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Abstract: The success of deep networks for the semantic segmentation of images is limited by the
availability of annotated training data. The manual annotation of images for segmentation is a tedious
and time-consuming task that often requires sophisticated users with significant domain expertise to
create high-quality annotations over hundreds of images. In this paper, we propose the segmentation
with scant pixel annotations (SSPA) approach to generate high-performing segmentation models
using a scant set of expert annotated images. The models are generated by training them on images
with automatically generated pseudo-labels along with a scant set of expert annotated images selected
using an entropy-based algorithm. For each chosen image, experts are directed to assign labels to a
particular group of pixels, while a set of replacement rules that leverage the patterns learned by the
model is used to automatically assign labels to the remaining pixels. The SSPA approach integrates
active learning and semi-supervised learning with pseudo-labels, where expert annotations are not
essential but generated on demand. Extensive experiments on bio-medical and biofilm datasets
show that the SSPA approach achieves state-of-the-art performance with less than 5% cumulative
annotation of the pixels of the training data by the experts.

Keywords: image processing; image segmentation; machine vision; neural networks; semi-supervised
learning

1. Introduction

Semantic image segmentation is the task of assigning to each pixel the class of its
enclosing object or region as its label, thereby creating a segmentation mask. Due to its
wide applicability, this task has received extensive attention from experts in several areas,
such as autonomous driving, robot navigation, scene understanding, and medical imaging.
Owing to its huge success, deep learning has become the de-facto choice for semantic image
segmentation. Recent approaches have used convolutional neural networks (CNNs) [1,2]
and fully convolutional networks (FCNs) [3–5] for this task and achieved promising results.
Several recent surveys [6–11] describe the successes of semantic image segmentation and
directions for future research.

Typically, large volumes of labeled data are needed to train deep CNNs for image
analysis tasks, such as classification, object detection, and semantic image segmentation.
This is especially so for semantic image segmentation, where each pixel in each training
image has to be labeled or annotated in order to infer the labels of the individual pixels of
a given test image. The availability of densely annotated images in sufficient numbers is
problematic, particularly in domains such as material science, engineering, and medicine,
where annotating images is time consuming and requires significant user expertise. For
instance, while reading retinal images to identify unhealthy areas, it is common for graders
(with ophthalmology training) to discuss each image at length to carefully resolve several
confounding and subtle image attributes [12–14]. Labeling cells, cell clusters, and microbial
byproducts in biofilms take up to two days per image on average [15–17]. Therefore, it is
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highly beneficial to develop high-performance deep segmentation networks that can train
with scantly annotated training data.

In this paper, we propose a novel approach for semantic segmentation of images that
can work with datasets with scant expert annotations. Our approach, segmentation with
scant pixel annotations (SSPA) combines active learning and semi-supervised learning
approaches to build segmentation models where segmentation masks are generated using
automatic pseudo-labeling as well as by using expert manual annotations on a selective
small set of images. The proposed SSPA approach employs a marker-based watershed
algorithm based on image morphology to automatically generate pseudo-segmentation
masks for the full training dataset. The performance of a segmentation model generated
using these pseudo-masks is analyzed, and a sample of images to be annotated by experts is
selected. These images with expert-generated masks along with images with pseudo-masks
are used to train the next model. The process is iterated to successively generate a sequence
of models until either the performance improvement plateaus or no further refinements
are possible. The approach uses top-k (bottom-k) image entropy over pixel prediction
confidence probabilities to identify the sample images at each iteration.

Despite the careful selection of image samples in each iteration to limit the overall
manual annotation effort, annotating each image in its entirety can be tedious for experts.
This is especially so for the high information density of the segmentation task, where each
and every pixel needs to be classified. The proposed SSPA approach reduces annotation
effort by using pixels as the unit of annotation instead of annotating entire images or
image patches. For each image that is selected for manual annotation, only pixels within a
specified uncertainty range are marked for expert annotation. For the rest of the image, a
set of replacement rules that leverage useful patterns learned by the segmentation model
are used to automatically assign labels. The segmentation mask for an image includes
these labels along with expert annotations, and is used to generate the next model. Using
such directed annotations enables the SSPA approach to develop high-performance models
with minimal annotation effort. The results of the SSPA approach are validated on bio-
medical and biofilm datasets and achieves high segmentation accuracy with less than 1%
annotation effort. We also evaluated our method on a benchmark dataset for melanoma
segmentation and achieved state-of-the-art performance with less than 1% annotation effort.
The approach is general purpose and is equally applicable for the segmentation of other
image datasets.

The rest of this paper is organized as follows. Section 2 discusses related work on
semantic segmentation with scantly annotated data. The SSPA approach is detailed in
Section 3. In Section 4, the datasets, network architecture, setup and evaluation metrics
are presented. Experimental results and conclusions are discussed in Sections 5 and 6,
respectively.

2. Related Work

Semantic segmentation [4] is one of the challenging image analyses tasks that has been
studied earlier using image processing algorithms and more recently using deep learning
networks; see [6,10,11,18] for detailed surveys. Several image processing algorithms based
on methods including clustering, texture and color filtering, normalized cuts, superpixels,
graph and edge-based region merging, have been developed to perform segmentation
by grouping similar pixels and partitioning a given image into visually distinguishable
regions [6]. More recent supervised segmentation approaches based on [4] use fully con-
nected networks (FCNs) to output spatial maps instead of classification scores by replacing
the fully connected layers with convolutional layers. These spatial maps are then up-
sampled using deconvolutions to generate pixel-level label outputs. Other decoder variants
to transform a classification network to a segmentation network include the SegNet [19]
and the U-Net [20].

Currently, deep learning-based approaches are perhaps the de facto choice for semantic
segmentation. Recently, Sehar and Naseem [11], reviewed most of the popular learning
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algorithms (∼120) for semantic segmentation tasks, and concluded the overwhelming
success of deep learning compared to the classical learning algorithms. However, as pointed
out by the authors, the need for large volumes of training data is a well-known problem
in developing segmentation models using deep networks. Two main directions that were
explored earlier for addressing this problem are the use of limited dense annotations
(scant annotations) and the use of noisy image-level annotations (weakly supervised
annotations). The approach proposed in this paper is based on the use of scant annotations
to address manual labeling at scale. Active learning and semi-supervised learning are
two popular methods in developing segmentation models using scant annotations and are
described below.

2.1. Active Learning for Segmentation

In the iterative active learning approach, a limited number of unlabeled images are
selected in each iteration for annotation by experts. The annotated images are merged with
training data and used to develop the next segmentation model, and the process continues
until the model performance plateaus on a given validation set. Active learning approaches
can be broadly categorized based on the criteria used to select images for annotation and
the unit (images, patches, and pixels) of annotation. For instance, in [21], FCNs are used to
identify uncertain images as candidates, and similar candidates are pruned leaving the rest
for annotation. In [22], the drop-out method from [23] is used to identify candidates and
then discriminatory features of the latent space of the segmentation network are used to
obtain a diverse sample. In [24], active learning is modeled as an optimization problem
maximizing Fisher information (a sample has higher Fisher information if it generates larger
gradients with respect to the model parameters) over samples. In [25], sample selection
is modeled as a Boolean knapsack problem, where the objective is to select a sample that
maximizes uncertainty while keeping annotation costs below a threshold. The approach
in [21] uses 50% of the training data from the MICCAI Gland challenge (85 training, 80 test)
and lymph node (37 training, 37 test) datasets; [22] uses 27% of the training data from
MR images dataset (25 training, 11 test); [24] uses around 1% of the training data from
an MR dataset with 51 images; and [25] uses 50% of the training data from 1,247 CT scans
(934 training, 313 test) and 20% annotation cost. Each of these works produces a model
with the same performance as those obtained by using the entire training data.

The unit of annotation for most active learning approaches used for segmentation
is the whole image. Though the approach in [25] chooses samples with least annotation
cost, it requires experts to annotate the whole image. An exception to these are [24,26,27],
where 2D patches are used as the unit of annotation. While active learning using pixel-level
annotations (as used by SSPA approach) is rare, some recent works show how pixel-level
annotations can be cost effective and produce high-performing segmentation models [28].
Pixel-level annotations require experts to be directed to the target pixels along with the
surrounding context, and such support is provided by software prototypes, including those
such as the PIXELPICK described in [28]. There are several domain-specific auto-annotators
exist for medical images and authors have also developed a domain-specific auto-annotator
for biofilms that will be released soon to that community.

2.2. Semi-Supervised Segmentation with Pseudo-Labels

Semi-supervised segmentation approaches usually augment manually labeled training
data by generating pseudo-labels for the unlabeled data and using these to generate
segmentation models. As an exception, the approach in [29] uses K-means along with
graph cuts to generate pseudo-labels and use these to train a segmentation model, which is
then used to produce refined pseudo-labels, and the process is repeated until the model
performance converges. Such approaches do not use any labeled data for training. A
more typical approach in [30] first generates a segmentation model by training on a set of
scant expert annotations, and the model is then used to assign pseudo-labels to unlabeled
training data. The final model is obtained by training it on the expert-labeled data along



Mach. Learn. Knowl. Extr. 2022, 4 624

with pseudo-labeled data until the performance converges. For a more comprehensive
discussion on semi-supervised approaches, please see [10,18].

2.3. Proposed SSPA Approach

The SSPA approach seamlessly integrates active learning and semi-supervised learning
approaches with pseudo-labels to produce high-performing segmentation models with
cost-effective expert annotations. Similar to the semi-supervised approach in [29], the
SSPA does not require any expert annotation to produce the base model. It uses an image
processing algorithm based on the watershed transform [31] to generate pseudo-labels. The
base model generated using these pseudo-labels is then successively refined using active
learning. However, unlike the prior active learning approaches used for segmentation,
we employ image entropy instead of image similarity to select top-k high entropy or low
entropy images for expert annotation. Further, unlike most of the earlier active learning
approaches for segmentation (with the exception of [28]), our unit of annotation is a pixel,
targeting uncertain pixels only while other pixels are labeled based on the behavior learned
by the models (please see Section 3 for more details).

Our preliminary work reported as a short paper in [32], explored the viability of
using pseudo-labels in place of expert annotations for semantic segmentation. In that
paper, we considered datasets where expert annotations are available for the entire dataset
and built a benchmark segmentation model using fully supervised learning. We then
compared models built using a mixture of pseudo-labels and expert annotated labels with
the benchmark model to show that the viability of pseudo-labels for building segmentation
models. Requiring the experts to annotate all of the training data a priori and building
a fully supervised segmentation model makes our prior work very different from the
proposed approach. Further, having the experts deeply annotate each pixel in each image
in all of the training data makes our prior approach impractical for several domains, where
significant expertise is needed to annotate each image.

In contrast, in the SSPA approach, expert annotations are obtained on demand only for
the training samples identified in each active learning step. Further, the unit of annotation
is a pixel, and the process is terminated when the model performance plateaus or no further
refinements are possibly similar to [29]. The SSPA approach outperforms state-of-the-art
results in multiple datasets including those used in [32].

The SSPA uses the watershed algorithm to generate pseudo-segmentation masks. This
algorithm [31,33–35] treats an image as a topographic surface with its pixel intensities
capturing the height of the surface at each point in the image. The image is partitioned into
basins and watershed lines by flooding the surface from minima. The watershed lines are
drawn to prevent the merging of water from different sources. The variant of watershed
algorithm used in this paper, the marker-controlled watershed algorithm (MC-WS) [36],
automatically determines the regional minima and achieves better performance than the
regular one. MC-WS uses morphological operations [37] and distance transforms [38] of
binarized images to identify object markers that are used as regional minima.

In Petit et al. [39], the authors proposed a ConvNets-based strategy to perform segmen-
tation on medical images. They attempted to reduce the annotation effort by using a partial
set of noisy labels such as scribbles, bounding boxes, etc. Their approach extracts and
eliminates ambiguous pixel labels to avoid the error propagation due to these incorrect and
noisy labels. Their architecture consists of two stages. In the first stage, ambiguity maps are
produced by using K FCNs that perform binary classification for each of the K classes. Each
classifier is given the input of pixels only true positive and true negative to the given class
and the rest are ignored. In the second stage, the model trained at the first stage is used
to predict labels for missing classes, using a curriculum strategy [40]. The authors stated
that only 30% of training data surpassed the baseline trained with complete ground-truth
annotations. Even though this approach allows recovering the scores obtained without
incorrect/incomplete labels, it relies on the use of a perfectly labeled sub-dataset (100%
clean labels). This approach was further extended to an approach called INERRANT [41]
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to achieve better confidence estimation for the initial pseudo-label generation, by assigning
a dedicated confidence network to maximize the number of correct labels collected during
the pseudo-labeling stage.

Pan et al. [42] proposed a label-efficient hybrid supervised framework for medical
image segmentation, where the annotation effort is reduced by mixing a large quantity of
weakly annotated labels with a handful of strongly annotated data. Mainly two techniques,
namely dynamic instance indicator (DII) and dynamic co-regularization (DCR), are used to
extract the semantic clues while reducing the error propagation due to strongly annotated
labels. Specifically, DII adjusts the weights for weakly annotated instances based on
the gradient directions available in strongly annotated instances, and DCR handles the
collaborative training and consistency regularization. The authors stated that the proposed
framework shows competitive performance only with 10% of strongly annotated labels,
compared to the 100% strongly supervised baseline model. Unlike SSPA, their approach
assumes the existence of strongly annotated data to begin with. Without using directed
expert annotation as done in SSPA, it is highly unlikely that a handful of strongly annotated
samples chosen initially will cover all the variations of the data, and hence we argue
that the involvement of experts in a directed manner guided by model predictions is
important, especially in sensitive segmentation application domains, such as medical and
material science.

Zhou et al. [43] recently proposed a watershed transform-based iterative weakly su-
pervised approach for segmentation. This approach first generates weak segmentation
annotations through image-level class activation maps, which are then refined by water-
shed segmentation. Using these weak annotations, a fully supervised model is trained
iteratively. However, this approach carries many downsides, such as no control over initial
segmentation error propagation in the iterative training, requires many manual parame-
terization during weak annotation generation, and lack of grasping fuzzy, low-contrast
and complex boundaries of the objects [44,45]. Segmentation error propagation through
iterations can adversely impact model performance, especially in areas requiring sophis-
ticated domain expertise. In such cases, it may be best to seek expert help in generating
segmentation ground truth to manage boundary complexities of the objects and mitigate
the error propagation of weakly supervision. Our experiments show that the SSPA models
outperform the watershed-based iterative weakly supervised approach.

3. The SSPA Algorithm

The inputs to the SSPA algorithm (Figure 1) are a set of images, U = {u1, . . . , uN} and
an optional set of corresponding ground truth, GT = {g1, . . . , gM}, binary labels, where
M ≤ N. The SSPA employs an iterative algorithm that uses a sequence of training sets,
T = (T1, . . . , Tk) to build a sequence of models, (M1, . . . , Mk). Model Mi is generated at
the ith iteration using training set Ti. Let Li be the set of pixel-level binary labels for each
training sample in Ti. Each Ti comprises image–label pairs < tp, lp >, where the tp refers
to a training sample from U, and lp refers to the corresponding pseudo labels from Li,
distinct from GT. We apply Mi to each training sample in Ti to obtain a set of confidence
predictions Ci. For each image tp in Ti, Ci contains an element ep with a pair of values,
(con f , label) for each pixel in tp, where con f denotes the prediction confidence value that
the pixel belongs to class 1 and label denotes the pixel label assigned by Mi. Min-max
normalization of raw con f values of all pixels in ep is used to normalize them to a [0...1]
interval to construct (con f , label) pairs for each ep. We use Ci to refer to Ci containing the
normalized value, label pairs for each image in Ti. The entropy of a sample image is found
using its corresponding normalized prediction confidence values. The mean entropy µi of
Ti (and of Mi) is calculated as the mean of the entropy of all images in Ti.
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Figure 1. SSPA architecture. In this figure, k represents the termination condition described in
Algorithm 1.

The SSPA algorithm can be divided into three main steps as described below.
Initial Model and Initial Pseudo-label Set Generation: The marker controlled wa-

tershed (MC-WS) algorithm was employed to avoid the over-segmentation caused due
to noise and irregularities that typically occur in the use of the watershed transform. The
MC-WS floods the topographic image surface from a predefined set of markers, thereby
preventing over-segmentation. To apply MC-WS on each image, an approximate estimate
of the foreground objects in the image was first found using binarization. White noise and
small holes in the image were removed using morphological opening and closing, respec-
tively. To extract the sure foreground region of the image, distance transform was then used
to apply a threshold. Then, to extract the sure background region of the image, dilation
was applied on the image. The boundaries of the foreground objects were computed as the
difference between the sure foreground and sure background regions. Marker labeling was
implemented by labeling all sure regions with positive integers and labeling all unknown
(or boundary) regions with a 0. Finally, watershed was applied on the maker image to
modify the boundary region to obtain the watershed segmentation mask or binary label of
the image.

Using MC-WS, we created an ensemble of three watershed segmentation modules,
{ws1, ws2, ws3} and applied it to the set U to generate labels, {Lws1 , Lws2 , Lws3}. Use ma-
jority voting to determine the initial set of pseudo binary labels, L1. Train a segmentation
network on pair < U, L1 > to obtain initial model M1 (refer to lines 23–27 in Algorithm 1).
We use model M1 to generate the prediction confidence values C1 and normalized predic-
tion confidence set C1 for U. Let µ1 be the mean entropy of M1.
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Algorithm 1 Segmentation with scant pixel annotations.

Input:
U = {u1, . . . , uN}
GT = {g1, . . . , gM}, M ≤ N . Optional

1: procedure SSPA (Ti, Mi, Li, Ci)
2: Choose J images with highest entropy (HE)/lowest entropy (LE) from Ti
3: for each tp ∈ J do
4: Let ep ∈ Ci(tp)
5: Target = ep ∈ (0.5± δ)
6: Target← ExpertAnnotation
7: Let each pxy be a pixel outside Target in tp
8: if µi > µi−1 then
9: Li+1(pxy)← Li−1(pxy)

10: else
11: threshold = µ(Ci(tp))

12: (Ci(pxy) > threshold)← 1
13: (Ci(pxy) < threshold)← 0
14: end if
15: end for
16: Li+1 = Replace J in Li
17: return Mi+1, Ci+1
18: end procedure

19: procedure WATERSHED(U)
20: WS = {Lws1 , Lws2 , Lws3} ensemble
21: L1 ← MajorityVoting(Lws1 , Lws2 , Lws3)

22: return M1, C1
23: end procedure

24: repeat
25: SSPA (Ti, Mi, Li, Ci)
26: until µi+1 > µi

Segmentation with Scant Pixel Annotations: Let i ≥ 1. The pseudo label set Li, the
corresponding model Mi and the normalized prediction confidence values Ci generate the
pseudo binary label set Li+1 from Mi as follows. First, choose J images from Ti with highest
entropy (HE) or the lowest entropy (LE) values. Let tp be one such image chosen and Li(tp)
be its label in Li. We construct the training label Li+1 for tp as follows. Consider all pixels in
tp with prediction confidence values between (0.5± δ) in ep ∈ Ci (pixels whose predictions
from model Mi are in the uncertainty range), for expert annotation (lines 8–9). The value of
the parameter δ is assigned empirically for each dataset. Let Target be the set of all pixels
in tp that are marked for expert annotation. One way to obtain expert annotation for pixel
labels is to manually label each pixel in Target. If GT is available, we copy the pixel label
for each pixel from the ground-truth label of tp into Li+1(tp).

Now consider the pixels that are not in Target. The pixel-level labels for these pix-
els in tp can be decided using either the previous model Mi−1 or the current model Mi
(lines 11–17). Let pxy be a pixel in xth row and yth column of tp. If µi > µi−1, then the label
for pxy in Li+1(tp) is the same as that in Li−1(tp). Else, label for pxy in Li+1(tp) is the same
as assigning a class 0 or 1 to Ci(tp) based on a threshold. Threshold is calculated as the mean
prediction confidence value of tp. Generate the next set of training labels, Li+1 by replacing
J labels in Li (line 16). Train a segmentation network on pair < U, Li+1 > to obtain next
model Mi+1.



Mach. Learn. Knowl. Extr. 2022, 4 628

Termination condition: At each iteration i, record the mean entropy of Mi, µi. The
algorithm terminates when the mean entropy of Mi+1, µi+1 is higher than the mean entropy
of Mi (lines 29–31). The decrease in model performance indicates that the model is unlearn-
ing useful patterns or features during training at the (i + 1)th iteration. In the presence of
GT labels, we also record evaluation metrics such as intersection over union (IoU) and Dice
score. However, mean entropy as an evaluation metric takes precedence over IoU and Dice
score, even in the presence of GT labels. Refer to Section 4.4 for a detailed discussion of
evaluation metrics. Select Mi with the best evaluation metrics as the best model to obtain
binary labels, Li using the least expert intervention.

Note that the SSPA uses two parameters—the uncertainty range threshold δ and the
number of images J selected for expert annotation in each iteration. Model prediction
values around 0.5 lead to most uncertainty and a range around this value determined by δ
is well suited for many datasets. The value of J can be set based on the improvement of
model performance across iterations. The approach can be adapted to other datasets by
setting these parameters appropriately.

4. Evaluation of the SSPA Approach

In this section, we describe the study we conducted for understanding the effectiveness
of the SSPA approach. We describe the datasets used in the study, the CNN architecture
used to build semantic segmentation models, the hardware setup used for running the
experiments, and the evaluation metrics used to measure the performance of the models.

4.1. Datasets

Three datasets, electron microscope (EM) and melanoma datasets from the bio-medical
domain along with a dataset from the biofilm domain, were used to study the effectiveness
of the SSPA approach. The ground-truth labels GT were available for all three datasets.
However, note that the GT labels are not required and were used only for evaluation.

4.1.1. EM Dataset

The electron microscope (EM) dataset (Figure 2A,B) is a set of 30 grayscale images
from a serial section transmission electron microscopy dataset of the Drosophila first instar
larva ventral nerve cord [46]. This dataset was collected to compare and rank different
approaches for the automatic segmentation of neural structures to that performed by an
expert neuro-anatomist. It was published as a part of the IEEE ISBI 2012 challenge on 2D
segmentation to determine the boundary map (or binary label) of each grayscale image,
where “1” or white indicates a pixel inside a cell, and “0” indicates a pixel at the boundary
between cross-sections. A binary label was considered equivalent to a segmentation of the
image. The ground-truth binary labels for the training images were provided as part of
the challenge.

Figure 2. Sample of an unlabeled image and GT label of the (A,B) EM dataset (C,D) melanoma
dataset and (E,F) biofilm dataset.

4.1.2. Melanoma Dataset

The melanoma dataset (Figure 2C,D) contains 43 color images of malignant melanomas
obtained with consumer-level cameras from the Dermatology Information System [47]. The
dataset is a part of a skin cancer detection project that used dermatological photographs
taken with standard consumer-grade cameras to analyze and assess the risk of melanoma
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in patients. The dataset was used to develop methods for the automated diagnosis of
melanoma from dermoscopic images. Each image containing a single lesion of interest was
manually segmented to create a binary label for differentiating pixels of the lesion from
those of surrounding skin. A “1” or white pixels indicated a pixel inside a lesion, and “0”
or black indicated a pixel of the surrounding skin.

4.1.3. Biofilm Dataset

The biofilm dataset (Figure 2E,F) consists of scanning electron microscope (SEM)
images of Desulfovibrio alaskensis G20 (DA-G20, a sulfate reducing bacteria (SRB), and
their biofilm grown on bare mild steel that was used as a working electrode (working
specimen) in microbiologically influenced corrosion (MIC) experiments [48]. The details
of the growth procedures and biocorrosion tests were discussed in [49]. Owing to its
high ductility, weldability, and low cost, mild steel remains a popular choice of metal
in civil infrastructure, transportation and oil and gas industry applications, and routine
applications. However, under aqueous conditions, mild steel is susceptible to microbially
infused corrosion caused by microorganisms, including SRB [50]. The goal of segmentation
of the biofilm dataset is to identify the shape and size of each bacterial cell or a cluster of
cells to detect metal corrosion. A “1” or white indicates a pixel in a bacterial cell, and “0”
indicates a pixel at the boundary between bacteria.

4.2. Network Architecture

The U-Net [20] is a convolutional network architecture for pixel-based image segmen-
tation. It consists of an encoder (contracting path) and decoder (expansive path) designed
specifically to perform segmentation tasks on medical images. The contracting path is
a stack of convolutional and max-pooling layers that encodes high-level semantic infor-
mation at each layer into feature representations at different levels. The decoder projects
the discriminative features learned by the encoder onto the pixel space by recovering
spatial information at each layer using transposed convolutions. Bottleneck layers combine
high resolution features from the encoder and upsampled features from the decoder by
concatenation, resulting in a symmetrical network in contrast to traditional FCNs. The
U-Net architecture accepts a set of pairs—unlabeled images and their corresponding binary
masks (labels)—as its input for training a segmentation model. The unlabeled images and
their masks are both 512× 512 pixels in height and width.

4.3. Experimental Setup

Training for the U-Net models was implemented using Keras with a Tensorflow
backend as the deep learning framework on an Ubuntu workstation with 12-Core Intel
iO-9920x and 128GB RAM. We randomly selected 20% of the dataset as the validation
set and the remaining as the training set during each fold. We used a learning rate of
0.1 and compiled the models using Adam optimizer [51] for 25 epochs, using the binary
cross-entropy loss function. An early-stop mechanism was used to prevent over-fitting.

4.4. Evaluation Metrics

When an image is classified using a semantic segmentation model, each pixel in the
image is assigned two values (model confidence, pixel label). Recall from Section 3 that the
min-max normalization of the raw model confidence prediction values of all pixels in each
image is performed to normalize them to [0...1]. We use the confidence prediction values
(pi) to compute the entropy of an image. A low entropy value indicates low uncertainty
about the pixel labels assigned by the model. Entropy S is given by Equation (1) as follows:

S = −
n−1

∑
i=0

pi(logb pi) (1)
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Following the standard practice [7,52], intersection over union (IoU) and Dice similar-
ity score are used to evaluate the segmentation performance. As given in Equation (2), IoU
computes the area of overlapping between the predicted model and the GT label divided
by the area of union between the predicted label and the GT label. Similarly, the Dice score
is calculated as twice the overlap between the predicted label and the GT label, divided
by the sum of the number of pixels in both labels as given in Equation (3). Both the IoU
and Dice score are positively correlated. However, the IoU metric tends to penalize single
instances of incorrect classification more than the Dice score.

IoU =
TP

TP + FP + FN
(2)

Dice =
2TP

2TP + FP + FN
(3)

5. Experimental Results and Discussion

For each dataset, the initial model and initial pseudo-label set generation step was applied
to obtain the first set of pseudo labels L1 for each image in the dataset. Model M1 was
constructed using a training set and the label set L1. Models M2, . . . , Mk were constructed
iteratively by following the segmentation with scant pixel annotation step using two differ-
ent values of J and both high entropy and low entropy pixel label replacement strategies.
The SSPA approach was terminated when the mean entropy of a model constructed in an
iterative step increases from the previous step. Since we have access to ground-truth labels
for all datasets, we used it to construct the ground-truth model M0 and to benchmark the
evaluation results from the models built using the SSPA approach. In addition to study-
ing the prediction accuracy of the models constructed from the SSPA approach, we also
observed the behavior of the SSPA approach’s pixel annotation strategies using heatmaps
and confidence values of the pixels labels assigned by the models M1, . . . , Mk.

We now discuss the results of applying the SSPA approach to each of the three datasets.
Below, we use HE (LE) to denote the strategy of choosing J images from the training set Ti
with the HE (LE) values and then selectively replace the uncertain pixel labels identified
by the SSPA approach in the training set Ti+1. For each data set, we considered J = 1, the
minimum value as well as J values corresponding to 10% of the training data. Models
obtained using J = 1 values under-performed in all cases and are discussed in the paper.
We also calculated the percentage of pixels replaced as the ratio of the total number of pixels
labels replaced over all the J images to the total number of the pixels in the training set.

5.1. EM Dataset

For this dataset, experiments were conducted using J = 3 (10% of the training data) in
each iteration. Models obtained using LE pixel label replacements outperformed others.

Pixel label replacements in HE images. Our results in Figure 3 indicate that the
performance of models with HE pixel label replacements did not improve, despite increased
expert annotation efforts. In Figure 3, for each model and J value combination on the x-axis,
three types of information are depicted—the IoU (black bar), Dice scores (blue bar), and
the percentage of pixels replaced (the red trend-line). Models M2 and M3 had the same
Dice (0.874) and IoU (0.776) scores. Model M2 was obtained by replacing 1.18% of the pixel
labels from the 3 images in the output of model M1. Model M3 was obtained by replacing
2.46% of the pixel labels from the 3 images in the output of model M2. Since the mean
entropy of M3 (2.976) was higher than that of M2 (2.845), the algorithm terminated. The
models obtained using HE pixel label replacements achieved similar IoU values but had
lower Dice scores in comparison to the benchmark model M0, which had mean entropy of
1.986, IoU of 0.823, and Dice score of 0.903.
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Figure 3. Performance on the EM dataset using the SSPA approach with HE pixel label replacements.

Pixel label replacements in LE images. Figure 4 shows the results obtained using
LE pixel label replacements. For this experiment, we randomly chose one image as a test
image and trained M1 using the remaining 29 images. Next, we generated models M2 and
M3 using J = 3. Model M2 was obtained by replacing 0.86% of the pixel labels from the
3 LE images in the output of model M1. Model M3 was obtained by replacing 1.69% of the
pixel labels from the 3 LE images in the output of model M2. Since the mean entropy of M3
(2.447) was higher than that of M2 (2.441), the algorithm terminated. Model M2 with IoU
value 0.818 and Dice score 0.9 performs comparably with M0, having mean entropy 1.953,
IoU 0.82, and Dice score of 0.9. The M0 values for LE slightly differ from those for HE since
they are computed using 29 instead of 30 images. We also studied the entropy distribution
of models generated using the LE pixel label replacement strategy. The entropy distribution
of M0 had high variability, while M2 had the least variability and the best performance.

Figure 4. Performance on the EM dataset using the SSPA approach with LE pixel label replacements.

We studied the model prediction entropy distribution of models generated using LE
pixel label replacement strategy. The results are displayed in Figure 5. Here, the x-axis plots
the model and the y-axis plots the entropy values. Each box plot in the figure shows the
entropy value distribution of images for each model. As can be seen from the figure, the
entropy distribution of M0 had high variability, while M2 had the least variability and the
best performance. Although the median entropy values across models M1, M2, and M3
were higher than the upper quartile of M0, the SSPA approach seemed to have reduced the
variability in the entropy values to obtain better performance. Further, we studied pixel
oscillation to understand the effectiveness of the pixel replacement using the SSPA approach.
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We define oscillating pixels as the pixels with normalized prediction confidence values in
the target range [0.45,0.55] (δ = 0.05), which result in inverse prediction confidence values
after being replaced by GT labels in the model input. Oscillating pixels can be problematic
since they represent the unlearning of useful patterns in the input. We observed that 50.32%
of the 0.86% replaced pixels in M2 oscillated, whereas 58.07% of the 1.69% replaced pixels
in M3 oscillated. We conjecture that there is a correlation that smaller number of oscillating
pixels lead to better performance in models.

Figure 5. Entropy distribution across models.

5.2. Melanoma Dataset

For this dataset, experiments were conducted using J = 5 (10% of the training data) in
each iteration. Two test images were randomly chosen for evaluation from the dataset and
rest of the data were used to generate three successive models using the SSPA approach.
Models obtained using HE pixel label replacements outperformed others.

Pixel label replacements for HE images. Figure 6 shows the results obtained using
the HE pixel label replacements. As depicted in the figure, model M2 was obtained by
replacing only 0.8% of the pixel labels from the 5 HE images in the output of model M1.
Model M3 was obtained by replacing 4.05% of the pixel labels from the 5 HE images in
the output of model M2. Since the mean entropy of M3 (1.689) was higher than that of
M2 (1.432), the algorithm terminated. Model M2 with IoU value 0.824 and Dice Score
0.973 outperformed the benchmark model M0, having IoU value 0.764, and Dice score of
0.962. The mean entropy of M0, 2.232, was higher than that of M2.

To visually track and assess the change in entropy induced by pixel label replacements,
we constructed a heatmap for each image in the training set using the normalized prediction
confidence values. The heatmap of a sample image from Figure 7A demonstrated that the
confidence predictions of M2 were consistent with the GT labels shown in Figure 2. A more
detailed view of the pixels (in red) to be annotated by experts can be seen in Figure 7B,C, at
two different scales. The target regions in the range [0.45,0.55] (δ = 0.05) occurring mostly
around the boundaries of the lesion in Figure 7B,C, showed the highest uncertainty.
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Figure 6. Performance on the melanoma dataset using the SSPA approach with LE and HE pixel
label replacements.

Figure 7. (A) Heatmap of confidence entropy values, (B) view of pseudo label before replacement
with pixels (in red) to be annotated by expert, (C) enlarged view of (B).

Pixel label replacements for LE images. On the other hand, M2 with LE pixel label
replacements (also depicted in Figure 6) resulted in a mean entropy 2.064, Dice score 0.958,
and IoU 0.718, comparable to those of M0. However, M2 was generated using 11.04%
pixel label replacements. Recall that model M2 was generated using only 0.8% pixel label
replacements and had a much lower mean entropy value of 1.432 in the HE case. Since the
mean entropy of M3, 2.669, was higher than that of M2, the SSPA, approach terminated. The
performance of M3 with LE pixel label replacements was comparable to that M3 with HE
pixel label replacements but required 15.51% pixels to be replaced in comparison to 4.05%.

5.3. Biofilm Dataset

For this dataset, experiments were conducted using J = 8 (10% of the training data) in
each iteration. Three test images were randomly chosen for evaluation from the dataset,
and rest of the data were used to generate three successive models using the SSPA approach.
Models obtained using HE pixel label replacements outperformed others.

Pixel label replacements for HE images. Figure 8 shows the results obtained using
HE pixel label replacements. As shown in the figure, model M2 was obtained by replacing
only 0.85% of the pixel labels from the 8 HE images in the output of model M1. Model M3
was obtained by replacing 3.73% of the pixel labels from the 8 HE images in the output of
model M2. The performance of M1 and M2 was similar with IoU values around 0.691 and
Dice scores around 0.815. The mean entropy of M2 decreased to 1.778 from 2.587 in M1.
The mean entropy of M3 increased to 1.991, and the algorithm terminated. The benchmark
model M0 had mean entropy 2.822, IoU 0.609, and Dice score 0.754.
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Figure 8. Performance on the biofilm dataset using the SSPA approach with HE pixel label replacements.

The heatmap in Figure 9A shows that the target regions for pixel label replacements
of M2 were found within the bacterial cells, contrary to the melanoma datasets where the
boundaries of objects showed the highest uncertainty. The uncertainty of the model within
the bacterial cells is likely due to the unique nature of having to segment the biofilm dataset.
Similar to the EM dataset, the goal of segmenting the biofilm dataset was to determine the
boundary map of the bacterial cells. Figure 9B shows a more explicit view of the pixels (in
red) to be annotated by the experts.

Figure 9. (A) Heatmap of confidence entropy values, (B) view of the pseudo label before replacement
with pixels (in red) to be annotated by expert.

Figure 10 illustrates the entropy distribution of HE pixel label replacement models
with the y–axis representing the distribution of entropy values for each model in the x–axis.
All models display a normal distribution with a few outliers. The best model, M2 had the
lowest median, lower than the lower quartile of M0 and M1. The entropy distribution of
both M2 and M3 showed decreasing variability, which illustrates the positive effect of pixel
level replacements on model variability. We also observed that M3 had a higher rate of
oscillation than M2, further validating the correlation between improved performance and
lower oscillation.
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Figure 10. Entropy distribution across models.

Pixel label replacements for LE images. On the other hand, model M2 with LE pixel
label replacements (also depicted in Figure 8) recorded a mean entropy 1.802, IoU 0.469
and Dice score 0.634. M2 was generated using 0.33% pixel label replacements. The pixel
replacements required by M3 was 0.35%. Since the mean entropy of M3, 2.541 was higher
than that of M2, the algorithm terminated here.

5.4. Comparing SSPA with Other Methods

We also investigated the effectiveness of the SSPA approach by comparing its per-
formance with the state-of-the-art fully supervised and weakly supervised segmentation
methods. We trained two fully supervised encoder–decoder architectures, one using U-Net
and another using DeepLabV3+ with Resnet101 [53,54]. The DeepLabV3+ model has an
encoding phase which uses atrous spatial pyramid pooling (ASPP) and a decoding phase
to give a better segmentation results along object boundaries. To compare our method
with weakly supervised segmentation methods, we trained two U-Net models using grab-
cut [55] and MC-WS methods, respectively, both of which generate initial pseudo-labels.

The segmentation results of SSPA and other fully supervised (FS) and weakly super-
vised (WS) methods are summarized in Table 1. FS models were trained using full pixel
level (P) expert labels, whereas WS models were trained using complete image-level (I)
labels. The SSPA approach performs approximately equally or better on all datasets in
comparison to these fully supervised and weakly supervised methods. This is despite the
minimal annotation effort needed for the SSPA in comparison to the other methods.

For the EM dataset, SSPA+LE performs equally to the two fully supervised U-Net
methods (Dice scores for both are around 90.0% and IOU scores are around 82%). For
this dataset, the performance of the SSPA+HE is lower in comparison to these two FS
methods. The SSPA+HE and SSPA+LE perform better than both the weakly supervised
methods in both the Dice and IOU measures. For the melanoma dataset, the SSPA+HE
outperforms all of the FS and WS with respect to both IOU (82.4%) and Dice score (97.3%)
values. For the biofilm dataset, the SSPA+HE outperforms both the FS methods as well
as WS: grab-cut+UNET method. The performance of SSPA+HE and WS:MC-WS+U-NET
is approximately the same. Further, we observed that SSPA+LE shows better IOU and
Dice-score results on EM dataset compared to SSPA+HE version, whereas the SSPA+HE
version performs well with the melanoma and biofilm datasets. Further, the performance
improvement of the SSPA method on the biofilm dataset is approximately 9% compared to
the supervised approaches.

The best performing models were obtained by replacing less than 5% of the pixels
summed across all iterations for all datasets (2.55% for EM with LE, 4.85% for melanoma
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with HE, and 4.58% for biofilms with HE). These percentages include the pixels to be
replaced to generate one more model after the best performing model in order for the active
learning process to terminate.

Table 1. Evaluation of the effect of SSPA approach on segmentation quality using both fully super-
vised and weakly supervised approaches. Best result is shown in bold. For IOU and Dice score
metrics, the higher the number, the better (↑). I represents the image-level labels and P represents
pixel-level labels; percentages are cumulative expert labels across all the iterations of active learning.

Method Expert Labels
Dataset [IOU / Dice] (%) ↑

EM Melanoma Biofilm

FS: U-Net P (100%) 82.3 / 90.3 76.4 / 96.2 60.9 / 75.4

FS: DeepLabV3+ P (100%) 81.6 / 89.1 76.0 / 86.2 61.6 / 74.4

WS: Grab-Cut + U-Net I (100%) 76.1 / 85.2 65.5 / 92.7 56.4 / 62.0

WS: MC-WS + U-Net I (100%) 76.3 / 86.5 68.3 / 95.5 69.7 / 82.0

SSPA + LE P (<26%) 81.8 / 90.0 71.8 / 95.8 46.9 / 63.4

SSPA + HE P (<5%) 77.6 / 87.4 82.4 / 97.3 69.1 / 81.5

5.5. Discussion

The SSPA is a novel approach for generating high-performing deep learning models for
image semantic segmentation using scant expert image annotations. Automated methods
generating pseudo-labels are integrated with an iterative active learning approach to
selectively perform manual annotation and improve model performance. We used an
ensemble of MC-WS segmentation modules to generate pseudo-labels. We also considered
other popular choices, such as grab-cut [55] to generate pseudo-labels and chose MC-WS
based on its relative superior performance. Pseudo-labeling approaches other than MC-WS
may perform better for other applications, and these can be easily incorporated into the
SSPA approach. Note that using a method that generates high-quality pseudo-labels is
beneficial to the SSPA, but it is not essential to its success. In the SSPA approach, the
pixel replacement effort required by the expert is inversely proportional to the initial
pseudo-label quality. In the worst-case scenario, a low-quality initial pseudo-label set has
to be compensated by the extra labeling effort from the experts. In the SSPA, images that
need expert attention are chosen based on their model prediction entropy values. We
employ entropy as the uncertainty sampling measure for the active learning process, over
marginal, ratio, and least confidence sampling techniques. Entropy-based sampling is well
known and has been shown to be well suited for selecting candidates for classification
and segmentation tasks [56]. In the SSPA, we compute entropy value for each image and
use these values to identify the top-k images whose certain pixels have to be manually
annotated by experts. A high entropy (HE) value for an image indicates an image where
most pixel predictions are uncertain (probability in the range 0.5± δ) in that image. If an
image with HE value is selected as one of the top-k images for annotation by experts, then
pixels with prediction values around 0.5 are labeled by the experts in order to reduce the
uncertainty of predictions.

Alternatively, a low entropy (LE) value for an image indicates that most of the pixel
predictions are made with high confidence. If an image with LE entropy value is selected as
one of the top-k images for annotation by experts, then this means that there are sufficient
pixels with uncertain predictions (probability in the range 0.5± δ) in that image, and these
need to be labeled by experts to improve the performance of the model. Table 1 illustrates
the experiments conducted on both high entropy and low entropy and the best-performed
strategy (HE or LE) for each dataset. The uncertainty range threshold δ is one of the two
parameters to the SSPA that was empirically determined to be 0.05 for our experiments. The
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parameter value may be varied based on different datasets based on expert assessments of
model predictions.

From the above experimental results, we can conclude that the best model constructed
from the SSPA approach achieved high prediction accuracy with a mix of over 94% pseudo
pixel labels generated from the MC-WS ensemble that were iteratively improved using
select expert annotations. The terminating condition we employed also worked well in
practice by stopping the constructing of new models when mean entropy increases with
increased expert annotations. The additional methods—heatmaps and oscillating pixels—
were valuable in understanding the behavior of the SSPA approach. They provided insights
on which pixels are hard for a model to learn and how the scant annotations provided
in each iteration contributed to the mean entropy of model outputs and the accuracy of
the models. From these methods, we observed that the SSPA method may not always
assign the same label as the expert to a pixel consistently. Therefore, in the final model,
certain pixels may be assigned incorrect labels, though they were assigned correct labels in
earlier models.

The SSPA is a general purpose segmentation method that should be applicable to
several datasets. The segmentation performance of the SSPA method evaluated through
IOU and Dice scores does not depend on the percentage of the pixels to be relabeled. The
percentage of pixels to relabeled is related to the manual labeling effort. No specific thresh-
old values are used to identify images with HE and LE values. Top-k HE (or LE) images are
chosen for annotation. Similarly, pixels with most uncertain predictions (probability value
0.5± δ) are examined by the experts and labeled. Two parameters that need to be chosen
in order to apply the SSPA are (1) the number of images to be analyzed in each iteration
(the value j), and (2) the uncertainty range delta for pixels. For each dataset, experiments
can be run based on on both LE and HE values, and the resulting models can be compared
and chosen.

6. Conclusions and Future Work

The SSPA, a novel approach for generating high-performing deep learning models for
semantic segmentation, was presented. The SSPA approach seamlessly combines psuedo-
segmentation masks are automatically generated using image processing methods with
active learning to generate a sequence of segmentation models using minimal manual
annotations by experts. The segmentation model output by the SSPA approach is shown
to achieve high-quality segmentation while using a fragment of expert annotations in
comparison to supervised learning methods. An ensemble of marker-based watershed seg-
mentation (MC-WS) algorithm modules were used to first generate pseudo-segmentation
masks because of their superior performance, which were then iteratively refined by experts
to generate a series of segmentation models. In each iteration, the model prediction entropy
values of images were used to select top-k high entropy (low entropy) images to be given to
experts for annotation. The experts were directed to pixels with the most model prediction
uncertainty to manually assign labels and use them with other images to generate the next
model. The segmentation model generated when no more improvements are feasible is
finally output by the SSPA.

Our experiments verify that our approach achieves superior results on all the datasets
considered. Using the SSPA approach with pixel level replacements, we recorded a Dice
score of 0.9 and IoU of 0.818 on the EM dataset with only 0.86% expert annotation. We
recorded a Dice score of 0.973 and an IoU of 0.824 on the melanoma dataset with just
0.8% expert annotation. We also obtained a Dice score of 0.815 and an IoU of 0.691 with
0.85% expert annotation using only 50% of the original biofilm dataset from [32]. The
SSPA approach was effective in determining the boundaries between cross sections or
bacterial cells in the EM and biofilm datasets with scant annotations. The approach was
also effective in determining the entire lesion of interest in the melanoma datasets with
scant annotations. The SSPA approach is a general purpose segmentation approach, and
our results suggest that the SSPA approach can be effective for both boundary and semantic
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segmentation tasks across different applications. The SSPA approach is parameterized
based on the uncertainty range of pixels that are targets of directed expert annotations
and the number of images that are selected in each iteration, which can be empirically
determined for the application at hand. In addition, the SSPA network architecture is
modular and can be easily adapted to incorporate a variety of psuedo-segmentation mask
generation algorithms and for selecting images in each iteration of active learning. The
manual effort involved in directed pixel-level annotations can be further alleviated by the
design of a software workbench. For this purpose, in the future we plan to design and
implement a workbench to improve the pixel replacement task by the expert and provide a
convenient interface as well.
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