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Abstract: Nowadays, underwater video systems are largely used by marine ecologists to study the
biodiversity in underwater environments. These systems are non-destructive, do not perturb the
environment and generate a large amount of visual data usable at any time. However, automatic
video analysis requires efficient techniques of image processing due to the poor quality of underwater
images and the challenging underwater environment. In this paper, we address live reef fish species
classification in an unconstrained underwater environment. We propose using a deep Convolutional
Neural Network (CNN) and training this network by using a new strategy based on incremental
learning. This training strategy consists of training the CNN progressively by focusing at first on
learning the difficult species well and then gradually learning the new species incrementally using
knowledge distillation loss while keeping the high performances of the old species already learned.
The proposed approach yields an accuracy of 81.83% on the LifeClef 2015 Fish benchmark dataset.

Keywords: underwater image; fish recognition; deep learning; convolutional neural network; incre-
mental learning; knowledge distillation loss

1. Introduction

The underwater environment, particularly coral reefs, contains diverse ecosystems
rich in biodiversity. These reefs are composed of assemblages of corals, algae and sponges.
This complex structure offers an ideal habitat for many species, especially for protection
and feeding [1]. The underwater environment is ecologically and economically important,
but is threatened by pollution [2], over-fishing [3], and climate change [4]. These factors are
destroying the ecosystem and accelerating the loss of coral and fish species living there [5]. It
is now necessary to monitor the evolution of these ecosystems in order to identify and even
anticipate any threatening degradation of the ecosystem [6]. This monitoring is achieved by
observing and then estimating the diversity and abundance of fish species to understand
the structure and dynamics of the coral reef community [7]. Traditional techniques used to
observe ecosystems and monitor biodiversity, such as techniques (fishing [8], anesthesia [9])
and underwater visual census (UVC) [10], are destructive and/or do not ensure continuous
monitoring of underwater biodiversity. It is important to adopt more advanced techniques
that are non-destructive and provide continuity in ecosystem monitoring.

In recent years, underwater video techniques have been increasingly used to observe
macrofauna and habitat in marine ecosystems. Advances in video camera technology,
battery life and information storage make these techniques accessible to the majority of
users. Underwater video has some notable advantages. Inexpensive in terms of cost and
time, it allows for a large number of observations that can be reused at any time. It also
makes it possible to monitor the aquatic communities of the ecosystem without disturbing
its functioning. This is a major advantage over UVCs, which require the presence of a diver
in the environment. In addition, this technique is preferable for monitoring large areas
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such as marine protected areas (MPAs), marine parks or World Heritage sites. It is also easy
to implement, and the recorded videos can be used by non-specialists.

However, current underwater video observation techniques require human experts
to analyze the rapidly increasing amount of data collected. Automatic processing of
underwater videos is the key to efficiently and objectively analyzing these large amounts
of data. In fact, this technique is not yet provided due to the difficulties presented by the
underwater environment, which poses great challenges for computer vision (Figure 1).
The luminosity changes frequently due to ocean current, visibility is limited, and the
complex coral background sometimes changes rapidly due to moving aquatic plants.
Object recognition in underwater video images is an open challenge in pattern recognition,
especially when dealing with fish species recognition. Fish move freely in all directions,
and they can also hide behind rocks and algae. In addition, the problems of fish overlap,
and similarities in shape and pattern between fish of different species pose significant
challenges in our application.

Figure 1. Examples of underwater images from different videos of the LifeClef 2015 Fish dataset.
These examples illustrate the high variation in unconstrained underwater environments, such as
complex, crowded and dynamic backgrounds and luminosity variation.

We can divide automatic fish recognition into two steps: (1) fish detection, which aims
to localize every single fish in the underwater image, (2) and fish classification, which aims
to identify the species of each detected fish. In our previous work [11], we focused on fish
detection in unconstrained underwater videos. In this paper, we address the fish species
classification in underwater images.

Last decade, several works developed methods for live fish species recognition in
open sea. The early works mainly used hand-crafted techniques such as forward sequential
feature selection (FSFS) [12], discriminant analysis approach [13], histogram of oriented
gradients (HOG) [14], and SURF [15].

Recently, convolutional neural networks (CNNs) have shown high performance for
underwater vision enhancement [16,17], and for fish detection [11,18–20]. For fish species
classification, the first works based on CNNs applied well-known pretrained networks
such as AlexNet [21–23], VGGNet [24], GoogleNet [25,26], and ResNet [27–29]. Other
works attempted to develop new architectures with few convolutional layers [30–32].
Others proposed a hybrid of deep architecture with hand-crafted techniques [33,34]. Some
other works attempted to address fish detection and species classification within the same
framework [18,19,35].

All of these CNN-based works used classical multi-class CNN, which is trained at
once on all classes in the dataset. With this structure, the CNN treats all classes the same.
However, some classes are naturally more likely to be misclassified than others, especially
for classes that have fewer samples or are difficult to classify. In a live fish recognition
task, the species in the training set can be grouped into categories. We can group species
according to their degree of difficulty. Difficult species require special treatment when
learning the CNN model. On the other hand, incremental learning allows a model to
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integrate new examples without having to perform a complete re-training and without
destroying the knowledge acquired from old data. We propose to build a CNN classifier
starting with the difficult species. Initially, the model focuses on learning the difficult
species well and then gradually learns the other species in an incremental way. We aim to
keep the model stable when introducing new species while maintaining high performances
on the old species already learned.

The main contributions of this paper are summarized as follows:

• We propose a novel approach of using knowledge distillation for the training of the
CNN architecture for live coral reef fish species classification task in unconstrained
underwater images.

• We propose to train the pre-trained ResNet50 [36] progressively by focusing at the
beginning on hard fish species and then integrating more easy species.

• Extensive experiments and comparisons of results with other methods are presented.
The proposed approach outperforms state-of-the-art fish identification approaches on
the LifeClef 2015 Fish ( www.imageclef.org/lifeclef/2015/fish accessed on 7 July 2022)
benchmark dataset.

The rest of this paper is organized as follows. Section 2 outlines related work. Section 3
presents the proposed approach for underwater live fish species classification. Section 4
describes the benchmark dataset used in this work, provides the experimental results
and performs a comparative study. Finally, the conclusion and perspectives are discussed
in Section 5.

2. Related Works

In this section, we present a state-of-the-art computer vision approach for fish species
classification (Section 2.1). Then, we briefly expose related works for incremental learning
approaches (Section 2.2).

2.1. Fish Species Classification

Early work used hand-crafted features to recognize fish species in the open sea.
Spampinato et al. [13] combined texture and shape features. An affine transformation
is also applied to the acquired images to represent the fish in 3D. Cabrera-Gámez et al. [14]
computed different local descriptors such as histogram of oriented gradients (HOG), local
binary patterns (LBP), uniform local binary patterns (ULBP) and local gradient patterns
(LGP). To improve classification results, they adopted a score-level fusion approach where
the first layer is composed of a set of classifiers designed to each chosen descriptor, while
the second layer classifier takes as input the scores of the first layer. SVM-based techniques
can be considered flat classifiers because they classify all classes at the same time using
the same features for all classes. Sometimes it may be useful to choose specific features
for different classes; hierarchical classification tree techniques take this into account. The
idea is to gradually separate the set of images into sub-classes, with each node in the tree
having its own set of features. The main disadvantage of this structure is the accumulation
of errors because if an error is made at a node, it will necessarily lead to new errors in
the child nodes. Huang et al. [12] extracted 66 types of features: color, shape, and texture
of different parts of the fish. They then proposed a hierarchical classification method
called “Balance-Guaranteed Optimized Tree (BGOT)” that is supposed to minimize the
error accumulation problem. Szűcs et al. [15] used speeded up robust features (SURFs) to
classify fish species [37]. Dhar and Guha [38] extracted the robust gist feature and gray
level co-occurrence matrix feature from a fish image. Then, they combined these features to
feed an XgBoost classifier.

With the advent of deep learning, in particular convolutional neural networks (CNNs),
many studies have focused on investigating the contribution of CNNs to the resolution of
different tasks in computer vision. Villon et al. [25] presented two methods for recognizing
fish in coral in HD underwater videos. The first method is based on a traditional two-step
approach: extraction of HOG features and use of an SVM classifier. The second method

www.imageclef.org/lifeclef/2015/fish
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is based on deep learning using the GoogleNet architecture [39]. They compared the two
methods and found that deep learning is more efficient than HOG+SVM. Salman et al. [31]
proposed a CNN of three convolution layers to extract features and feed standard classi-
fiers such as SVM and K nearest neighbors (KNN). Qin et al. [30] proposed a CNN with
three convolutional layers trained from scratch on the Fish Recognition Ground-Truth
dataset. They also proposed in [33] a hybrid deep architecture with traditional methods to
extract features from fish images. In this architecture, principal component analysis (PCA)
is used in two convolutional layers, followed by binary hashing in the non-linear layer
and block-wise histogram in the pooling layer. Then, spatial pyramid pooling (SPP) [40]
is used. Finally, classification is performed with a linear SVM. Compared to their first
work [30], the proposed hybrid deep architecture improved the accuracy by only 0.07%.
Sun et al. [34] applied two deep architectures, PCANet [41] and NIN [42], to extract features
from underwater images. A linear SVM classifier is used for classification. Jäger et al. [21]
used features extracted from the activations of the seventh hidden layer of the pre-trained
AlexNet model [43], and fed a multi-class SVM classifier. Sun et al. [22] proposed to extract
the features of fish from a pre-trained deep CNN using transfer learning [44]. They re-
trained AlexNet with artificial data augmentation using an SVM classifier. Mathur et al. [28]
fine-tuned a ResNet50 model by only re-training the last fully connected layers without
any data augmentation. They used Adamax as an optimizer. Zhang et al. [29] proposed
AdvFish, which addresses the noisy background problem. They fine-tuned the ResNet50
model by adding a new term in the loss function. This term encourages the network to
automatically differentiate the fish regions from the noisy background and pay more atten-
tion to the fish regions. Pang et al. [45] used the teacher-student model to reduce the impact
of interference on fish species classification. They distilled interference information by
reducing the discrepancy of two distance matrices generated separately from a processed
fish image and a raw fish image. KL-divergence is used to further reduce noise in the raw
data distribution.

Other works tried to modify the original pre-trained models. Ju et Xue [23] proposed
an improved AlexNet model. This model has less structural complexity, it consists of
four convolutional layers instead of five and an added item-based soft attention layer.
Iqbal et al. [24] used a reduced version of AlexNet consisting of four convolutional layers
and two fully-connected layers. Cheng et He [46] proposed a deep residual shrinkage
network. This network is an improved attention mechanism algorithm based on a deep
residual network, which embeds a soft threshold as a shrinkage layer into a residual module
to automatically set thresholds for each feature channel.

Other work attempted to address fish detection and species classification in the same
framework. Li et al. [18] applied fast R-CNN convolutional networks [47] to detect and
recognize fish species. Knausgard et al. [48] used the You Only Look Once (YOLO) object
detection technique to detect fish in underwater images [49]. Then, they adopted a CNN
with the squeeze-and-excitation (SE) architecture [50] to classify each fish in the image
with a transfer learning framework. Jalal et al. [19] proposed a hybrid approach combining
spatial and temporal information based on YOLOv3 to detect and classify fish images.
An interesting recent survey cites all works on fish species recognition [51,52].

The training of our approach is different from classical multi-class CNN training that
trains CNN at once in all classes. In our application, we group species according to their
degree of difficulty. First, we start training our CNN with the difficult species, and then it
gradually learns the other species in an incremental way.

2.2. Incremental Learning

Incremental learning [53,54] refers to learning from streaming data, which arrives over
time. It allows a model to receive and integrate new examples without having to perform a
complete re-training and without destroying the knowledge acquired from old data. An
incremental learning algorithm is defined in [55] as one that meets the following criteria:

• It should be able to learn additional knowledge from new data;
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• It should not require access to the original data (i.e., the data that were used to learn
the current classifier);

• It should preserve previously acquired knowledge;
• It should be able to learn new classes that may be introduced with new data.

These four points apply to any general incremental learning problem.
In our application, we want to use the principle of incremental learning in a classical

transfer learning context. In classical transfer learning, a pre-trained model is re-trained
once on a new dataset with a predefined number of classes. Our approach based on
incremental learning trains a model progressively while adding new classes at each transfer
of knowledge. The common point between this learning and classical incremental learning
is that the model learns new data without destroying the knowledge acquired from the
old data. On the other hand, the difference between them is that our approach requires
re-training the system on both old and new data.

We can distinguish mainly three types of incremental learning algorithms:

• Architectural strategy [56]: this algorithm modifies the architecture of the model in
order to mitigate forgetting, e.g., adding layers, fixing weights. . .

• Regularization strategy [57,58]: loss terms are added to the loss function that promotes
the selection of important weights to keep the knowledge gained. This type also
includes basic regularization techniques such as stalling and early stopping.

• Repetition strategy [59]: old data are periodically replayed in the model to strengthen
the connections associated with the learned knowledge. A simple approach is to store
some of the previous training data and interleave it with new data for future training.

In our approach, we use the regularization strategy by modifying the loss function of
the system.

For validation purposes, we carried out experiments on the LifeClef 2015 Fish (LCF-15)
dataset. This underwater benchmark dataset is captured by underwater cameras in the
open sea.

3. Proposed Approach

Here we propose a CNN approach for efficient fish species identification based on
transfer learning and incremental learning. This approach trains the CNN progressively
while adding a new species. For learning the new species, we use the Learning Without
Forgetting approach (Section 3.2), which modifies the loss function by adding a term of
loss called knowledge distillation loss (Section 3.3).

3.1. Architecture of the Approach

The architecture of our proposed approach is illustrated in Figure 2. We consider
first a CNN with a set of shared parameters θs (the convolutional layers). In the output
layer, we consider specific parameters tuned using old species θo (the weights of neurons
in the output layer corresponding to the old species). Finally, we have specific parameters
assigned to the new classes, randomly initialized θn (the weights of neurons in the output
layer corresponding to the new species). Our goal is to learn the specific parameters θn and
update the parameters θs and θo in order to ensure that the entire model performs well on
both old and new species.
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Figure 2. General view of the proposed approach based on incremental learning. The system
initializes the weights corresponding to the new species randomly and keeps the trained weights.

3.2. Learning Phase

Let Xo be the set of samples of k difficult species (also called old species), Xn the set of
samples of N−k species, where N is the total number of species in dataset and X = Xo ∪Xn
is the total training set. We train our model in three steps:

• Step 1: train parameters θs and θo: First, using classical transfer learning, we train a
pre-trained network, here ResNet50, on Xo.

• Step 2: calculate probabilities: At the end of the first step, each image xi ∈ X is passed
through the trained CNN (of parameters θs and θo) to generate a vector of probabilities
of belonging to the k old species po(i). The set Po = f (θs, θo, X) of probabilities
serves as labels corresponding to the training image set X; f (.) is the output of the
CNN using the parameters θs and θo. The objective is to train the network without
moving these predictions much.

• Step 3: train all parameters: In order to incorporate the new species, we add nodes
for each new species to the classification layer with randomly initialized weights
(parameters θn). When training the new model, we jointly train all model parameters
θs, θo and θn until convergence. This procedure, called joint-optimize training, encour-
ages the computed output probabilities P̂o to approximate the recorded probabilities
Po. To achieve this, we modify the network loss function by adding a knowledge
distillation term.

3.3. Knowledge Distillation

Knowledge distillation is an approach originally proposed by Hinton et al. [60] with
the goal of reducing the size of a network. It uses two networks: a powerful but complex
and expensive one called the master, and a smaller one called the student. First, the master
network is trained, and then the student network is trained to imitate it. Practically, it
predicts the outputs of the master by imitating the probabilities assigned to each class. In
the end, we will have two networks of different sizes that produce the same outputs. This
approach results in a lighter student model and improves performance.

In our approach, we propose to use knowledge distillation to train the network when
adding the new species without forgetting the old knowledge. The knowledge distillation
allows the network to reconcile its outputs after the integration of new classes to the outputs
of the network before the integration. This can be modeled by a modified cross-entropy
loss that increases the weight for smaller probabilities:



Mach. Learn. Knowl. Extr. 2022, 4 759

Ldistillation(po, p̂o) = −
l

∑
i=1

p′(i)o log( p̂′(i)o ) (1)

where l is the number of labels, p′o and p̂′o are modified versions of the recorded po and
calculated p̂o probabilities:

p′(i)o =
(p(i)o )

1
T

∑j(p(j)
o )

1
T

; p̂′(i)o =
( p̂(i)o )

1
T

∑j( p̂(j)
o )

1
T

(2)

where p′(i)o and p̂′(i)o are softmax outputs and T is a parameter called temperature, which for
a standard softmax function is normally set to 1. As T grows, the probability distribution
generated by the softmax function becomes softer, providing more information about which
classes the master finds more similar to the predicted class.

3.4. Total Loss Function

The total loss function (Ltotal) of the network is the sum of the knowledge distillation
(Ldistillation) and the loss function used by the network to learn the classes (Lloss).

Ltotal = λoLdistillation(Po, P̂o) + Lloss(Y, Ŷ) (3)

where λo is a loss balance weight between old and new classes. By increasing its value, we
favor training the old images over the new images. Y and Ŷ are the vectors of truth and
calculated labels, respectively, corresponding to the training image set X = Xo ∪ Xn.

This approach has advantages over classic transfer learning. Indeed, the strategy
of feature extraction without fine-tuning generally performs worse on a new dataset
because the shared parameters θs are related to the old classes, and they have not learned
to extract discriminative features related to new classes. On the other hand, fine-tuning
degrades performance in the old classes because the shared parameters have been relearned.
However, proposed incremental learning allows learning a network without forgetting the
old knowledge.

4. Experiments

We used the LCF-15 benchmark underwater dataset to evaluate the effectiveness
of the proposed approach for fish species classification. The dataset contains images of
fish of different colors, textures, positions, scales, and orientations. It was issued from
the European project Fish4Knowledge (F4k) (www.fish4knowledge.eu accessed on 7 July
2022) [61]. During this project of five years, a large dataset of over 700,000 unconstrained
underwater videos with more than 3000 fish species was collected in Taiwan, the largest
fish biodiversity environment in the world.

4.1. LifeClef 2015 Fish (LCF-15) Benchmark Dataset

The LCF-15 is an underwater live fish dataset. The training set consists of 20 annotated
videos and more than 22,000 annotated sample images. In this dataset, we have 15 different
fish species. Figure 3 shows examples of the 15 fish species, and Table 1 gives the distribu-
tion of the fish species in the dataset. Each video is manually labeled and agreed on by two
specialist experts. The dataset is imbalanced in the number of instances of different species;
for example, the number of the species ‘Dascyllus reticulates’ is about 40 times more than
the species ‘Chaetodon speculum’. The fish images have various sizes ranging from about
20 × 20 to about 200 × 200 pixels.

www.fish4knowledge.eu
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Figure 3. Sample images of 15 fish species in LCF-2015 dataset.

Table 1. The fish species distribution in LCF-15 dataset.

ID Species Training Set Size Test Set Size

AV Abudefduf vaigiensis 436 94
AN Acanthurus nigrofuscus 2805 129
AC Amphiprion clarkia 3346 553
CL Chaetodon lunulatus 3711 1876
CS Chaetodon speculum 162 0
CT Chaetodon trifascialis 681 1319
CC Chromis chrysura 3858 24
DA Dascyllus aruanus 1777 2013
DR Dascyllus reticulatus 6333 4898
HM Hemigymnus melapterus 356 0
MK Myripristis kuntee 3246 118
NN Neoglyphidodon nigroris 114 1643
PV Pempheris Vanicolensis 1048 0
PD Plectrogly-Phidodon dickii 2944 676
ZS Zebrasoma scopas 343 187

Total 31,260 13,530

The test set has 73 annotated videos. We note that for three fish species, there are no
occurrences in the test set (Table 1). This is to evaluate the method’s capability of rejecting
false positives.

Compared with other underwater live fish datasets, the LCF-15 dataset provides
challenging underwater images and videos marked by more noisy and blurry environments,
complex and dynamic backgrounds and poor lighting conditions [31]. We choose this
dataset because it contains two categories of species: hard and easy species.

Finally, we note that fish images can be extracted from videos using the available
ground truth of available fish bounding boxes.

4.2. Learning Strategy for Live Fish Species Classification

The incremental learning of the model is performed in two steps. First, we train the
model on images of difficult fish species. Then, we integrate new images of easy fish species
and train the model on all images: old and new ones according to the approach described
in Section 3.

• Construction of two groups: in order to separate the species into two subsets, difficult
and easy, we train the pre-trained network ResNet50 on all species of the LCF-15
dataset with transfer learning. Figure 4 illustrates the confusion matrix. From this
confusion matrix, we can group the species into two main groups: group of species
with low precision, difficult species, (AN, AV, CC, CT, MK, NN, PD, ZS) and group of
species with high precision, easy species, (AC, CL, CS, DA, DR, HM, PV).
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• Step 1 (difficult species): We first train the model on the first group using a pre-trained
ResNet50 model. We want the model to focus on this subset. For this reason, we
apply a data augmentation technique. To perform data augmentation, we proceed as
follows. We flip each fish sample horizontally to simulate a new sample where fish
are swimming in the opposite direction; then, we scale each fish image to different
scales (tinier and larger). We also crop the images by removing one quarter from
each side to eliminate parts of the background. Finally, we rotate fish images with
angles −20◦,−10◦, 10◦ and 20◦ for invariant rotation fish recognition issues. At the
end of this training, the model generates the shared parameters θs and the specific
parameters for the first group θo.

• Step 2 (all species): Then, we add the species of the second group. In order to integrate
these new species, we add a number of neurons equal to the number of species in this
group into the classification layer. We randomly initialize the values of the weights
of these new neurons (parameters θn) and keep the weights corresponding to the old
species (θs and θo). We apply in this second training the new loss function to learn the
new species while keeping the knowledge learned in the old training.
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Figure 4. Confusion matrix of classic transfer learning of ResNet50 on the LCF-15 dataset.

4.3. Results

In this section, we present the results of our proposed approach. First, we evaluate
the model trained on difficult species (Section 4.3.1). Then, we present the results of the
model trained on all species after adding the new ones. For the last model, we analyze the
effect of different parameters on its performance (Section 4.3.2). Finally, we compare our
approach with state-of-the-art approaches (Section 4.3.3).

4.3.1. Model Trained on Difficult Species

Figure 5 shows the confusion matrix of the model trained on the first group that
contains species with low precision. The model identifies the species CT and MK well,
followed by the species AV, CC, NN and PD. The species AN and ZS remain difficult to
identify. We obtain an accuracy of 85.26%. If we compare the precision of these species
with those of Figure 4, we notice that in this model, the precisions are higher. The aim of
our new approach is to maintain these high precisions when we add the other species.
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Figure 5. Confusion matrix of the first group of the LCF-15 image dataset.

4.3.2. Model Trained on All Species

In order to improve the performance of this model, we evaluate different optimizers
and parameters, particularly the loss balance weight λo and temperature T.

i. Optimization technique

The choice of the optimizer is a crucial step that greatly influences performance. We
first evaluate our approach using different optimizers for loss function (Equation (3)). For
this, we set λo to 0, and we test different optimization techniques (SGD, Adam, Adamax
or RMSprop). Table 2 compares the accuracies with different optimization techniques on
the LCF-15 dataset. We can observe that Adam shows the best results for our problem
statement. Adam is recommended as the default optimizer for most of the deep learning
applications. It inherits the good features of RMSProp and other algorithms. Unlike
maintaining a single learning rate through training in SGD, the Adam optimizer updates
the learning rate for each network weight individually. We use this optimizer for the rest of
the work, and we add the distillation loss term.

Table 2. Comparison of fish recognition accuracies of various optimization techniques on the LCF-15
dataset.

Optimizer Accuracy

RMSprop 71.79%
Adamax 79.08%
SGD 79.16%
Adam 80.06%

ii. Effect of parameter λo

λo is a loss balance weight between old and new classes. In order to explore the effect
of this balance weight on performance, we evaluate our system using different values of
λo. Figure 6 illustrates the impact of λo on accuracies. It can be seen that the performance
gradually decreases with the increase in λo. This is because when we increase its value, we
favor training the old images over the new images, which makes the system very related
to old images. The accuracy is relatively good when λo = 0.5 or 1. We set λo to 0.5 for the
next experiment.
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Figure 6. Comparison of accuracies of various values of λo for temperature parameter T = 1 using
the Adam optimizer on the LCF-15 dataset.

iii. Effect of temperature parameter T

We also evaluate the effect of temperature parameter T seen in Equation (2). Figure 7
visualizes the effect of this parameter on the performance of our approach. We can observe
that the accuracy is better when T ≥ 1. Hinton et al. [60] suggest to set T > 1, which in-
creases the weight of smaller values and encourages the network to better learn similarities
among classes. We achieve the best accuracy of 81.83% for T = 2.
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Figure 7. Comparison of accuracies of various values of temperature parameter T for λo = 0.5 using
the Adam optimizer on the LCF-15 dataset.

iv. Performance analysis

After analyzing the effects of different parameters, we show results using the following
setting: λo = 0.5 and T = 2 using the Adam optimizer. We achieve an accuracy of 81.83%,
which exceeds that of the non-incremental CNN (76.90%). Figure 8 illustrates the confusion
matrix of the model trained on all species. We note that the precision of AN and AV are
improved (AN from 43.14% to 44.19% and AV from 87.50% to 100%). The precision of the
difficult species is reduced, but they remain higher than those of non-incremental learning
(c.f. Figure 4); for example, the precision of the NN species is reduced from 85.58% to 60.99%,
which is higher than 25.20% with non-incremental learning. The same for the species CC,
the precision is reduced from 87.50% to 62.50%, which is much better than 16.67% with
non-incremental learning. Due to the loss function with the knowledge distillation, we
instruct the model not to forget too much of the knowledge acquired in the first training.
The forgetting of old knowledge is due to the similarities between the old and new species
and the fact that the newly added species are more representative. We also note that the
precision of some representative fish species is reduced, for example, CL from 97.23% to
87.47% and DR from 93.75% to 82.73%. The network becomes more related to the old
species because of the distillation of knowledge loss. We achieve our objective of keeping
the model stable when introducing new species while maintaining high performances on
the difficult species already learned.
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Figure 8. Confusion matrix of the second group of the LCF-15 image dataset.

4.3.3. Comparative Study

Table 3 shows the comparison performances of our proposed approach with the
state-of-the-art methods on the LCF-15 benchmark dataset. We note that we implemented
modified AlexNet [24] and FishResNet [28] approaches by using the same provided pa-
rameters as in their papers. We also implemented the approach of Yolov3 [19] based on
the spatial information using RGB images. From Table 3, we observe that our proposed
approach based on incremental learning for live fish species classification outperforms
the-state-of-the-art methods. We note that Salman et al. [31] reached an accuracy of 93.65%
by testing their model on 7500 fish images issued from the LCF-15 dataset, but these fish
images are not from the original test set provided in the dataset. When they tested their
method, they did not use the original training and test split provided in the LCF-15 dataset.
Furthermore, Jalal et al. [19] did not use the original test set provided in the LCF-15 bench-
mark dataset. Instead, they merged the training and test sets, and then they took 70% of
samples for training and 30% for test. The test set of the LCF-15 benchmark dataset is
highly blurry compared with the training set, which explains the high accuracy in their
article compared with ours.

Table 3. Comparison of fish recognition accuracies of various methods on the LCF-2015 dataset.

Approach Accuracy

SURF-SVM [15] 51%
FishResNet [28] 54.24
CNN-SVM [21] 66%
NIN-SVM [34] 69.84%

Modified AlexNet [24] 72.25
Yolov3 [19] 72.63

AdvFish [29] 74.54
ResNet50 (with non incremental learning) 76.90%

PCANET-SVM [34] 77.27%
ResNet50 (with proposed incremental learning) 81.83%

5. Conclusions

In this paper, we proposed a new CNN approach based on incremental learning for a
live fish classification task in an unconstrained underwater environment. We proposed to
first train ResNet50 on a hard fish species and then add an easy fish species by using incre-
mental learning to reduce the forgotten problem. For this, we modified the loss function
by adding knowledge distillation loss. Experiments on the LifeClef 2015 Fish benchmark
dataset demonstrated that incremental precisions are higher than non-incremental preci-
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sions, and our proposed approach outperforms various state-of-the-art methods for fish
species identification.

Our future work will aim to keep the old and new precision of each species higher in
order to improve the performance of the system.
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