
Citation: Santoso, A.; Wijaya, F.D.;

Setiawan, N.A.; Waluyo, J. Data

Mining Algorithms for Operating

Pressure Forecasting of Crude Oil

Distribution Pipelines to Identify

Potential Blockages. Mach. Learn.

Knowl. Extr. 2022, 4, 700–714.

https://doi.org/10.3390/

make4030033

Academic Editor: Andreas Holzinger

Received: 22 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Data Mining Algorithms for Operating Pressure Forecasting of
Crude Oil Distribution Pipelines to Identify
Potential Blockages
Agus Santoso 1,* , Fransisco Danang Wijaya 1, Noor Akhmad Setiawan 1 and Joko Waluyo 2

1 Department of Electrical and Information Engineering, Universitas Gadjah Mada Yogyakarta,
Yogyakarta 55281, Indonesia; danangwijaya@ugm.ac.id (F.D.W.); noorwewe@ugm.ac.id (N.A.S.)

2 Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada Yogyakarta,
Yogyakarta 55284, Indonesia; jokowaluyo@ugm.ac.id

* Correspondence: agussantoso@mail.ugm.ac.id

Abstract: The implementation of data mining has become very popular in many fields recently,
including in the petroleum industry. It is widely used to help in decision-making processes in order
to minimize oil losses during operations. One of the major causes of loss is oil flow blockages during
transport to the gathering facility, known as the congeal phenomenon. To overcome this situation,
real-time surveillance is used to monitor the oil flow condition inside pipes. However, this system
is not able to forecast the pipeline pressure on the next several days. The objective of this study is
to forecast the pressure several days in advance using real-time pressure data, as well as external
factor data recorded by nearby weather stations, such as ambient temperature and precipitation.
Three machine learning algorithms—multi-layer perceptron (MLP), long short-term memory (LSTM),
and nonlinear autoregressive exogenous model (NARX)—are evaluated and compared with each
other using standard regression evaluation metrics, including a steady-state model. As a result, with
proper hyperparameters, in the proposed method of NARX with MLP as a regressor, the NARX
algorithm showed the best performance among the evaluated algorithms, indicated by the highest
values of R2 and lowest values of RMSE. This algorithm is capable of forecasting the pressure with
high correlation to actual field data. By forecasting the pressure several days ahead, system owners
may take pre-emptive actions to prevent congealing.

Keywords: data mining; pressure; forecasting; pipeline; crude oil; LSTM; NARX

1. Introduction

The implementation of data mining techniques in the petroleum industry has become
very popular recently, and it can support decision-making processes to optimize various
operational aspects [1,2]. One of the crucial operational aspects in the petroleum industry
is flow assurance in oil pipeline systems, a lack of which can lead to massive oil losses; for
example, the congeal problem is caused when oil shifts from liquid to solid phase [3,4],
creating restrictions or blockages of the oil flow (see Figure 1). The oil losses due to congeal
events may be worth millions of US dollars; furthermore, the actions required to solve such
problems might also cost millions of US dollars [5–9]. Therefore, accurately predicting the
pressure several days ahead is crucial for the efficient prevention of oil losses.

The congeal phenomenon becomes worse in mature oil fields, as the fluid temperature
has been decreasing due to the naturally declining fluid reservoir temperature [10]. This
decreased temperature may lead the fluid temperature to approach the wax appearance
temperature (WAT), which initiates the congeal phase [11,12]. To avoid congealing, sev-
eral actions could be taken, such as insulation installation, regular pigging, and chemical
injection [13,14]. One of the most common types of chemical inhibitor is pour point de-
pressants (PPDs), which prevent wax formation even when the fluid temperature reaches
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the WAT [15]. An online monitoring system is usually deployed to monitor the congeal
phenomenon by observing the flow pressure inside the pipeline, as well as other parame-
ters [16]. By having real-time pressure data, a field operator could take preventive action
for a specific segment of pipeline. However, by relying on real-time measurements only,
the preventive actions may be too late: the congeal event has already started, while the
operators require time for preparation and the chemical also takes time to reach the target
point. Therefore, forecasting of pressure several days ahead is highly required, in order to
help the operation team to combat the congeal problem.
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Figure 1. Congeal fluid phenomenon: (a) inside a cut pipeline and (b) solid phase.

To date, research on congeal prediction has been carried out by many researchers in or-
der to predict wax deposition using static data obtained from controlled experiments [17–22].
On the other hand, the pressure in a real pipeline system in the field is dynamic; therefore,
the experimental results obtained using static data cannot be directly implemented in the
field. In this research, we apply data mining algorithms to predict the operating pressure
of crude oil distribution pipelines several days in advance using real historical data from
the oil field. The contributions of this research are as follows:

1. We propose a novel approach using data mining techniques to address the congeal
problem using common real-time surveillance measurements from oilfields;

2. We provide a data set from an oil pipeline system in an actual oilfield. This data set is
available to other researchers for future work.

2. Materials and Methods
2.1. The Operation under Study

All parameters were taken from the upstream of a 10-inch-diameter crude oil shipping
line that is located at Central Sumatera Operation, Indonesia. The total pipe length is
around 9 km, and it is mainly above the ground. This pipeline is directly exposed to the
external environment, with an average ambient temperature of around 80–100 ◦F and
precipitation of 0–15 mm/day, varying with the time of year.

The crude oil is categorized as a light oil with WAT around 130 deg F, and the average
oil flow rate inside the pipeline is around 3000 barrels per day. In current practice, four
conditions are defined to reflect the congeal condition: normal, caution, near congeal, and
congeal. These conditions were derived from physics-based simulations according to data
from laboratory experiments. As shown in Table 1, the operations team will take action to
prevent congealing from happening when the pressure status is not normal (i.e., higher
than 154 psi).
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Table 1. Congeal status, referring to pressure at each location.

Status Pressure
Range (psi) Color Code Mitigation Action

Normal <155 Green None
Caution 155–255 Yellow Increase flowrate from additional well

Near congeal 255–275 Red Inject chemical (PPD)
Congeal >275 Black Shut off operation and combat congealing

Regarding the data used for modeling, real-time pressure measurements, along with
external factors such as ambient temperature and precipitation rate, are historically avail-
able from the sensor and local weather stations. For future use of external factors during
prediction, weather forecasts from a weather service provider can also be utilized. There-
fore, future data of external factors can be used as additional inputs for the future pressure
forecast. Figure 2 depicts the information of historical parameters, available from real field
measurements. It can be clearly seen that the ambient temperature has a significant impact
on the behavior of the incoming pressure system, as indicated by major fluctuations in the
incoming pressure being inversely proportional to the ambient temperature.
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Figure 2. Historical data of operating pressure, ambient temperature, and precipitation.

As the oil is shipped from the gathering station, the fluid temperature decreases
along the shipping line due to heat transfer from the fluid inside the pipe to the sur-
rounding environment. Typically, the incoming fluid temperature from the gathering
station is around 143 ◦F, while the ambient temperature falls within the range from 70 to
around 90 ◦F. This temperature difference enables heat to move toward the surrounding
environment through the pipe, as shown by the illustration of the radial heat transfer
process in Figure 3.

The temperature drop becomes bigger when the ambient temperature is low, for
example, during rain, as shown by the equation below:

T2 = Tu + (T1 − Tu) exp
[
−Uπd
mCp

L
]

(1)

where T2 is the fluid outlet temperature, Tu is the ambient temperature, T1 is the fluid
inlet temperature, U is the transmission coefficient, d is the pipe diameter, m is the mass
flowrate, Cp is the fluid head capacity, and L is the length of pipe. It can be observed
that ambient temperatures impact the overall temperature profile along the pipeline, as
illustrated by Figure 4.
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Figure 4. Schematic of temperature along the pipeline.

When the fluid temperature reaches the Wax Appearance Temperature (WAT), the
wax starts to form deposits and stick to the wall of the pipe. In addition, the decreasing
temperature also impacts the oil viscosity, creating flow restriction and leading to lower
fluid flow. According to the RRR (Rygg, Rydahl, and Ronningsen) model, wax deposition
is driven by molecular diffusion and shear dispersion. In addition, decreasing flowrate will
accelerate the wax thickening process. When all this happens in the shipping line system,
the incoming pressure will increase significantly due to the back pressure created by the
reduced effective diameter or the blockage inside the pipeline. Thus, in the worst case, the
fluid will stop flowing, potentially leading to loss-of-containment issues due to pipeline
leakage. Precipitation is also included to help in predicting future pressure changes.

2.2. Machine Learning Algorithms

For this research, three machine learning algorithms specifically for regression were
selected. The first method is the backpropagation MLP, which mimics the concept of the
human brain. This algorithm is very robust and can determine the nonlinear correlations
between the input and output. It consists of three types of layers: input, hidden, and output.
The general operation, involving synaptic weights and input, can be described as:

v = w0x0 +
n

∑
i1=1

wi1 xi1 , (2)

where xi denotes neuron input i, wi denotes the weight of neuron input i, x0 is the bias
neuron input, w0 is the weight of the bias, and v is the output of the synaptic operation.
The somatic operation to calculate the outputs can be described as:

y = ϕ(v), (3)
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where y is the output of the respective neuron and ϕ is the activation function. In this
approach, the inputs come from the feature engineering process in order to generate new
features, such as time features (day of week, day of month, month) and statistical features
(slope, max, min, average), of the pressure and external factors. In this study, MLP was
used to predict multiple-output pressure directly for five consecutive days.

The second algorithm is the long short-term memory (LSTM) network, a variant of
the recurrent neural network (RNN). One signature feature of the RNN-family algorithms
is the use of network delay recursion. This approach is very suitable when considering
time-series data. The delayed signal allows the model to “remember” the signal before
time t. Even though this memory delay capability is very robust for short-term signals, the
RNN lacks long-term memory. Another disadvantage of the RNN is the vanishing gradient
problem. These weaknesses are addressed by LSTM, which utilizes a memory cell in order
to retain long-term dependencies. The main feature of LSTM is the cell state (memory cell),
as described in Figure 5.
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During training, the cell state is managed by structure gates. There are three gates
controlling the cell state. The first gate removes unused information from the memory cell
with the following equation:

ft = σ
(

W f × xt + U f × ht−1 + b f

)
, (4)

where ft denotes the decision of whether information is to be removed from the cell state,
σ denotes the sigmoid activation function, W f and U f are weight vectors, xt is the neuron
input, ht−1 is the cell output at the previous time step (t − 1), and b f is the bias.

The second gate is the input gate, which determines which information is input at the
current time t. This gate enables the output value to be updated. Then, a layer with tanh as
the activation function generates a new cell state value, C̃t. The input gate can be defined
as:

it = σ( Wi × xt + Ui × ht−1 + bi), (5)

C̃t = tanh(Wc × xt + Uc × ht−1 + bc), (6)

where it denotes the decision regarding which information is updated; Wi, Ui, Wc, and Uc
are the weights of the network; and bi and bc are bias terms. Then, the new cell state of Ct
is defined as

Ct = Ct−1 × ft + it × C̃t. (7)
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The third gate is the output gate, which defines the output information at the current
time t. The output gate can be denoted as:

Ot = σ(Wo × xt + Uo × ht−1 + bo), (8)

where Ot denotes the decision of what information is to be output, Wo and Uo are weight
vectors, and bo is the bias term. The cell output can be denoted as:

ht = Ot × tanh(Ct), (9)

where ht specifies the cell value at time t.
The third algorithm is the nonlinear autoregressive with exogenous inputs (NARX)

model, a recurrent dynamic neural network that utilizes feedback connections to several
layers of the network. To capture nonlinear behavior, MLP is used as a regressor. The
NARX architecture allows external factors and their lagged versions to be used as the
inputs. The pressure forecasted at the next step is also used to predict the following step
recursively. The NARX algorithm was also adopted in another research [21].

2.3. Performance Evaluation

In this research, common regression performance metrics are used, such as R2 (the
coefficient of determination) and the root-mean-square error (RMSE), defined as follows:

R2 = 1 − ∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − y)2 , (10)

RMSE =

√
1
n ∑n−1

i=0 (yi − ŷi)
2, (11)

where yi is the actual target for component i, ŷi is the predicted value, y is the mean value,
and n denotes the amount of data.

2.4. Framework of the Evaluated Models

The data used are of daily frequency, including the first 720 data as training data and
the last 180 days as a blind data set. The completed dataset is provided in Supplementary
Materials. Each of three modelling approaches was evaluated based on their R2 and RMSE
values on the blind data set.

The first approach was the MLP-based model, using engineered features as inputs to
the model. Some of features were derived from time information, such as day of week, day
of month, and month. The other features were derived from simple rolling calculations
in certain time windows, such as min, max, average, and slope, for all three series of data
in the field measurements. Based on experiments, three days of rolling calculation was
the best choice to predict pressure in the system being observed. In addition, these simple
calculations were applied to the future values of external factors: as described previously,
future external factors were accessible from the weather service provider. In total, there
were 23 parameters used by the MLP, as described in Table 2.

The topology of the MLP algorithm used in this research was defined as having 23
total input features, 1 hidden layer with 30 hidden neurons initially, the ReLU activation
function, and a selected learning rate of 0.0001. These hyperparameters were selected based
on a trial-and-error process considering different combinations of hyperparameters.
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Table 2. Inputs and outputs used by the MLP model.

Status Pressure Range (psi)

Day of week
Day of month

Month
Min of pressure of previous 3 days
Max of pressure of previous 3 days

Average of pressure of previous 3 days
Slope of pressure of previous 3 days

Min of temperature of previous 3 days
Max of temperature of previous 3 days

Average of temperature of previous 3 days
Slope of temperature of previous 3 days
Min of precipitation of previous 3 days
Max of precipitation of previous 3 days

Average of precipitation of previous 3 days
Slope of precipitation of previous 3 days

Min of temperature of next 4 days
Max of temperature of next 4 days

Average of temperature of next 4 days
Slope of temperature of next 4 days
Min of precipitation of next 4 days
Max of precipitation of next 4 days

Average of precipitation of next 4 days
Slope of precipitation of next 4 days

Pressure t0
Pressure t + 1
Pressure t + 2
Pressure t + 3
Pressure t + 4

The second approach, based on LSTM, used inputs from the lagged versions of the
pressure and external factors. The number of lags used in this study was 10, while the
model had 80 hidden neurons, as shown in Figure 6. These parameters were selected
based on a trial-and-error process. In this approach, no future external factors were used to
predict future pressure.
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The last approach was based on NARX-MLP, which used lagged inputs of pressure and
external factors. Based on a trial-and-error process, the selected order of hyperparameters
was 10 for all three data series. Future external factors were also used to predict future
pressure, as shown in Figure 7.
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Figure 7. NARX architecture with MLP as the regressor to predict pressure for five consecutive days.

The most accurate method was chosen as the final model, to be combined with a set of
conditions to predict the congeal status. Based on the status for the next five consecutive
days, the operator could take appropriate actions to prevent congeal events that might
happen in the future, based on the recommendation of the system. The details of the system
are depicted in Figure 8.
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The figure shows that all machine learning models significantly outperformed both the
persistence and the steady-state simulator. Since the steady-state system uses the historical
data at one particular time, the prediction of pressure values for all time steps is the same in
this evaluation process. A comparison of the first step of prediction between NARX-MLP
and the steady-state simulator is depicted in Figure 10. It can be clearly seen that the
simulator was too optimistic in predicting high pressure in a more frequent way. Therefore,
the simulator would trigger too many alarms that would be used as an indicator to start
chemical injection into the shipping line. By having a more accurate model, the chemical
injections used in the oil congeal prevention program can hopefully be reduced, saving
several hundred thousand USD ($150.000 USD per year).
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In terms of individual machine learning model performance, NARX-MLP was the best
model, followed by LSTM and MLP, in that order, for all steps ahead. However, the LSTM
model, as described previously, did not include future values of external factors, which
should be considered in future works. All of the models had similar behavior in general, in
that the error increased as the prediction step moved further from the current time step.
The detailed performance of NARX-MLP, which was the best model, on the blind dataset
is visualized in Figures 11–15. As the forecast horizon increases, the prediction deviates
from the perfectly fitted line, which is indicated by dotted black line. This means that for
a longer forecast horizon, the prediction of high-pressure values tends to be pessimistic,
while the prediction of low-pressure values tends to be optimistic. Table 3 summarizes the
RMSE and R2 values for NARX-MLP prediction on the blind data set.
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Table 3. RMSE and R2 evaluation for NARX-MLP.

Step RMSE R2

t0 4.29 0.96
t + 1 6.83 0.89
t + 2 11.67 0.69
t + 3 13.44 0.59
t + 4 16.95 0.36

As explained by an evaluation study on the different types of forecasting strategy [22],
recursive strategies have a major drawback in long-horizon forecasting due to forecast
error accumulation in the absence of a corrective mechanism. In a recursive strategy, the
model is basically fitted based on one-step-ahead forecasting so that the single model
parameter is used for all forecast horizons. To add a corrective mechanism, a multi-step
recursive strategy, as mentioned in the previous work [22], could potentially be used for
future work so that each time step has different model parameters. In order to manage
the effect of the recursive method’s limitations during implementation, a protocol can be
applied by the decision maker to pay attention not only to forecast magnitude but also to
forecast direction.

As detecting the actual high pressure is critical, a different threshold could be used for
each time step such that a longer-horizon forecast will have a lower threshold, especially
for the near-congeal condition. Since the model was built based on a relatively small
dataset of around 3 years (as compared to the age of the field, which has been producing
for more than 52 years), the dataset used in this study does not cover the overall trends as
an effect of natural field decline. Therefore, a prior probability shift, which is a change in
the target variable, could violate the basic assumptions of the ML model that the past data
represent the future ones. However, a significant change in data requires quite a long time,
so the model in this study is expected to perform well for several years ahead with regular
monitoring of the model performance, for example, by using a set of statistical calculations.

In addition, an engineering assessment should be carried out before making a decision
since the model has limited ability to extrapolate, for example, the potential of performance
deviation during a shutdown event, since the model was built based on the data of a
running system. For long-term application of the model in solving the congeal problem,
further study should be conducted to overcome the potential of target change in the future,
as well as the reduced congeal problem events, since the shipping line system has been
exposed to proactive congeal prevention that minimizes the number of high-pressure
events in the data. A physics-guided machine learning approach is probably useful to
overcome this problem and to model long-term change in the trend.

The forecast of NARX-MLP, as compared to the actual line plot, is shown in Figure 16.
The thresholds are overlaid, which indicates congeal status during the operations. The
figure implies that, during operations, pressure only reached the watchful area (i.e., below
the yellow line). Therefore, the model was not exposed to data above the yellow line, such
that evaluation in more critical areas, such as near-congeal conditions, did not need to
be performed.

According to the above results, the machine learning models that were used in this
study showed a capability to provide better forecasts, when compared to the persistence,
even when using a limited amount of measured data from the field. By using daily data
from real-time measurements along with historical values, the models can well-capture
the dynamic behavior of the pressure system, as compared to commercial software which
assumes that the system is in steady-state conditions. The best model was based on the
NARX-MLP model, which could predict especially accurately for the first two steps ahead;
however, there is much room for improvement in future works, in terms of obtaining more
accurate predictions from the third step onward. The LSTM also showed good potential for
use in this kind of problem, as the model used in this study did not take future values of
external factors into account in the pressure forecast. We also demonstrated a simple yet
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applicable approach in applying machine learning to solve congeal events—serious real-
world problems—using data commonly obtained in oil fields. In addition, by combining
existing knowledge with the models proposed in this study, the process owner could be
assisted in making better decisions.
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4. Conclusions

Congealing is one of the biggest problems in oil fields, leading to major oil losses in
the petroleum industry. Even though the fields are commonly equipped with online field
monitoring equipment, the process owner cannot react fast enough when considering real-
time data, as mitigation plans require some amount of time for execution and preparation,
as well as considering the travel time of the chemical to the target point. By applying
machine-learning-based models for pressure system forecasting, the operator may have
enough time to adequately prepare a mitigation plan. However, this is still limited by
model accuracy, especially in terms of predicting further time steps. For longer pipelines
that require higher accuracy, especially in further time steps, improved model performance
is essential.

Three machine learning algorithms—multi-layer perceptron (MLP), long short-term
memory (LSTM), and the nonlinear autoregressive exogenous model (NARX)—were eval-
uated in this paper and compared with each other using standard regression evaluation
metrics. As a result, with proper hyperparameters, in the proposed method of NARX
with MLP as a regressor, the NARX algorithm showed the best performance among the
evaluated algorithms, indicated by the highest values of the coefficient of determination
(R2) and lowest values of the root-mean-square error (RMSE). Therefore, comparing the
three models introduced in this paper, the NARX-MLP outperformed MLP and LSTM in
all steps ahead.

The pressure prediction for t0 using NARX-MLP had relatively high accuracy, as
shown by the small RMSE value of 4.29 and high R2 value of 0.96. The values indicate
that the NARX-MPL algorithm is capable of forecasting the pressure with high correlation
to actual field data. By forecasting the pressure several days ahead, system owners may
take pre-emptive actions to prevent congealing. For future work, the data provided can
be evaluated using more advanced techniques, particularly to improve forecasting with
longer horizons.
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