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Abstract: Rate of perceived exertion (RPE) is used to calculate athlete load. Incomplete load data,
due to missing athlete-reported RPE, can increase injury risk. The current standard for missing RPE
imputation is daily team mean substitution. However, RPE reflects an individual’s effort; group
mean substitution may be suboptimal. This investigation assessed an ideal method for imputing
RPE. A total of 987 datasets were collected from women’s rugby sevens competitions. Daily team
mean substitution, k-nearest neighbours, random forest, support vector machine, neural network,
linear, stepwise, lasso, ridge, and elastic net regression models were assessed at different missingness
levels. Statistical equivalence of true and imputed scores by model were evaluated. An ANOVA of
accuracy by model and missingness was completed. While all models were equivalent to the true RPE,
differences by model existed. Daily team mean substitution was the poorest performing model, and
random forest, the best. Accuracy was low in all models, affirming RPE as multifaceted and requiring
quantification of potentially overlapping factors. While group mean substitution is discouraged,
practitioners are recommended to scrutinize any imputation method relating to athlete load.

Keywords: sports; football; athletic performance; statistical models; machine learning

1. Introduction

A standard, and widely accepted, sport metric calculated to determine an athlete’s
training and competition load is the session rating of perceived exertion (sRPE) [1–3]. sRPE
is calculated by multiplying the athlete’s self-reported rate of perceived exertion (RPE),
on a 10-point Likert scale, by the duration of the activity [1]. The RPE scale represents
ten unique points, or classes, whereby each class is distinct, usually in increasing level of
effort where low numbers represent low effort and the highest number, ten, represents an
athlete’s maximal possible level of effort with key phrases anchoring the scale and offering
a frame of reference to the levels of effort [1]. For example, 0 may have the descriptor
of “rest”, 2 “easy”, 7 “very hard”, and 10 “maximal” [1]. For elite team sports, the RPE
data for each session is collected through athlete self-report and the activity duration is
normally collected through an athlete-worn tracking device (ATD) which collects various
kinematic metrics including distance, speed, acceleration, and time [4]. While the data
from the ATD can be reliably collected in training and competition with the guidance of
a sport science technician, there are difficulties in athlete adherence to self-reporting RPE
data. Due to these difficulties, missing RPE data is a common issue in sport training and
competition environments, and therefore sRPE data cannot be dependably calculated [3–6].
Considering the small sample size of elite athlete populations, this missing data limits
the statistical assessment of training and competition load to support data-driven sport
decision-making [2,3].

Incomplete and potentially inaccurate athlete load data can result in several deleterious
outcomes and places athletes at risk of inappropriate training recommendations, potentially
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leading to physical unpreparedness, injury, or burnout [7]. An important example is the
female rugby sevens competition environment in which teams play five or six games in a
two- or three-day tournament, often with multiple tournaments happening in a few weeks.
This high volume of competition requires a critical focus on athlete management. The use
of ATDs, including GPS monitors, is an option for load monitoring, as data collected from
ATDs has been used to develop proprietary algorithms that model athlete load and are
related to rate of perceived exertion [4]. However, these proprietary algorithms include
details that are not disclosed [8,9]. Further, it has been suggested that ATD load algorithms
alone may not be optimized to accurately quantify the loads experienced by female rugby
athletes, leading to an increased reliance on athlete-reported RPE for the evaluation of the
training load [8,9].

In order to potentially mitigate missing RPE data in sport, mathematical techniques
for the imputation, or prediction, of missing values present a unique solution [3–6]. Tradi-
tionally, in sport research, missing value imputation (MVI) occurs via value substitution
or through classification and regression models [5]. Substitution uses alternative values
in place of the missing value [5], while classification or regression models may use other
known variables to predict the missing one, and therefore, these methods may be better
because of the inclusion of associated athlete-specific metrics and not just one variable [5].
In dealing with RPE from athletes, Benson et al., (2021), and Griffin et al., (2021) advocate for
the use of group mean substitution, referred to as daily team mean substitution, whereby
the average of the known group RPE data is used in place of a single missing athlete’s
RPE value for that same day without influence from any other variables [2,3]. Carey et al.,
(2016) used more detailed approaches including linear regression, multivariate adaptive
regression splines, random forests, support vector machines, neural networks, naïve Bayes,
C5.0 decision rules, and ordered logistic regression [10]. Unfortunately, the literature is
sparse in terms of comparing single imputation with machine learning methods. Ben-
son et al., (2021) did compare single imputation methods against a least-squares boosted
regression tree model, finding that this method was not as robust as daily team mean
substitution. However, it must be noted that only one regression imputation strategy was
used, and therefore, comparisons between alternative regression or classification strategies
with group mean substitution relating to athlete load data are limited [2].

Arguments for group mean substitution focus on the ease of implementation as a team
average. It is a simple calculation and preferable to a missing datapoint [2,3]. However,
given that RPE reflects an individual athlete’s effort, group mean substitution may over- or
underestimate training load data. Further, there is evidence from other domains that mean
substitution may be inferior to other more common statistical approaches such as linear
regression, random forest classification, or neural networks [10–14]. Given the polyphery
of imputation methods available to account for missing data in many fields, from simple
linear regression to alternative machine learning models, it is important to consider if
an optimal method of imputation is available, and how this method may compare to
the current standard of group mean substitution [4,12,13,15]. Therefore, the purpose of
this investigation is to compare the current standard method of RPE imputation (daily
team mean substitution) to other methods for predicting RPE data in elite women’s rugby
sevens competitions.

2. Materials and Methods

Through retrospective qualitative analysis, the effectiveness of RPE missing value
imputation was explored through statistical modeling of other objective metrics collected
during games in a cohort, observational study. Twenty-one women’s sevens players
(25.5 ± 3.90 years old, 169.4 ± 5.89 cm tall, and 71.0 ± 5.64 kg) provided RPE data for
101 international matches (2017–2020). The University of Victoria provided ethics approval
for the use of voluntary data collection and the investigation complied with the principles
outlined in the Declaration of Helsinki. Further, match date, match number within the
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tournament, and opponent were provided for each match. All data were anonymized by
team staff prior to analysis.

Subjective RPE data were collected following the completion of the match using a
0–10 scale, with athletes providing one RPE rating for the whole match [16–18]. Addi-
tionally, objective variables from ATDs, worn between the shoulder blades in a custom
harness for each athlete, which collected athlete playing time and total distance covered in
each match (Apex v.2.50, StatSports, Newry, UK), were available for potential inputs into
imputation models.

Footage of each match were evaluated to produce a count of all contacts (sum of
tackles, carries, contested restarts, and rucks) (Sportscode v.11, Hudl, Lincoln, NE, USA).
The operational definitions used to code the forms of contacts were developed by coaching
and analysis staff, maintaining the team’s current analysis practices and applied by one
trained analyst [19–22].

A six-match subset of 65 complete player-match datasets were coded twice by one
trained analyst on two separate occasions. A two-way mixed-effects, absolute agreement,
single-rater intraclass correlation (ICC 3,1) determined the reliability was 0.99 (95% Confi-
dence Intervals at 0.98–0.99), demonstrating excellent intra-rater reliability [23].

To model the RPE relationship (dependent variable) from objective metrics available
through athlete-worn ATD units, match video footage, and provided by team staff (inde-
pendent variables), statistical models were used to classify and predict RPE data, before
comparisons of true RPE data and model-predicted RPE data were made (R version 3.4.4,
Vienna, Austria). A total of 987 datasets were used for analysis.

In all models except for daily team mean substitution, RPE data were predicted using
match number, player, opponent, total distance in meters, playing time in minutes, and
contact count. Prior to modeling, the residual plots and normality plots of RPE data
were evaluated for normality. Further details on the explanatory variable data selected as
objective variables to improve the imputation of subjective data are found in Table 1.

Table 1. Details on explanatory variable data used in models.

Variable Type Method of Data Collection

RPE Integer Athlete self-report,
measured in arbitrary units

Match Number Integer Integer reflecting match order in tournament
(i.e., first game played = 1, second game = 2, etc.)

Player Integer Integer used in place of name to anonymize athlete
Opponent Integer Integer used in place of name to anonymize opponent

Total Distance Float ATD, measured in meters,
Playing Time Float ATD, measured in minutes

Contact Count Integer Match footage, coded and evaluated by team analyst

The models used to classify and predict RPE data were selected based on a combina-
tion of models used in the current sport literature to impute missing RPE data as well as
models that can be completed using open-source software [2,3,10,11,14]. In this investiga-
tion, RPE values were classified and predicted using daily team mean substitution [2,3],
regression models (linear, (R stats package) stepwise (R MASS), lasso, ridge, elastic net
(lasso, ridge, and elastic net using R glmnet)), k-nearest neighbours (R FNN), random forest
(R randomForest), support vector machine (R e1071), and neural network models [24–35].

Data were divided between a training and a test dataset, whereby 80% of the data
were designated for training models and 20% for testing models to produce predicted
RPE scores, iterated 100 times with mean values used for downstream analysis. The same
equation (Equation (1)) was used for each model:
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RPE = Match Number + Player + Opponent + Total Distance + Playing Time + Contact Count (1)

Predicted RPE scores were then compared to the true RPE scores from the test dataset
and the accuracies of each model were calculated. Accuracy, or the rate of correctly
predicted RPE scores, R2, and root mean square error (RMSE) were identified as key metrics
of interest in evaluating if the models were able to appropriately impute the RPE value in
comparison to the true RPE.

The imputed values from the test dataset, at 20% missingness, were compared against
the true RPE values using a paired-samples equivalence test (paired TOST) to establish
statistical equivalence, or more practically, interchangeability of models [36,37]. 20% miss-
ingness was determined to be a reasonable level of missingness as practically that was
the equivalent to 2–3 missing RPE values within a team of rugby sevens players which,
on the advice of team staff, represented the regular outcomes of data collection [2,3]. The
paired-samples equivalence test used bounds of Cohen’s d × σ, in this case using a Cohen’s
d of 0.2, to represent a small effect size [37].

To explore the cases of divergence in accuracy, all imputation strategies were tested at
different levels of missingness, in 5% increments, from 5% to 30% and iterated 100 times. A
one-way ANOVA compared model accuracy by type, by missingness, and by the interaction
of model type and missingness in recognition that the model accuracy may be dependent
on the level of data missingness. This investigation hypothesized that different types of
models would improve accuracy over daily team mean substitution [38,39]. Further, it
was hypothesized that as levels of missingness increase, accuracy would decrease, both in
general across all models as well as by particular model type.

Finally, a supervised model based on a relationship between RPE and total distance
(Equation (2)) was used to identify the relevance of the model type accuracy across levels
of missingness (5% increments from 0% to 30% imputed data).

RPE = Total Distance (2)

Regressions were generated from data imputed using the different models and across
different levels of missingness. One-way ANOVAs assessed the influence of model type
and missingness on the slope. It was hypothesized that model type may drive particular
significant differences in the regressions, especially as 0% missing data, or data with no
imputed values, were included for analysis. This analysis would highlight cases where
model selection diverged from the true data across levels of missingness.

3. Results
3.1. Description of Data

The frequency of athlete-reported RPE values used in developing the models is shown
in Figure 1 (mean RPE = 7 ± 1.9 au). Investigation of the residual plot showed a random
scatter of points, and the normality plot showed the residuals fall on a straight-line, indi-
cating the normality assumption was appropriate for RPE. On average, athletes covered
1082.86 m of total distance (±439.78 m), played 11.04 min (±4.67 min), and experienced
five contacts (±three contacts) per match.
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Figure 1. Frequency of athlete self-reported RPE values.

3.2. Model Performance

Imputation model accuracy, R2, and RMSE values are reported in Table 2.

Table 2. Imputation Model Accuracy, R2, and RMSE at 20% missingness.

Model Accuracy R2 RMSE

Daily Team Mean Substitution 0.216 0.009 1.832
Linear Regression 0.248 0.306 1.602

Stepwise Regression 0.247 0.305 1.603
Lasso Regression 0.227 0.264 1.651
Ridge Regression 0.233 0.274 1.650

Elastic Net Regression 0.227 0.265 1.651
k-Nearest Neighbours 0.239 0.268 1.653

Random Forest 0.265 0.407 1.480
Support Vector Machine 0.255 0.371 1.541

Neural Network 0.226 0.157 1.862

3.3. Comparison of Models

Paired-samples equivalence tests of each imputed model against the true RPE resulted
in all tested models being deemed statistically equivalent to the true RPE data (p < 0.05).

The one-way ANOVA of the data at 20% missingness found a statistically significant
difference in model accuracy by imputation model type (F (9, 5940) = 86.83, p < 0.05); how-
ever, it did not report statistically significant differences by missingness (F (5, 5940) = 0.99,
p > 0.05) or the interaction of missingness and model type (F (45, 5940) = 0.86, p > 0.05). A
Bonferroni post hoc test determined that statistically significant differences in the mean
differences existed between select models (Figure 2. Both daily team mean substitution and
random forest differed from all other models (p < 0.05) (Figure 3).
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The one-way ANOVA of the slope of the supervised regression found statistically
significant differences in slope by model type (F (9, 1454) = 1.93, p < 0.05), and by level of
missingness (F (6, 1454) = 2.83, p < 0.05). A Tukey post hoc revealed that the daily team mean
substitution and neural network model types were significantly different than all other
models across all levels of missingness, including the complete dataset (0% imputed data).

4. Discussion

This study is the first to compare different methods of imputation across levels of miss-
ingness of RPE data in women’s rugby sevens. Overall, daily team mean substitution was
outperformed by every other method in terms of accuracy, with the random forest model
performing better than other models. Daily team mean substitution was not equivalent to
any other model, and the limited accuracy, R2, and relatively high RMSE affirms that the
team average is not a suitable proxy for individual athlete data. Furthermore, all tested
models performed poorly for accuracy and RMSE across multiple levels of missingness.
Overall, our results suggest that the present substitution method, as well as other com-
mon statistical models, are not suitable imputation approaches, and that the prediction of
missing data may require more investigation as well as the use of more robust statistical
approaches which consider the inclusion of the numerous factors affecting the individual’s
performance [2,3,10,11,16].

While the popularity of daily team mean substitution stems from the efficiency of
substitution over other methods, the poor accuracy, R2, and RMSE scores (Table 2) of the
daily team mean substitution relative to other methods of imputation suggests that this
is not the most robust option. The finding that mean substitution is a poor candidate for
imputation is common in data with human subjects like those of the medical or athletic per-
formance fields. Musil et al., (2002) performed imputation using regression and substitution
models and noted that while all methods have limitations, mean substitution was the least
effective and linear regression was the most effective of the imputation models [11]. Waljee
et al., (2013) found that mean imputation produced the greatest error, while random forest,
the least [13]. Further, in Australian football, an open-skill field sport with similar skill
demands to rugby sevens, Carey et al., (2016) found success in imputing RPE data using
non-linear regression models, over neural networks [10]. The very low accuracy across
levels of missingness (Figure 3) suggests that daily team mean substitution consistently
underperforms RPE imputation compared to methods which rely on additional athlete
information [2,3]. Daily team mean substitution may be a poor method for data from
individual athletes in a team sport, such a rugby sevens, due to multiple varying levels of
factors that could impact the athlete’s perceived experience. For example, athletes may
participate for different time periods (i.e., starting player vs. substitute player), be asked to
perform specialized skills by position (i.e., kicking) and experience different levels of sprint
efforts or contact [40,41]. Additionally, given the global nature of the RPE metric, tactical
decision-making, mental fatigue, or other psychological states may influence perceived
experience [17]. This therefore may require multiple factors to be quantified and used to
contribute to imputation methods, and may account for the improved accuracy of other
imputation models tested that use multiple variables for their calculation [16,41,42]. Con-
versely, it may be possible that daily team mean substitution may be a suitable model for
sports where athletes are performing the same loads or skill demands with limited variable
conditions and factors such as during race events [43,44].

The significant equivalence testing in this study further suggests that the imputed data
are not different from true RPE scores. This is true for all imputation methods and could
suggest that any of the models tested are comparable for RPE data imputation. However,
this result needs to be considered alongside model accuracy (ANOVA) which suggests
that there are significant differences between the models. These results demonstrated
that daily team mean substitution and random forest were significantly different from all
other imputation models, with daily team mean substitution having the lowest accuracy
and random forest having the highest. Further analysis from the supervised regression
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model demonstrated that model type and missingness did have a significant influence on
the slope of the relationship between RPE and total distance, with the daily team mean
substitution and neural network model types being significantly different than all other im-
putation techniques, including the complete, non-imputed dataset, model. The supervised
assessment demonstrates the relevance of model selection and level of data missingness on
the relationship between valuable training load metrics and further highlights that daily
team mean substitution and neural network are poor performing models. These results
are contrary to the current recommendations for RPE imputation, suggesting that daily
team mean substitution or neural network models are viable imputation techniques [2,3,10].
Taken together, the results of the ANOVAs, as well as model performance data (Table 2,
Figures 2 and 3) suggest that daily team mean substitution is the least robust imputation
method, and random forest, the most robust of the methods evaluated. In cases of relatively
low to moderate missingness, support vector, linear, or stepwise regression techniques
may also be applicable. In alignment with the results of this study, Waljee et al., (2013)
identified the use of random forest classification as an imputation strategy with a high
accuracy in medical data missing completely at random (MCAR) [13]. Hong and Lynn
(2020) noted that random forest imputation yields high predictive accuracy in cases of data
missing at random (MAR) [45]. It is reasonable to suggest that RPE data falls within the
case of MAR whereby an athlete’s ability to report their RPE value for a match may be
affected by overall fatigue, mental stress, or physical state. Since random forest models do
not require data pre-processing and can handle a wide variety of datasets without relying
on distributional assumptions, these classifiers present an appealing choice for imputa-
tion [46,47]. Nevertheless, while random forest models exhibit predictive accuracy, these
models cannot estimate relationships involving imputed values [45]. Therefore, imputed
values from different models may need to be tested in a more supervised manner to existing,
explainable situations [12,47,48]. Additionally, alternative models to those not considered
in this investigation, including models using fuzzy clustering or Bayesian approaches, may
be explored [12]. Fuzzy clustering may more appropriately describe outcomes, given the
overlap in ranges of input data and particularly small number of possible outcomes, further
improving accuracy [49].

Support vector machine regression and linear regression were secondary and tertiary
top-performing models, at 20% missingness. When comparing support vector machine and
random forest imputation models, Shataee et al., (2012), noted that random forest models
were somewhat superior to support vector machine models, as random forest models did
not necessarily require the reduction of predictors, which is sometimes required in the
use of support vector machine regression [50,51]. Interestingly, Musil et al., (2002) found
that linear regression was the most optimal approach with their dataset, supporting the
results of this study [11]. Simple linear regression and stepwise regression outperformed
other more involved models, such as lasso and elastic net regression strategies, perhaps
due to the nature of penalized regression present in elastic net and lasso strategies relative
to simple linear regression [52]. Further, the neural network model, a technique that is
generally robust at imputation due to the presence of predictive functions within the layers
enabling identification of combinations of properties, was not a top-performing model [53].
This is most likely due to the particular constraints on the neural network model used in
the present study of a sigmoid function with one hidden layer. Given the range of possible
imputation models presented in the literature, it is possible that particular methods may in
fact be equivalent or interchangeable. Therefore, future research should seek to identify
optimal imputation strategies in supervised settings that promote actionable outcomes.

Despite the presence of statistical differences by model type, accuracy was very low
across all models [54]. One potential reason for this low accuracy may be the nature of the
dataset, as there was low variance of RPE values (mean RPEtrue = 7 ± 1.9 au) (Figure 1).
Another potential reason for this stems from the use of accuracy as the means to evaluate
model performance. Accuracy assesses agreement between true and imputed scores such
that if a true score is 7 and an imputed score is 7, that represents an accurate imputation;
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however, if the imputed score is 8, the model performed inaccurately. This is a harsh
threshold, which may in fact punish models that are predicting scores within one RPE
value, thereby predisposing accuracy scores to be low through the inherent limitation of
binary classification. Alternatives to accuracy may include graphical-based metrics like
Receiver Operating Curves or Precision-Recall Curves [55]. To counter this limitation, R2

and RMSE scores are reported (Table 2) and a supervised regression is also completed.
It remains important to recognize that RPE has been found to potentially have scalar
properties; in competition environments, RPE increases across competitive efforts with
maximal RPEs most often reported in and around finals or standalone events [56–58].
Therefore, future analysis including a broader range of RPE values, such as using the RPE
values generated across a season of diverse training periods, may enable improved accuracy
of RPE imputation. Including additional associated variables with known relationships to
RPE, sport- or individual-specific, may improve training load accuracy [16,42]. To that end,
the identification of potentially overlapping factors would further enable the development
of optimal strategies for working with missing athlete data [16,42].

Efficiency of analysis, for a faster dissemination of knowledge, has been identi-
fied as a key consideration for sport practitioners working in high-performance envi-
ronments [59–61]. This means that while the results of this study suggest that several
imputation models may be interchanged for the current standard of group mean substi-
tution (daily team mean substitution) and still produce results that are not statistically
different and statistically equivalent to true RPE scores, some models may be more applica-
ble than others in the applied sport environment. This study highlights that random forest
classification outperforms the existing group mean substitution standard, as well as more
complex machine learning models such as neural networks in cases of low to moderate
missing data. This study also offers practitioners the possibility of leveraging methods
like random forest, support vector machine, or even simple linear regression or stepwise
regression to complete datasets, allowing for further evaluation of training load monitoring.
Practically, random forest classification, or even simple linear or stepwise regression, offer
reasonable options for the prediction of missing RPE values in comparison to group mean
substitution approaches, such as daily team mean substitution. Low imputation method
accuracy across all methods means that any attempt to predict missing data requires care,
including scrutiny of methods and data used to develop the models. Finally, practitioners
are advised to prioritize data collection from athletes directly above applying any impu-
tation methods, such as daily team mean substitution, linear regression, or otherwise, to
predict missing data.
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