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Abstract: Knowledge graph (KG) representation learning aims to encode entities and relations into
dense continuous vector spaces such that knowledge contained in a dataset could be consistently
represented. Dense embeddings trained from KG datasets benefit a variety of downstream tasks
such as KG completion and link prediction. However, existing KG embedding methods fell short to
provide a systematic solution for the global consistency of knowledge representation. We developed a
mathematical language for KG based on an observation of their inherent algebraic structure, which we
termed as Knowledgebra. By analyzing five distinct algebraic properties, we proved that the semigroup
is the most reasonable algebraic structure for the relation embedding of a general knowledge graph.
We implemented an instantiation model, SemE, using simple matrix semigroups, which exhibits
state-of-the-art performance on standard datasets. Moreover, we proposed a regularization-based
method to integrate chain-like logic rules derived from human knowledge into embedding training,
which further demonstrates the power of the developed language. As far as we know, by applying
abstract algebra in statistical learning, this work develops the first formal language for general
knowledge graphs, and also sheds light on the problem of neural-symbolic integration from an
algebraic perspective.

Keywords: algebraic learning; knowledge graph; category; semigroup; logic reasoning; neural-symbolic
integration

1. Introduction

Knowledge graphs (KGs) has raised enormous attention among the general artificial
intelligence community, which represent human knowledge as a triplet data structure
(head entity, relation, tail entity) and can be applied in various downstream scenarios, such
as recommendation system [1], question answering [2–4], information extraction [5,6],
and etc. [7–9]. It is therefore important to design appropriate knowledge graph embed-
dings (KGEs) to capture knowledge in the whole dataset with uniform consistency. It is
therefore important to design appropriate knowledge graph embeddings (KGEs) to capture
knowledge in the whole dataset with uniform consistency. A knowledge graph represents a
network of real-world entities—i.e., objects, events, situations, or concepts—and illustrates
the relationship between them. It is usually represented as one collection of triplets, where
each triplet represents the relation between two entities. Figure 1 provides an illustration
of a triplet (A, B, C) where A and C represent two entities while B is the relation between
them. Triplet instances could be (Louver, is_located_in, Paris) and (Da Vinci, painted, Mona
Lisa). Concretely, KGs are collections of factual triplets, where each triplet represents the
relation between two entities [10,11]. Mathematically, a KG consists of two sets: an entity
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set E = {ei}Ne
i=1 and a relation setR = {rj}Nr

j=1. Knowledge is represented as atomic triplets
in the following form:

(ei, r, ej), (1)

which can be interpreted as the following: the entity ei is of the relation e to the entity ej.

Figure 1. One triplet in KG, where A and C represent two entities while B is the relation between
them. Relation B is usually directional.

KGE aims to encode entities and relations of triplet (ei, r, ej) into a continuous vector
space, i.e., (ei, r, ej), associated with an operation OR(·) that ideally maps ei to ej (in the
current work, we use regular letters to represent the semantic context of entities and
relations, and bold letters to represent the high-dimensional array embedding of them).
Quantitatively, the performance of an embedding model could be roughly measured by the
distance between the mapping result, O[ei, r], and the tail entity embedding, ej, which is
based on a given metric, DE, defined in the entity embedding space. The representation
design of a single triplet is trivial, while the challenge of KGE lies in the fact that different
triplets share entities and relations, which requires a uniform representation of all elements
that could consistently represent all triplets in a dataset. With the TransE model [12] as the
starting baseline, researchers have explored the problem of KGE in majorly three directions:

Previous works [13–16] implemented different metricsDE, which control the efficiency
of the entity embedding, where both euclidean based similarity scores and cosine similarity
are among the top popular choices. The other set of preceding works in [17–19] instead
designed various operations O[·, ·], which determine the consistency of the relation embed-
ding. The attempted operations include simple ones such as vector addition, and vector
multiplication, to complicated neural network-based operations including convolution and
recurrent structures. Another interesting category of works combines KG embedding and
logical rules using rule-based regularization or probabilistic model approximation, which
can be found in [20–25]. All of the directions have rich mathematical structures. However,
a formal analysis from the perspective of mathematics has been lacking for the general
KGE tasks, which leaves the modeling design ungrounded.

In this work, we target the second direction, i.e., consistent relation embedding, and de-
velop a formal language for a general KGE problem. okSpecifically, we observe that
the consistency issue in relation embeddings directly leads to an algebraic description,
and therefore offers an abstract algebra framework for KGE, which we termed as Knowl-
edgebra. The explicit structure of the Knowledgebra is determined by the details of a
specific task/dataset, which could differ in five properties: totality, associativity, identity,
invertibility, and commutativity. Regarding the rational behind the choice of five properties,
we aim to investigate the general properties of relations in KG and the choice of five is
a summary of previous works. For instance, previous studies [10,26] have considered
certain specific inter-relation types including (anti)-symmetry, inversion, and compositional
relations, while [27] makes extensions. We notice that relations in a general KG should
be embedded in a semigroup structure, and hence propose a new embedding model,
SemE, which embeds relations as semigroup elements and entities as points in the group
action space. Furthermore, within the language of Knowledgebra, human knowledge
about relations (also called logic rules in the following part) could be expressed by relation
compositions. We, therefore, propose a simple method to directly integrate logic rules of
relations with fact triplets to obtain better embedding models with improved performance.
This method also provides a data-efficient solution for tasks with fewer training fact triplets
but with a rich domain knowledge.
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Our work is partially motivated by NagE [27], but differs from it significantly in the
following aspects. Firstly, we deliver a categorical language for KGE problems, which is
much more general than NagE with fewer assumptions; secondly, we prove that a group
structure would be inappropriate for a large class of problems, where the invertibility
could not be enforced; thirdly, beyond a conventional KGE perspective, we adopt a ma-
chine reasoning perspective by considering the impact of chain-like logic rules, which is
traditionally studied in symbolic AI, and therefore shed light on a potential pathway for
neural-symbolic integration.

The rest part of the paper is organized in the following ways: Section 2 introduces the
emergent algebra in KG, i.e., Knowledgebra, and proves that a semigroup structure is suited
for a general KGE task; Section 3 proposes a model, SemE, for general KGE problems, as an
instantiation of Knowledgebra, and demonstrates its performance advantage on benchmark
datasets; in Section 4, we propose a regularization based method to integrate chain-like
logic rules into embedding model training, and deliver a case study using a toy dataset
where logic rules are easy to be specified; in the end, we provide a further investigation
on the implementation of SemE and discuss potential directions in the future in Section 5,
which could exploit more power of the developed algebraic language, Knowledgebra,
in knowledge graph applications.

2. Knowledgebra: An Emergent Algebra in Knowledge Graph

In this section, we would analyze a general KG, and demonstrate the emergence of an
algebraic structure, which we term as Knowledgebra. The study of algebraic properties in
Knowledgebra would produce constraints on KGE modeling.

2.1. A Categorical Language for Knowledge Graph

As introduced at the beginning, KGs are composed of two sets: E andR, with entities
in E linked by arrows representing relations inR. Although knowledge triplets {(ei, r, ej)}
are the elementary atomic components of a KG, the complexity of the KG structure is not
present on the triplet level. It is the set of logic rules that dictate the global consistency of
a KG. Logic rules are the central topic of machine reasoning. In the machine reasoning
field, relations are a special type of predicates, labeled as α, with arity 2. A logic rule can be
expressed as the following:

α0 ← (α1, α2, · · ·, αm), (2)

where each αi is a predicate with entity variables as arguments. The above expression
means that the head predicate α0 would be iff all body predicates {αi}m

i=1 hold. There is a
special type of logic rules, chain-like rules, which has the following form:

r0[e1, em+1]← (r1[e1, e2], r2[e2, e3], · · ·, rm[em, em+1]), (3)

where all predicates are of arity 2, and the head argument of the next predicate is always the
tail argument of the previous one. The “cancellation” of intermediate terms {ei}m

i=2 implies
a compositional definition of the corresponding type of logic rules, where a composition of
two predicates ra and rb is denoted as ra ◦ rb. Furthermore, it has been proved in [27] that
the composition defined above is associative.

The chain rule reflects more complex logic rules, i.e., hyper-relations in KG. This is
the central topic of machine reasoning since the model should learn to make inference
via integrating information from multiple triplets. For example, the reasoning of “James
visited Paris” could be completed from two triplets (James, visited, Tour Eiffel) and (Tour
Eiffel, is located in, Paris). Here the chain rule becomes:

visited[James, Paris]← (visited[James, Tour Eiffel], isLocatedIn[Tour Eiffel, Paris]). (4)

Thus the chain-like reasoning from different levels of locations can not be ignored.
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All elements discussed above have indicated the existence of an abstract mathematical
structure: category. In mathematics, a category C consists of [28]:

• A class ob(C) of objects;
• A class hom(C) of morphisms, or arrows, or maps between the objects;
• A domain, or source object class function dom : hom(C)→ ob(C);
• A codomain, or target object class function cod : hom(C)→ ob(C);
• For every three objects a, b, and c, a binary operation hom(a, b)× hom(b, c)→ hom(a, c)

called composition of morphisms; the composition of f : a → b, and g : b → c is
written as g ◦ f ;

such that the following axioms hold:

1. Associativity: if f : a→ b, g : b→ c and h : c→ d, then h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;
2. Identity: for every object x, there exists a morphism 1x : x → x, called the identity

morphism for x, such that every morphism f : a→ x satisfies 1x ◦ f = f , and every
morphism g : x → b satisfies g ◦ 1x = g.

It is straightforward to examine that all above definitions and axioms hold for a
general knowledge graph, which therefore suggests that knowledge graphs naturally host
a categorical language description. In this work, all our later discussions would then utilize
concepts and properties of categories, which provide a formal basis.

2.2. Logic Construction versus Logic Extraction

With regards to logic rules, there are two pathways in the research of knowledge
graphs: namely, logic construction and logic extraction.

Logic construction is widely used in machine reasoning via symbolic programming,
where predicates are built as modules and logic rules are constructed explicitly. This is
similar to the case of a theorem prover, where the propagation from sub-queries to a query
is governed by pre-defined rules composed of logical operators, e.g., conjunctions and
disjunctions. Logic construction is a completely deductive process. With explicit logic
construction, one could derive both conclusions and reasoning paths at the same time.
There are several advantages of applying logic construction: firstly, one could integrate
common sense knowledge and domain expertise into the modeling of the reasoning process,
which requires less or nearly zero data dependence; secondly, as rules are constructed
explicitly, rigorousness could be guaranteed; thirdly, with the potential to construct a
complete reasoning path, the interpretability of a conclusion derivation could be easily
achieved. On the other side, the disadvantages of logic construction-based approaches are
also significant:

1. The hand-crafting effort of integrating logic rules becomes impractical when the
number of rules gets large;

2. The explicit construction could not accommodate any possible faults;
3. The construction could only take into account rules known a priori, and could not ob-

serve new ones (with logic operators, higher-order rules could be composed; However,
here we refer to an inductive process to obtain new elementary rules).

These problems have been addressed in an alternative method: logic extraction.
Different from logic construction, logic extraction-based approaches belong to the

category of statistical learning. Opposite to the spirit of logic construction, logic extraction
is an inductive process, which infers that logic rules are implied by a collection of data
samples. One of the most important advantages of logic extraction is that the human effort
remains low when the number of logic rules increases, while logic construction needs to
construct each rule one by one manually. Thus, logic extraction could take advantage of
huge datasets and is fault-tolerant based on its statistical nature. Besides, the induction
process is insensitive to the number of logic rules and hence scales well with an increasing
number of rules. It is obvious, though, that logic extraction could not integrate with human
knowledge easily, and also suffers from the interpretability issue.



Mach. Learn. Knowl. Extr. 2022, 4 436

It is also noteworthy to emphasize an extra challenge for logic extraction on the
implementation level: the set of logic rules hidden in a dataset requires a global consistency of
knowledge representation. In the context of KGE, relation embeddings are not independent
of each other and should accommodate all chain-like logic rules under compositions.

2.3. Algebraic Constraints in KGE

With the discussion above, we now consider the problem of KGE. KGE belongs to
the class of logic extraction which explores a given dataset to infer logic rules. There are
two embeddings of KGE, i.e., entity embeddings and relation embeddings. The chain-like
logic rules, however, are entity-independent and only related to relation embeddings. As
introduced above, relations correspond to morphisms in a category and are not independent
of each other due to the existence of hidden logic rules under compositions.

The class hom(C), i.e., the set of relations, forms an algebraic structure, which, in gen-
eral, is termed as knowledgebra. To specify an algebraic structure, the following five proper-
ties are usually discussed:

• Totality: ∀ra, rb ∈ hom(C), ra ◦ rb is also in hom(C);
• Associativity: ∀ra, rb, rc ∈ hom(C), ra ◦ (rb ◦ rc) = (ra ◦ rb) ◦ rc;
• Identity: ∃e ∈ hom(C), ∀r ∈ hom(C), e ◦ r = r ◦ e = r;
• Invertibility: ∀r ∈ hom(C), ∃r̄ ∈ hom(C), r ◦ r̄ = r̄ ◦ r = e;
• Commutativity: ∀ra, rb ∈ hom(C), ra ◦ rb = rb ◦ ra.

Variant algebraic structures could be differed by these five properties, and we list
10 well-studied structures in Table 1.

Table 1. Various algebraic structure and their properties [29].

Totality Associativity Identity Invertibility Commutativity

semigroupoid - X - - -
small category - X X - -

groupoid - X X X -
magma X - - - -

unital magma X - X - -
loop X - X X -

semigroup X X - - -
monoid X X X - -
group X X X X -

abelian group X X X X X

To fully specify the structure of Knowledgebra, we now examine the five properties in
the context of KGE. An analysis in [27] claimed that all the first four properties: totality,
associativity, identity, and invertibility, should hold for KGE modeling, and the authors
thus developed a group-based framework for relation embeddings. While we agree with
most of the analysis in [27], we now provide an argument specifically on the invertibility
property. Consider the following logic rule example consisting of two kinship relations:

ra = isMotherOf, rb = isBrotherOf,

ra ◦ rb = ra. (5)

Now if a group structure is used for relation embedding, then there always exist an
inverse relation r̄a for ra, then, based on associativity, we would obtain:

rb = (r̄a ◦ ra) ◦ rb = r̄a ◦ (ra ◦ rb) = r̄a ◦ ra = e, (6)
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requiring the relation isBrotherOf to be an identity map that always returns the head entity
itself—which is incorrect. Therefore the existence of ra should be prohibited. Another less
trivial example consists of the following four kinship relations:

ra = isSonOf, rb = isMotherOf, rc = isFatherOf, rd = isBrotherOf, (7)

which could be related by the following two rules abstractly:

ra ◦ rb = rd, (8)

ra ◦ rc = rd. (9)

Again, if a group embedding is implemented, based on invertibility, i.e., r̄a, and asso-
ciativity, we would obtain:

rb = (r̄a ◦ ra) ◦ rb = r̄a ◦ (ra ◦ rb) = r̄a ◦ rd, (10)

rc = (r̄a ◦ ra) ◦ rc = r̄a ◦ (ra ◦ rc) = r̄a ◦ rd, (11)

which then demands directly:

rb = rc, (12)

an obviously incorrect conclusion. To simultaneously accommodate the two equations in
Equation (8), the element ra should not be invertible. This suggests that invertibility is not
a desired property for relation embedding in KG. As in [27], the existence of an identity
element is proved based on invertibility, which we could also ignore for now (the existence
of identity is not necessary but indeed compatible without any conflict). Therefore, in the
end, only totality and associativity are natural properties of KGE tasks, which, according to
Table 1, indicates that a semigroup-based relation embedding is desired.

3. A Semigroup Based Instantiation of Knowledge Graph Embedding

In the above section, we delivered a formal analysis of KGE problems and proved that
relations in a KG could generally be embedded in a semigroup structure. In this section,
we implement this proposal by constructing an instantiation model, termed as SemE,
and demonstrate the power of algebraic-based embedding on several benchmark tasks.

3.1. Model Design and Analysis

We firstly introduce the proposed model, including embedding space and distance
function design.

3.1.1. Embedding Spaces for Entities and Relations

We choose the simplest semigroup, which has a straightforward parametrization: real
k× k matrices, as the embedding space for relations. It reduces to GL(k,R) with an extra
condition: det 6= 0, which guarantees the invertibility. Here GL(k,R) represents the general
linear group, which is the set of k-by-k invertible matrices over real numbers R, together with
the operation of matrix multiplication. Entities are embedded as real vectors. Similar to the
implementation in [27], to prevent the curse of dimensionality while allowing an embedding
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space large enough to accommodate knowledge graphs, we apply block-diagonal matrices
as relation embeddings:

M1 0 . . . 0

0 M2 . . . 0

...
...

. . .
...

0 0 . . . Mn





v1

v2

...

vn



, (13)

where each Mi is a real k× k matrix and each vi is a vector in Rk, i.e., entities are embedded
in (Rk)⊗n. We label the (nk)× (nk) embedding matrix for relation r as Mr, and the (nk)-dim
embedding vector for entity e as ve.

3.1.2. Distance Function for Similarity Measure

To apply an end-to-end gradient-based training, a scoring function to compare the
similarity between two arbitrary entities is required. In this work, we exploited a distance-
based scoring function that measures the plausibility of a factual triplet as the distance
between the two entities, where a translation of the head entity is usually carried out by
the relation. The two most common choices are Euclidean distance and cosine distance.
The latter one, i.e., cosine similarity, focuses only on the relative angle between two high
dimensional vectors while ignoring the radial component. Ref. [30] overviews more
scoring function options. In the current work, a general k× k matrix transform a k-dim
vector in 6 ways, including 5 affine-type transformations: translations, rotations, reflections,
scaling maps, and shear maps, and projections achieved by non-invertible matrices, most
of which, except rotations and reflections, cannot be differed by the cosine similarity,
and we, therefore, choose Euclidean distance to measure entity similarity. For a fact triplet
(ei, r, ej), the performance of a SemE model would therefore be measured by the following
similarity measure:

sr(ei, ej) = ‖Mrvei − vej‖2, (14)

where ‖ · ‖2 calculates the L2-norm of a vector.
The complete loss function is designed as follows:

L0 = − 1
ploss + 1

(log σ
[
γ− sr(ei, ej)

]
+ ploss

n

∑
k=1

p(e′ik, r, e′jk) log σ[sr(e′ik, e′jk)− γ])

p
(

e′ik, r, e′jk|
{

ei, r, ej
})

=
eα[γ−sr(e′ik ,e′jk)]

∑l eα[γ−sr(e′il ,e
′
jl)]

(15)

where σ is the Sigmoid function, and γ is a hyper-parameter controlling the margin to
prevent over-fitting, ploss is a hyper-parameter controlling the ratio of negative and positive
losses. Equation (15) is the standard form that was first proposed in [12], and applied
in nearly all KGE models, including [10–12,26,27,31,32], etc. Following an energy-based
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framework, the energy of a triplet is equal to the similarity measure of this triplet, which
corresponds to Equation (14). To learn embeddings, a margin-based ranking criterion over
the training set is proposed, which prefers ranking real triplets over corrupted triplets.
Specifically, the set of corrupted triplets is constructed from negative sampling and is
composed of training triplets with either the head or tail (but not both), replaced by a
random entity. The complete loss favors lower values of the energy for training triplets than
for corrupted triplets and thus leads to the two components in Equation (15). We apply a
popularly implemented [10,27] negative sampling setup, termed as self-adversarial negative
sampling [10], with e′ik and e′jk being the negative samples for head and tail entity, respec-
tively, while p(e′ik, r, e′jk) is the adversarial sampling weight with the inverse temperature α

controlling the focus on poorly learned samples.

3.1.3. Low Dimensional Relation Embedding

In the standard SemE, relations are embedded as n blocks of k× k matrices while the
entities are mapped to (nk)-dim vectors. In practice, there are tasks where only simple
relations are involved. For example, the WordNet-18 dataset includes only 18 distinct
relations, connected by very simple logic rules. However, the large number of entities
requires a relatively high dimensional vector space for embedding, which easily results
in large redundancy in relation embedding in such tasks. To improve the efficiency of
parametrization for tasks with simple relations, and accelerate learning convergence at the
same time, we propose two simplified alternatives for relation embedding:

• shared blocks: instead of using n distinct k× k matrices, we use identical copies of
one k× k matrix, i.e., Mi = M0, ∀i ∈ [1, n]. The number of parameters of embedding
for one relation then reduces from n× k× k to k× k, which is a super low dimensional
embedding, termed as SemE-s.

• shared blocks with shift: in the case where a single k× k matrix is insufficient while
low-dimensional efficiency is still demanded, we could break the symmetry among n
subspaces by introducing a block-dependent shift δi. Precisely, the transformation in
each subspace could be written as:

M0 · vi + δi, ∀i ∈ [1, n]. (16)

The number of parameters is then k× k + n× k. And we term the resulting model as
SemE-δs (importantly, this shift corresponds to a translation in each subspace, which,
together with the matrix multiplication, still hold a semigroup structure. The resulting
operation is quite similar to a Euclidean group but with non-invertible elements).

We would implement these low-dim embedding methods later on tasks with sim-
ple relations.

3.2. Experiments on Benchmark Datasets
3.2.1. Experimental Setup

Datasets: we evaluate the proposed approach on two popular public knowledge graph
benchmarks: WN18RR [33] and FB15k-237 [34]. These two datasets were derived from
WN18 [35] and FB15K [36] respectively. The FB15k dataset extracted all FreeBase enti-
ties that have over 100 mentions and are featured in the Wikilinks database while the WN18
dataset extracted from a linguistic knowledge graph ontology named the WordNet. Af-
ter finding that the FB15k and the WN18 dataset suffered from test leakage issues due to the
presence of equivalent inverse relations, the WN18RR and FB15k-237 were created as more
challenging datasets, removing all equivalent and inverse relations. These two datasets
are currently benchmarked across the KGE domain to fairly compare model performances
specifically in recent relevant works [11,27,34]. In these two datasets, none of the triplets in
the training set are directly linked to the validation and test sets.
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Evaluation Metrics: similar to previous work, we use two ranking-based metrics for
evaluation: (1) Cut-off Hit ratio (H@N, N ∈ {1, 3, 10}), which measures the proportion of
correct entity predictions among the top N prediction result cut-off, and (2) Mean Reciprocal
Rank (MRR), which represents the average of inverse ranks assigned to correct entities.

Implementation Details: we implement our models via the Pytorch framework and ex-
perimented on a server with an NVIDIA Tesla V100 GPU (32 GB). The Adam optimizer [37]
is used with default settings of β1 and β2. We use a learning rate annealing schedule that
discounted the learning rate by a factor of 0.1 with a patience setting of 10. The batch size
is fixed at 1000 (the code is available at https://github.com/yifeiwang15/Knowledgebra
(accessed on 2 May 2022)).

3.2.2. Experiment Results

For FB15k-237, we implement the standard SemE as stated in Section 3.1.1, with param-
eterization of k = 5 and n = 240. Other hyper-parameters are tuned as following: learning
rate η ∈ {3e− 4, 1e− 3}; number of negative samples during training nneg ∈ {64, 128};
adversarial negative sampling temperature α ∈ {0.75, 0.85, 0.95, 1}; loss function margin
γ ∈ {9, 12}; ratio between negative and positive losses ploss ∈ {5, 10}. The best model
is under configuration of η = 1e− 3, nneg = 64, α = 0.85, γ = 9, ploss = 5. As another
benchmark dataset, WN18RR only includes simple relations that can be sufficiently cap-
tured by low-dimensional embeddings. Therefore we apply a low-dim alternative model,
SemE-δs, as discussed in Section 3.1.3, where we take k = 10 and n = 100 in this case.
Other hyper-parameters of grid search include: η ∈ {3e − 4, 1e − 3}; nneg ∈ {64, 128};
α ∈ {0.5, 0.7, 0.85, 1}; γ ∈ {6, 7, 7.5}; ploss ∈ {10, 20, 30}. The best performance appears in
the configuration with η = 1e− 3, nneg = 128, α = 0.7, γ = 6, ploss = 30. The experimental
results of the best models are exhibited in Table 2.

Table 2. Experiment results on WN18RR and FB15k-237 datasets (best scores are marked as bold
while the second best are underlined). A standard SemE model is applied for FB15k-237, while a
low-dim alternative SemE-δs is used for WN18RR.

Model
WN18RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [12] 0.226 - - 0.501 0.294 - - 0.465
ComplEx [38] 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428
DistMult [39] 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419
ConvE [33] 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501
MuRE 1 [32] 0.475 0.436 0.487 0.554 0.336 0.245 0.370 0.521
RotatE [10] 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533
NagE [27] 0.477 0.432 0.493 0.574 0.340 0.244 0.378 0.530

SemE 0.481 0.437 0.499 0.567 0.354 0.258 0.393 0.548
1 This is the Euclidean analogue of MuRP [32].

As shown above, in the WN18RR dataset, our SemE model outperformed the previous
state-of-the-art knowledge graph model on the metrics of the average of inverse ranks
assigned to correct entities, also known as the mean reciprocal rank, the cut-off hit ratio
of top one and top three; on the FB15k-237 dataset our SemE model outperformed all the
benchmark evaluation metrics compared to previous state-of-the-art model, our cut-off hit
ratio at top three outperformed by a margin of 4%. Remarkably, in the task of WN18RR,
our model SemE has already provided promising results only with a dimensionality setting
of k = 10 and n = 100. In comparison, the baseline RotatE model has 81% more model
parameters. A significantly small number of model parameters further demonstrates the
advantage of the proposed approach.

https://github.com/yifeiwang15/Knowledgebra
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4. Integrating Human Knowledge into Knowledge Graph Embedding

We have discussed the advantages and shortages of the logic constructions versus
logic extraction in Section 2.2. In this section, we will propose a way to integrate human
knowledge into KGE. This is valuable since logic rules, e.g., chain-like rules, could provide
rich information and hence efficient constraints on the embedding model, which has been
ignored in nearly all preceding works. With a regularization-based method to integrate
chain-like logic rules derived from human knowledge into embedding training, we pro-
vided a solution to bridge the gap between logic construction and extraction. The resulting
method is therefore more data-efficient and interpretable.

4.1. A Regularization Method for Logic Rules

One of the major challenges in KGE is to integrate human knowledge, either com-
monsense or domain knowledge, into the embedding model. As introduced in Section 2.2,
knowledge is expressed as logic rules, which in turn is represented by relation compositions.
The task of integrating human knowledge is equivalent to enforcing the compositional
dependence among embeddings of different relations. For example, the two relations
ra = isWifeOf and rb = isHusbandOf are mutually dependent on each other as:

ra ◦ rb = E, (17)

where E is an identity mapping. When a matrix embedding is implemented, the following
equation should hold:

Mra ·Mrb = I, (18)

which results into an identity matrix. The above example inspires a way to integrate
human knowledge, i.e., logic rules, into embeddings: to design an additional loss term that
minimizes the matrix distance suggested by rules. For the instance above, we may add the
following term into loss function:

L = L0 + λ‖Mra ·Mrb − I‖2, (19)

where L0 is the usual training loss defined in Equation (15), while the second term regu-
larizes the embeddings of ra and rb to be mutually dependent. In general, for chain-like
rules, which could be captured as compositions, we could apply the following regularized
loss function:

L = L0 +
K

∑
i=1

λi‖Mi,1 ·Mi,2 −Mi,3‖2, (20)

where without loss of generality as argued in the inverse and compositional hyper-relation,
logic rules are expressed as a compositional dependency of three relations, with one of
which could be an identity to capture the case of the inverse. This provides an efficient
approach to integrating human knowledge, i.e., logic rules, into KG embedding tasks.

4.2. Kinship: A Case Study of Logic Integration

We now demonstrate the above proposed regularized loss method on a toy dataset:
Hinton’s Kinship dataset. There are 12 relations in this toy KG: wife, husband, father, mother,
son, daughter, sister, brother, uncle, aunt, niece, and nephew.

From common sense knowledge, we consider the following set of constraints for
relation embedding shown in Table 3.
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Table 3. Common sense knowledge in KINSHIP.

ra rb ra ◦ rb

isWifeOf isHusbandOf Identity
isHusbandOf isMotherOf isFatherOf

isSonOf isMotherOf isBrotherOf
isSonOf isFatherOf isBrotherOf

isBrotherOf isFatherOf isUncleOf
isBrotherOf isMotherOf isUncleOf
isSisterOf isFatherOf isAuntOf
isSisterOf isMotherOf isAuntOf
isSonOf isBrotherOf isNieceOf

We implemented the logic regularized loss method using a small shared block model,
SemE-s, with 2 copies of 2 dimensional subspaces. We used the batch size of 5 for training
and 12 for testing. For other hyper-parameters we took α = 0.1, nneg = 4, ploss = 2. We
set all regularization parameters λi = 0.1, ∀i, and compared the baseline model with
λi = 0, ∀i. Experimental results on testing dataset are shown in Table 4.

Table 4. Testing results on SemE-s model and logic regularized SemE-s model.

Model MR MRR H@1 H@3 H@10

SemE-s 4.83 0.464 0.292 0.458 0.875
regularized SemE-s 3.71 0.574 0.458 0.583 0.958

The performance advantage of the logic regularized model is significant, which demon-
strates the power of the regularization brought by logic rules. This showcases an efficient
way to integrate external knowledge.

5. Discussion

SemE applies matrices to embed relations. A non-invertible matrix M has a determi-
nant det(M) = 0, which, from a dimensional-perspective, suggests a projection associated
with a dimension reduction. For the example in Equation (7), the relation ra = IsMotherOf
should not be invertible for a family with multiple children, since all vectors corresponding
to a child should be simultaneously mapped by the matrix Mra to the same vector, which
represents their mother. In other words, the non-invertible elements in a semigroup are
used to capture N-to-1 relations, which commonly exist in real-life datasets.

A derived question from the above discussion would be the representation of 1-to-N
relations. Within the context of KGE using statistical learning-based representation, it
is challenging to directly design a mathematically rigorous 1-to-N mapping operation
O(·, ·), as it always produces a deterministic result. However, this could be relieved by
noting that the final performance of an embedding model is determined not directly by the
mapping output but by the ranking of closeness between the output with each candidate
entity. Therefore, instead of producing multiple results, the distributed learning framework
requires the output to be as equidistant to all correct candidates as possible. This also
explains the necessity of high-dimensional entity embedding: within a low-dimensional
vector space, it is more challenging to find a point equidistant w.r.t multiple points.

With the proposal logic-regularized-loss method in Section 4, the proposed algebraic
learning framework sheds new light on the area of neural-symbolic integration. More
specifically, we proposed a method to integrate chain-like logic rules of relations into
distributed representations. However, this only covers a small set of general logic, and it
is, therefore, interesting to develop further methods to integrate other types of logic rules,
including ones concerning entity attributes (also called arity-1 relations). Furthermore,
the current work focuses merely on relation embeddings, which have an algebraic nature.
The entity embedding, on the other hand, plays the role of “action space” of the relational
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algebra and therefore has a geometric nature. Given an algebraic structure, the choice of its
“action space” is far from being fully determined. There is hence a rich set of candidates for
entity embedding design, which is worth to investigate in the future.

6. Conclusions

The mutual dependence of relations in a knowledge graph suggests the existence of
an algebraic structure, which is introduced in this work as Knowledgebra. By analyzing a
general KG based on five distinct properties, we determined that the semigroup is the most
reasonable algebraic structure for general relation embeddings, where only totality and
associativity are required. Our theoretical analysis was based on the work of NagE [27],
and differed from it majorly by demonstrating that invertibility should be allowed to break.
In Section 2.3, we provided proof based on contradictions with several examples among
kinship relations. With the instantiation model, SemE proposed, we could discuss the
invertibility issue from an alternative perspective.
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