0.009 0.0029 0.003 0.0017 0.007 0.023 0.014 0.068 0.001 0.038 0.011 0.056 0.021
BD-BGRU * 0.008 0.024 0.001 0.012 0.006 0.014 0.010 0.061 0.001 0.026 0.009 0.026 0.016

5.4. Overall Forecasting Performance of BD-BGRU

In Figures 5 and 6, the season-specific variability of the deviation of GHI is presented
for each station–month combination. The variability was calculated using box-plot and is
plotted over different choices of forecasting horizons. The deviation of GHI was calculated
by subtracting the predictions from the actual values. We observed that, in winter, for each
forecasting horizon, BD-BGRU achieved the lowest variability in the deviation of GHI.
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5.4. Overall Forecasting Performance of BD-BGRU

In Figures 5 and 6, season-specific variability of the deviation of GHI has been pre-
sented for each station-month combination. The variability has been calculated using
Box-plot and is plotted over different choices of forecasting horizons. The deviation of
GHI has been calculated by subtracting the predictions from the actual values. It has been
observed that in winter, for each forecasting horizon, BD-BGRU has achieved the lowest
variability in the deviation of GHI.
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Figure 5. Variability in deviation of GHI (W/m2) in winter season.

Similarly, in the rainy season, BD-BGRU has achieved the lowest variability in its
deviation of GHI compared to other models. ULSTM has performed the worst for both
winter and rainy seasons. Furthermore, compared to other models for all forecasting
horizons, BD-BGRU has achieved much lower divergence in its predictions compared to
actual.

Figure 5. Variability in deviation of GHI (W/m2) in the winter season.

Similarly, in the rainy season, BD-BGRU achieved the lowest variability in its deviation
of GHI compared to other models. ULSTM has performed the worst for both winter and
rainy seasons. Furthermore, compared to other models for all forecasting horizons, BD-
BGRU achieved much lower divergence in its predictions compared to the actual results.



Mach. Learn. Knowl. Extr. 2021, 3 960

Mach. Learn. Knowl. Extr. 2021, 1 14
Mach. Learn. Knowl. Extr. 2021, 1 14

0 m n 25 m ns 50 m ns 1 hour 15 m ns 1 hour 40 m ns
Forecast ng steps

−5

−4

−3

−2

−1

0

1

2

Dev
 at 

on 
 n p

red
 ct 

on 
of G

HI

MODEL
BD-BGRU
BD-BLSTM
BLSTM
Abdel et al.
M-ULSTM
ULSTM

(d) Guntur-January

0 min 25 mins 50 mins 1 hour 15 mins 1 hour 40 mins
Forecasting steps

−2

−1

0

1

Dev
iati

on 
in p

red
icti

on 
of G

HI

MODEL
BD-BGRU
BD-BLSTM
BLSTM
Abdel et al.
M-ULSTM
ULSTM

(e) Howrah-December

0 m n 25 m ns 50 m ns 1 hour 15 m ns 1 hour 40 m ns
Forecast ng steps

−5

−4

−3

−2

−1

0

1

2

3

Dev
 at 

on 
 n p

red
 ct 

on 
of G

HI

MODEL
BD-BGRU
BD-BLSTM
BLSTM
Abdel et al.
M-ULSTM
ULSTM

(f) Kotada Pitha-January

Figure 5. Variability in deviation of GHI (W/m2) in winter season.

Similarly, in the rainy season, BD-BGRU has achieved the lowest variability in its
deviation of GHI compared to other models. ULSTM has performed the worst for both
winter and rainy seasons. Furthermore, compared to other models for all forecasting
horizons, BD-BGRU has achieved much lower divergence in its predictions compared to
actual.

Figure 5. Variability in deviation of GHI (W/m2) in winter season.

Similarly, in the rainy season, BD-BGRU has achieved the lowest variability in its
deviation of GHI compared to other models. ULSTM has performed the worst for both
winter and rainy seasons. Furthermore, compared to other models for all forecasting
horizons, BD-BGRU has achieved much lower divergence in its predictions compared
to actual.
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Figure 6. Variability in deviation of GHI (W/m2) in rainy season

5.5. Comparison with other models

In this section, the overall forecasting performance of BD-BGRU has been compared
against the benchmark models. Table 9 depicts the forecasting performance of BD-BGRU
compared to the benchmarks in terms of nRMSE. The summary of this paper has been
presented in Table 1.

Winter: In winter season, BD-BGRU has outperformed [29] and [8] by 91.17% and
74.93%.

Rainy: In rainy season, [29] and [8] were outperformed by BD-BGRU by 82.48% and
58.61%. Also, compared to the benchmark models, BD-BGRU has achieved the lowest
standard deviation of 0.016.

Table 9. Forecasting performance of BD-BGRU compared to the benchmark models

Ajmer Chennai Dehradun Guntur Howrah Kotada Pitha σ
Models Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy

[29] 0.057 0.131 0.130 0.128 0.057 0.134 0.075 0.180 0.157 0.162 0.066 0.153 0.043
[8] 0.026 0.044 0.166 0.015 0.025 0.166 0.025 0.195 0.004 0.062 0.030 0.081 0.067

BD-BGRU* 0.008 0.024 0.001 0.012 0.006 0.014 0.010 0.061 0.001 0.026 0.009 0.026 0.016

Figure 7, and 8 and depicts the season and climatic-zone specific variability in pre-
dictions of BD-BGRU and compared with other forecasting models. Figure 7 shows
season-specific Box-plot. It has been observed that in winter, the variability in predictions
of BD-BGRU is the lowest. Moreover, compared to BD-BGRU, BD-BLSTM, BLSTM, and
M-ULSTM are having similar forecasting performances in winter. However, in the rainy
season, variability in predictions of BD-BGRU is much lower than the other models. Hence,
the above discussion has suggested that in winter, BD-BGRU, BD-BLSTM, BLSTM, or

Figure 6. Variability in deviation of GHI (W/m2) in the rainy season.

5.5. Comparison with Other Models

In this section, the overall forecasting performance of BD-BGRU is compared against
the benchmark models. Table 9 depicts the forecasting performance of BD-BGRU compared
to the benchmarks in terms of nRMSE. The summary of this paper is presented in Table 10.

Winter: In winter season, BD-BGRU outperformed [8,29] by 91.17% and 74.93%.
Rainy: In rainy season, [8,29] were outperformed by BD-BGRU by 82.48% and 58.61%.

Compared to the benchmark models, BD-BGRU achieved the lowest standard deviation
of 0.016.

Table 9. The forecasting performance of BD-BGRU compared to the benchmark models.

Ajmer Chennai Dehradun Guntur Howrah Kotada Pitha σ
Models Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy Winter Rainy

[29] 0.057 0.131 0.130 0.128 0.057 0.134 0.075 0.180 0.157 0.162 0.066 0.153 0.043
[8] 0.026 0.044 0.166 0.015 0.025 0.166 0.025 0.195 0.004 0.062 0.030 0.081 0.067

BD-BGRU * 0.008 0.024 0.001 0.012 0.006 0.014 0.010 0.061 0.001 0.026 0.009 0.026 0.016

Figures 7 and 8 depict the season and climatic-zone specific variability in predictions of
BD-BGRU and compared with other forecasting models. Figure 7 shows the season-specific
box-plot. We observed that, in winter, the variability in predictions of BD-BGRU was
the lowest. Moreover, compared to BD-BGRU, BD-BLSTM, BLSTM, and M-ULSTM have
similar forecasting performances in winter. However, in the rainy season, the variability
in predictions of BD-BGRU is much lower than the other models. Hence, the above
discussion suggested that, in winter, BD-BGRU, BD-BLSTM, BLSTM, or M-ULSTM can
be alternatively used. However, in the rainy season, BD-BLSTM demonstrated superior
forecasting performance.

Figure 8 shows the climatic-zone specific box-plots of the nRMSE scores of all the
models. We observed that, in all climatic zones, BD-BGRU achieved the lowest variability
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in prediction compared to the benchmarks as well as other forecasting models. Moreover,
in hot and dry and warm and humid climatic zones, the prediction variability of BD-
BGRU is more stable. In all climatic zones, BD-BLSTM is the second best performing
forecasting model.
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Figure 8. Climatic-zone specific variability in predictions.

Table 10 depicts the overall summary of this research work. The overall model-specific
forecasting accuracy (average nRMSE) is presented individually for each station, and also
model-specific standard deviation and mean rank are shown.

• We observed that BD-BGRU achieved the lowest overall nRMSE score compared to
all the other models. In terms of overall forecasting accuracy, BD-BGRU dominated
BD-BLSTM by 30.43%.

• BD-BGRU achieved the lowest standard deviation as 0.016. It implies that in the case
of BD-BGRU the variance in predictions of GHI is minimum.

• BD-BGRU has also achieved the lowest mean rank as 1.16 compared to the other models.

Table 10. Overall performance summary of the forecasting models.

Models Overall nRMSE Standard Deviation (σ) Mean Rank

[29] 0.119 0.043 6.58
[8] 0.069 0.067 4.87

ULSTM 0.082 0.058 5.91
M-ULSTM 0.045 0.038 3.58

BLSTM 0.036 0.025 3.12
BD-BLSTM 0.023 0.021 2.75
BD-BGRU * 0.016 0.016 1.16

6. Conclusions

In this paper, to forecast inter-day solar irradiation (GHI), five models namely UL-
STM, M-ULSTM, BLSTM, BD-BLSTM, and BD-BGRU were implemented. A new feature
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representation scheme suited for the bidirectional model was proposed. To validate the
model, three different climatic zones of India, and two specific seasons, namely the winter
and rainy seasons were considered. Each model was implemented for twelve city–month
combinations for India. The effectiveness was established through an extensive empirical
study over traditional bidirectional models and some recent state-of-the-art models.

M-ULSTM over ULSTM: Individually for each solar station, the forecasting per-
formance of M-ULSTM was compared with ULSTM for both winter and rainy seasons.
We observed that, in terms of the nRMSE, for both winter and rainy seasons, M-ULSTM
outperformed ULSTM by 83.28% and 38.87%. The standard deviation was lower in the
case of M-ULSTM compared to ULSTM. Hence, the above discussion suggests that, com-
pared to ULSTM, the augmented features help M-ULSTM to predict solar irradiation more
accurately.

BLSTM over M-ULSTM: We noticed that, overall, for all city–month combinations in
the rainy season when the variability of GHI is observed to be higher than winter, BLSTM
outperformed M-ULSTM by 59.53%. Hence, the traditional bidirectional LSTM (BLSTM)
has forecasted GHI more accurately in the rainy season compared to M-ULSTM.

BD-BGRU and BD-BLSTM over BLSTM: BD-BLSTM and BD-BGRU demonstrated
more generalized prediction performance compared to BLSTM. Both BD-BLSTM and
BD-BGRU achieved 12.43% and 37.47% lower nRMSE scores compared to BLSTM.

BD-BGRU over BD-BLSTM: In this paper, along with bidirectional LSTM, we also
implemented bidirectional GRU, and their forecasting performance was also critically
compared. As per the literature, it appears that bidirectional GRU was not used earlier
in this domain. The experimental results reveal, for eleven out of twelve city–month
combinations, BD-BGRU outperformed BD-BLSTM by 26.67%. Hence, in Indian climatic
conditions, BD-BGRU would be the definite choice for intra-day GHI forecasting.

Prediction performance of BD-BLSTM and BD-BGRU over benchmark models: In
terms of mean rank, BD-BLSTM and BD-BGRU are the best two methods as compared to
the benchmark models. It may be noted that bidirectional GRU may not have been used
earlier for prediction in the energy domain.

The limitations of the article are as follows: (1) Including other meteorological pa-
rameters, such as temperature, humidity, cloud cover, wind speed, etc., will improve
the forecasting accuracy more. However, this study was conducted on one meteorolog-
ical variable, namely GHI. (2) Currently, one-year data was used at various sites for the
proposed algorithm.

As future work, this study can be extended by including more input variables, more
years, and including solar stations from other climatic zones.
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