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Abstract: Oil-submerged transformer is one of the inherent instruments in the South African power
system. Transformer malfunction or impairment may interpose the operation of the electric power
distribution and transmission system, coupled with liability for high overhaul costs. Hence, recogni-
tion of inchoate faults in an oil-submerged transformer is indispensable and it has turned into an
intriguing subject of interest by utility owners and transformer manufacturers. This work proposes
a hybrid implementation of a multi-layer artificial neural network (MLANN) and IEC 60599:2022
gas ratio method in identifying inchoate faults in mineral oil-based submerged transformers by
employing the dissolved gas analysis (DGA) method. DGA is a staunch practice to discover inchoate
faults as it furnishes comprehensive information in examining the transformer state. In current work,
MLANN was established to pigeonhole seven fault types of transformer states predicated on the three
International Electrotechnical Commission (IEC) combustible gas ratios. The designs enmesh the de-
velopment of numerous MLANN algorithms and picking networks with the optimum performance.
The gas ratios are in accordance with the IEC 60599:2022 standard whilst an empirical databank
comprised of 100 datasets was used in the training and testing activities. The designated MLANN
design produces an overall correlation coefficient of 0.998 in the categorization of transformer state
with reference to the combustible gas produced.

Keywords: transformer; dissolved gas analysis (DGA); multi-layer artificial neural network (MLANN);
IEC 60599:2022 gas ratio method

1. Introduction

The oil-submerged transformer is one of the inherent instruments in the South African
power system. The appropriate operation of electrical transformers is vital to the opera-
tion of the national grid. The transformer operating condition unswervingly affects the
dependability and stability of the complete grid. Henceforth, it has become particularly
significant to identify inchoate transformer faults. Effectual recognition of inchoate fault of
oil-submerged transformers can momentously condense the costs coupled with revamping
impaired transformers and recovers grid stability and dependability [1-3]. The operation
of transformers is generally unremitting and is contingent on thermal and electrical strains.
Extreme stresses will bring about the decomposition of the insulating materials which
are comprised of cellulose paper and dielectric oil. Hydrocarbons and carbon oxides are
produced and disintegrated on account of the decomposition of the insulating materials.
The carbon-hydrogen bond (C-H bond) and covalent bonds of the carbons in the dielectric
oil will fracture and aforesaid will be conducive to the development of atomic hydrogen
and hydrocarbon atoms. These atoms will merge respectively to constitute dissolved gases
including Hydrogen (Hy), Carbon Monoxide (CO), Methane (CH,4), Carbon Dioxide (CO»),
Ethylene (C;Hy), Ethane (CoHg), and Acetylene (CoHy) [4,5]. These gases can be identified
by employing gas chromatography. Classes of inchoate faults that could be engrossed
in a transformer are controlled by supervising and scrutinizing the concentration level,
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production rate, gas ratio, and total level of combustible gases in insulating oil. There
are three modes of fault conditions that instigate emancipating of faulty dissolved gases:
partial discharge, energy discharge, and thermal expulsion [6-10]. There are numerous
chemical and electrical practices existing in supervising insulation state in oil-submerged
transformers including Dissolved Gas Analysis (DGA) and Furan Analysis which reveal the
Degree of Polymerization of the cellulose paper [11,12]. DGA is one of the most dependable
and certified practices to identify an inchoate fault in transformers. DGA can be utilized to
evaluate present-day transformer condition, provide forthcoming cautioning of emerging
faults, and establish the inopportune usage of transformer for the purpose of offering
suitable preparation of maintenance. The procedure generally used within the transformer
manufacturing industry to extract transformer oil at the site for DGA in the laboratory is
shown in Figure 1.

Oil sampling at site or at Extraction of .
. Intrepretation of gas
the manufactures gases from oil Gas Chromatography .
. concentrations data
premises sample

Figure 1. Extraction of transformer oil in the field for DGA.

New or existing
Oil-impregnated
transformer

The recommended DGA practices do not enmesh any mathematical invention and the
analysis is based on an experiential technique which may differ based on the knowledge of
the laboratory analyst, which results in the erratic analysis [12]. To triumph the shortcoming,
numerous computerized models utilizing Artificial Intelligence have been utilized in
examining inchoate faults in transformers.

In the proposed research study, recent related works and their contributions to trans-
former fault diagnosis have been highlighted and proposed a hybrid MLANN and IEC
60599:2022 gas ratio method for transformer fault diagnosis. Table 1 shows a compara-
tive analysis between the existing recent survey and the proposed hybrid algorithm on
transformer fault diagnosis.

Table 1. Summary of recent related works.

Ref. Year Method Used Contribution

A MSA-based ANN is proposed. The dissolved gases
are IEC 60599: 1999 standard is used to derive the
parameters that will be trained by the proposed

Mean Shift algorithm (MSA),

[13] 2019 ANN algorithm. The MSA was employed to satisfactory
circumvent the shortcoming of the number of training
patterns (data size). Satisfactory results are yielded in
the training and validation procedures.

Dornensburg ratio method, Fault diagnosis was conducted by proposing a hybrid

[14] 2018 Roger’s ratio method, multi-layer ~ Dornensburg and Rogers ratio method to select a gas

artificial neural network ratio that will train a multi-layer artificial neural
perceptron network perceptron.
A fault diagnosis method is proposed by considering
the energy necessitated to produce dissolved gases
(weighting factor). The weighted dissolved gas
[15] 2018 Weighted DGA, backpropagation  concentrations were trained to utilize a backpropagation

ANN ANN. The IEC-599 standard has been considered in
developing the energy-weighted input parameters. The
results yield an improvement from the
unweighted gases.
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Table 1. Cont.

Ref.

Year

Method Used Contribution

[16]

2015

A Duval triangle method-based ANN has been
proposed for fault diagnosis. The traditional Duval
Duval triangle, ANN triangle method parameters are used in training the
ANN. Results show that the proposed hybrid algorithm
has enhanced the traditional Duval triangle method.

[17]

2022

A hybrid Rogers ratio method-based ANFIS was
proposed to diagnose transformer faults. The training
was performed using the gas ratios recommended in the
IEEE C57-104 and the IEC 60599 standards.

ANFIS, Roger’s ratio method

[18]

2020

A fuzzy logic- IEC ratio method was proposed for
Fuzzy Logic, IEC ratio method transformer fault diagnoses. The results show
improvement from the classical IEC ratio method.

Current
research

2022

A hybrid MLANN and IEC 60599:2022 gas ratio method
MLANN, IEC 60599:2022 for fault diagnosis is proposed. The proposed algorithm
standard is corroborated by contrasting the presented case studies
with the Actual, MLANN-IEC, IEC, and kNN.

Contribution: This research study has presented a brief survey of recent transformer
fault diagnoses. The various artificial intelligence-based algorithms using classical DGA
methods have been highlighted. The following are the contributions of the proposed
research investigation:

e A hybrid MLANN and IEC 60599:2022 gas ratio method for fault diagnosis is pro-
posed that improves the diagnostic reliability and trust between the transformer
manufacturer and power utility.

e  Case studies on transformer fault diagnosis using the proposed hybrid MLANN and
IEC 60599:2022 gas ratio method for fault diagnosis have been presented.

The novelty of current research: The fundamental goal of this research study is to
contribute to the field of transformer fault diagnostics. Notwithstanding that several recent
research works have worked on transformer fault diagnosis, little and far between research
has been reported about the application of a hybrid MLANN and IEC 60599:2022 gas ratio
method for fault diagnosis.

The proposed hybrid algorithm is a critical approach for addressing the shortcomings
of the IEC gas ration method and developing an efficient fault diagnosis system. The seven
fault types which are used in the IEC 60599:2022 standard borne in mind and established
that the degree of accuracy of fault diagnosis is not optimal as a result of the restrictions
imposed by the gas ratio codes which results in “not detectable” in some case studies.
Nevertheless, after applying the proposed hybrid diagnosis algorithm, the diagnosis is on
par with the actual fault diagnosis.

The effective ratios of fault diagnosis have also been covered in this research study.
The training of the proposed MLANN algorithm is critical. Hence, the DGA dataset used
in training the MLANN is composed of samples which address all known types of failures
according to the IEC 60599:2022 standard. From this research study, it can be affirmed that
the prediction of transformer faults using a hybrid MLANN and IEC 60599:2022 gas ratio
method is on equal footing with the actual fault diagnosis and provides enhancement from
the IEC 60599:2022 gas ratio method.

Manuscript organization: This manuscript has been methodized as follows: Section 2
covers the materials and methods of the proposed research investigation. Section 3 presents
the performance results of the proposed hybrid MLANN and IEC 60599:2022 gas ratio
method and numerous case studies have been presented to corroborate the method and
benchmark with other techniques. Section 4 provides a conclusion.



Mach. Learn. Knowl. Extr. 2022, 4

842

2. Materials and Methods
2.1. Data Assemblage and Preprocessing

The databank for the combustible gases produced by the dielectric oil samples in
the fleet of transformers employed in this work during service is furnished by a local
Independent Power Producer (IPP) in South Africa. The databank entails six combustible
gases produced in the individual oil samples extracted in the field. The dielectric oil samples
were taken to the laboratory for DGA testing to ascertain the kind and concentration level
of the dissolved gases generated. Based on the six combustible gases produced in the
individual oil samples, three gas ratios are considered using the IEC 60599:2022 standard
recommendation [11]. Additionally, seven transformer faults have been utilized as the
targeted output for the proposed MLANN algorithm. Table 2 illustrate the gas ratios and
the targeted output responses of the MLANN model.

Table 2. Gas input and target response of the proposed MLANN.

Gas Inputs Targeted Output
Unit Normal
Partial Discharge
CyHy/CyHy Low energy discharge
CHy/H, High Energy discharge
CoHy/CyHg Thermal Fault, < 300 °C

Thermal Fault, 300 °C to 700 °C
Thermal Fault, > 700 °C

The reading of the databank is in accordance with IEC 60599:2022 standard recom-
mended practice. The latter is widely adopted in the transformer manufacturing industry
as a guiding principle in the discrimination of various faults. Table 3 tabularizes the IEC
60599:2022 standard recommendation utilized through the development of the proposed
MLANN to understand various fault classes in an oil-submerged transformer. It entails
three fundamental combustible gas ratios (FCGR) matching the recommended fault identi-
fication. When FCGRs surpass permissible boundaries, inchoate faults can be anticipated
in the transformer.

Table 3. IEC 60599:2022 standard fault class.

C,H,/CoH, CH,/H, C,H,/C>Hg Fault Class
<0.1 <0.1 <02 Partial Discharge (PD)
> 0.1 01t00.5 > 0.1 Low energy discharge (LED)

0.6 t02.5 0.1to1 > 2 High Energy discharge (HED)
<0.1 >1 <1 Thermal Fault, < 300 °C (T1)
<01 >1 1to4 Thermal Fault, 300 °C to 700 °C (T2)
<01 >1 >4 Thermal Fault, > 700 °C (T3)

The preprocessing stages are implemented to certify network efficacy. The preprocess-
ing of the gas inputs enmeshes regularization and deregulation of the databank where the
gas inputs and targeted response ratios are scaled to a particular range. The regularization
is crucial since the concentration level of distinctive gases varies significantly which can
potentially ensue in sluggish convergence of the proposed MLANN learning. In the current
work, the databank was standardized to a range of —1 to 1.

It is worth noting that based on the above criterion, the gas ratios in practice may
provide different combinations that the IEC 60599:2022 standard ratios may not be able to
interpret. This can be a challenge to identify faults that fall outside the scope of this method.
The application of ANN furnishes an opportunity to gain new insights thereof.
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1. C2H2/C2H4
2. CH2/H2

3. C2H4/C2H6

2.2. Proposed MLANN Model

In this work, MLANN models are developed using the MATLAB R2018a software
platform. The multilayer feed-forward backpropagation is elected as the network prediction
algorithm in view of the fact that it is the most sought-after ANN algorithm and pertinent
to the current study.

The backpropagation algorithm implements learning on a multilayer feed-forward
ANN. It repetitiously learns a set of weights for prognostication of the class label of tuples.
A multilayer feed-forward neural network comprises an input layer, hidden layers, and an
output layer. The layers applied in the implementation have a total number of four viz. the
input layers, hidden layer 1, hidden layer 2, and an output layer. The number of neurons in
the input and output layers are 3 and 1, respectively. Consequently, the number of neurons
applied in hidden layers 1 and 2 is 10 and 5, respectively.

In Figure 2, the function block diagram on the proposed MLANN is illustrated for the
prognosis of various inchoate transformer faults.

Input Output 4 ﬂUnitNormal \

i 2. Partial Discharge

MLANN 3. Low energy discharge

L| 4. High Energy discharge

A

Targeted response 5. Thermal Fault, < 300° C
(Fault classes)

6. Thermal Fault, 300° C to 700° C

!Thermal Fault, > 700° C J

Figure 2. Function block diagram on the proposed MLANN.

The proposed MLANN generate a network response appertaining to gas inputs
and targeted fault class output ingested to the network. The development of an ANN
model incorporates the selection of the best-performing network training algorithms and
parameters. In this work, they are established inductively based on proficiency and network
performance.

2.2.1. Training Phase

During the training phase, the network is ingested with data composed of three
combustible gas ratios and the transformer state as the focused output. The training phase
is the most critical activity in establishing a neural network. Numerous factors can sway
the performance of a neural network including network type, training function, adaption
learning function, performance function, number of layers, etc. At this stage, the control
parameters are diverging inductively. Tribulations that may arise in the course of network
training will be underfitting and overfitting. In the case of overfitting, I will ensue when
it has the proficiency to learn the network however could not generalize to the different
datasets ingested. Primordial stopping is employed in the augmented MLANN as one of
the techniques to circumvent overfitting. The dataset for the training phase is apportioned
into three datasets viz. training dataset, validation dataset, and testing dataset.

The training dataset is utilized to calculate the gradient and modernize the network’s
biases and weight whereas the validation dataset is employed to keep under surveillance
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the state of the training phase. In Figure 3, a comprehensive flowchart of the proposed
MLANN model is shown. Largely, the practice of establishing a network is apportioned
into two central steps viz. the training and testing stage.

Load DGA databank

1

Specify Inputs and Outputs

v

Standardize DGA batabank

Convergence?

Yes

Elect best network

R close to 1?

Yes

No

Figure 3. Proposed MLANN flowchart.

The corroboration and training errors customarily decrease at the initial phase of the
training stage; nevertheless, when overfitting ensues, the validation error will proliferate.

2.2.2. Testing Phase

In the course of the testing phase, a different dataset is utilized to assess the per-
formance of the trained network. Linear regression analysis is generally employed as
a tool to evaluate the performance of a network. The regression correlation coefficient,
R, is calculated to examine the relationship between the network input dataset and the
targeted outputs. A thoroughly trained network carries off values of R in the vicinity of 1,
exhibiting a sturdy association between network input and targeted output. In the light of
the proposed network in the current work, the established network is examined by means
of the value of R. The optimum network is elected predicated on the closest value to 1.

3. Results
3.1. Network Performance

The developed MLANN was trained using a databank comprised of 120 transformer
oil samples where 80 of the samples are utilized for the training stage and 40 samples were
utilized for the testing phase. The training function employed in the training network is
the Levenberg-Marquardt backpropagation (TRAINLM). TRAINLM is in many cases the
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quickest backpropagation algorithm in the MATLAB toolbox and is largely suggested as a
forerunner supervised algorithm, notwithstanding that it does necessitate more storage
compared with other algorithms. Figure 4 shows the training phase performance of the
proposed MLANN.

10 F T T T T T T T T T 3

E Train 3
Validation |]
Test

Mean Squared Error (mse)

T A .

10

T

0 2 4 6 8 10 12 14 16 18 20
20 Epochs

Figure 4. Training Phase performance of the proposed MLANN.

It can be observed that the testing dataset error and the validation dataset error have
comparable features and there is no indication of overfitting. It can be iterated that the
early stopping technique (EST) was used in the network to increase simplification.

EST is a normalization method for deep neural networks that halts the training process
once the parameter updates at no time start to produce enhancement on a validation dataset.
Fundamentally, the current optimal parameters are stored and updated during training,
and when parameter updates in no case produce an enhancement, the training is stopped
and employs the last optimal parameters. EST regularizes by constraining the optimization
process to a reduced volume of parameter space. The effect of EST before and after can
be illustrated in Figure 5. It can be observed that before the EST is applied, the error is no
longer decreasing with the number of iterations. A point after the EST can be observed to
yield an increasing error in the validation set.

Error

Validation set

i
)
E Training set
0 Early Number of
stopping iterations

Figure 5. Principle of early stopping on proposed MLANN.
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Figure 6 shows the validation check performance by the validation dataset. After
the validation error is initiated to increase, the network ends the training procedure even
though the goal is hitherto attained. The network has the capability to simplify optimally.
It will end the training procedure at the optimal simplification capability.

Validation Checks = 6, at epoch 98

T T T T T T T T

*
* *-
* * *
* * * *
* e ® ¢ 4 6 6 6 60 o0 * * *
AAAAAA FOTHE POUDUOIDT I PUP DO PEPYEPEDTS STPODEDTES DUTTOTUITE POUTIDTOUY FODOU akaa
\adAlAd VYW VvV VYV W AAAR AR A A A ALL ALl o b Al dadddddsddddadddddodddd
1 20 30 40 50 60 70 80 a0
98 Epochs

Figure 6. Training validation checks of proposed MLANN.

During the testing phase, the performance of the trained MLANN was therefore tested
by ingesting the testing dataset. Figure 7 illustrates the regression model of MLANN at the
testing stage. It can be observed that the correlation coefficient is 0.95495.

Training: R=0.95495

9 .
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Target

Figure 7. Regression outcomes in the training phase of the proposed MLANN.

Additionally, Figure 8 shows the performance of the proposed MLANN during the
validation phase. It can be observed that the correlation coefficient is 0.99989.
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Validation: R=0.99989
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Figure 8. Regression outcomes in the validation phase of the proposed MLANN.

Consequently, Figure 9 shows the performance of the proposed MLANN during the
testing phase. It can be observed that the correlation coefficient is 0.90087.

Test: R=0.90087
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Figure 9. Regression outcomes in the testing phase of the proposed MLANN.

Finally, Figure 10 shows the overall performance of the proposed MLANN. It can be
observed that the correlation coefficient is 0.94916.
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All: R=0.94916

w®

~

2]

o>

Output ~=0.88*Target + 0.76
w (5]

N

-t
o
2

Target

Figure 10. Overall regression outcomes of the proposed MLANN.

The regression plot in Figures 7-10 indicates how close the output response of the
developed model is compared to the actual target responses.

After inductively training and testing the neural network, the best-performing network
was elected. The optimum neural network that can be utilized to envisage inchoate fault in
oil-submerged transformers is a two-layer feed-forward backpropagation network with
structure [1,6,8] with a hyperbolic tangent sigmoid transfer function (Tansig), Log-sigmoid
transfer function (logsig), and linear transfer function (purelin) by means of the Levenberg—
Marquardt training algorithm.

3.2. Benchmarking of the Proposed Method with K-Nearest Neighbors (kNN)

In the previous subsection, the study presented an extremely efficacious pre-processing
approach to classifying incipient transformer faults based on the DGA dataset. The prepro-
cessing approach was highly efficacious in stopping the training process once the parameter
updates at no time started to produce enhancements on a validation dataset. The degree of
accuracy in classification and sensitivity parameters is also first-class. The performance of
the DGA input data is then now evaluated by benchmarking the proposed MLANN and
kNN classifier.

By adopting the DGA dataset considered for the proposed MLANN, the classification
accuracy compared to kNN was carried out. MLANN technique yield 99.98% accuracy,
when compared to the kNN technique, which yields 95.05%. The enhanced accuracy
could be enumerated since the proposed MLANN technique enhances the learning rates,
by updating the weights, by way of keeping to a minimum the misclassification error.
Additionally, the sigmoid activation function matches a smooth surface, which supports
classification accuracy.

3.3. Experimental Data

In this subsection, the experimental data of 10 transformers are introduced to evaluate
the prediction accuracy of the proposed MLANN-IEC. The transformer is impregnated
with mineral oil and ranges from 15 MVA to 40 MVA with a high voltage from 11 kV to 132
kV on the high voltage side. The data was furnished by a local South African independent
power utility and a comparison of the actual, MLANN-IEC with early stopping effect and
the classical IEC method is tabulated in Table 4.
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Table 4. Transformer case studies.

Case No. C,H,/CoH, CHy/H, C,H,/CHy  Actual Fault ~ MLANN-IEC IEC kNN
1 0.022 2.685 0.476 PD PD ND LED
2 0.001 0.077 5.919 LED LED LED LED
3 0.158 0.704 6.989 HED HED HED HED
4 6.236 x 1074 13.866 5.384 T3 T3 T3 T3
5 3.611 0.252 0.72 LED LED ND LED
6 4137 0.277 4.846 LED LED LED LED
7 0.112 0.092 0.971 HED HED HED HED
8 0.096 6.662 0.135 T2 T2 T2 T1
9 0.111 39 0.25 NF NF ND LED
10 0.002 7.274 0.067 T2 T2 T2 T2
11 0.016 0.142 1218 T1 T1 T1 T1
12 0.001 0.094 4.721 LED LED LED LED

ND—Not Detectable, NF—No-Fault.

Based on the experimental results above, it can be observed that case numbers 1, 5,
and 9 were not detectable by the classical IEC method because of the deficits the method
has when the gas ratio codes are not described on the standard criterion. The results in
a “ND” condition of the transformer oil samples. The proposed network has, however,
maintained consistency with the actual transformer diagnosis. In practice, the prediction
of the neural networks may differ due to the data size, minimal MSE, and optimal early
stopping of the network that furnishes a high correlation of the training, validation, testing,
and the overall network performance.

In Table 5, a comparison between the proposed hybrid method and other methods has
been tabulated to highlight the merits of the proposed approach. The number of samples
of all fault types has been presented including the correct and incorrect diagnosis of each
method. The accuracy of the respective method in diagnosing a specific fault type and
overall accuracy has been provided.

Table 5. Case study accuracy analysis.

hod No. of Correct Diagnosis Incorrect Diagnosis Accuracy
Metho Samples Proposed IEC kNN Proposed IEC kNN Proposed  IEC kNN
PD 1 1 0 0 0 0 0 100% 0% 0%
LED 4 4 3 4 0 1 0 100% 75% 100%
HED 2 2 2 2 0 0 0 100% 100% 100%
T3 1 1 1 1 0 0 0 100% 100% 100%
T2 2 2 2 1 0 0 1 100% 100% 50%
T1 1 1 1 1 0 0 0 100% 100% 100%
NF 1 1 0 0 0 1 1 100% 50% 50%
Total 12 12 9 9 0 2 3 100% 75% 71.42%

NB: Proposed—MLANN-IEC.

The performance of MLANN-IEC, IEC, and kNN in diagnosing transformer faults of 12
samples is contrasted by utilizing the same gas ratio data and the corresponding percentage
accuracy is tabulated in Table 5. The proposed algorithm is proposed to circumvent
the limitations of the IEC ratio method. This shows that the merit of choosing ANN is
corroborated by adopting kNN for comparison with another artificial intelligence technique.
It is evident from Table 5 that the performance of the proposed hybrid method is superior
to the IEC and kNN methods.

4. Conclusions

In this work, an artificial neural network (ANN) model based on the multilayer feed-
forward back-propagation has been designed to prognosticate inchoate fault in a mineral
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oil-submerged transformer designed according to a South African technical specification
using three gas ratios of dissolved gases premised on the IEC 60599:2022 standard. A fit
and simplified network are established by employing the early stopping technique. The
vigour of the established network is corroborated by testing the network by employing a
new dataset comprising 30 transformer oil samples in the testing phase. Henceforth, the
prognostication of the inchoate fault of a transformer can be efficaciously carried out by
employing a developed network. The proposed algorithm can be pragmatic to identify
inchoate faults in transformers where the laboratory results of the oil samples have been
attained by the manufacturer.

The proposed hybrid algorithm is a critical approach for addressing the shortcomings
of the IEC gas ration method and developing an efficient fault diagnosis system. The seven
fault types which are used in the IEC 60599:2022 standard borne in mind and established
that the degree of accuracy of fault diagnosis is not optimal as a result of the restrictions
imposed by the gas ratio codes which results in “not detectable” in some case studies.
Nevertheless, after applying the proposed hybrid diagnosis algorithm the diagnosis is on
par with the actual fault diagnosis.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank local manufacturers and utilities for their
contribution to the database.

Conflicts of Interest: The author declares no conflict of interest.

References

1.  Gouda, O.E.; El-Hoshy, S.H.; Ghoneim, S.5.M. Enhancing the Diagnostic Accuracy of DGA Techniques Based on IEC-TC10 and
Related Databases. IEEE Access 2021, 9, 118031-118041. [CrossRef]

2. Wang, L,; Littler, T.; Liu, X. Gaussian Process Multi-Class Classification for Transformer Fault Diagnosis Using Dissolved Gas
Analysis. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1703-1712. [CrossRef]

3. Li, S.; Wu, G.; Gao, B.; Hao, C.; Xin, D.; Yin, X. Interpretation of DGA for transformer fault diagnosis with complementary
SaE-ELM and arctangent transform. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 586-595. [CrossRef]

4. Rediansyah, D.; Prasojo, R.A.; Suwarno; Abu-Siada, A. Artificial Intelligence-Based Power Transformer Health Index for Handling
Data Uncertainty. IEEE Access 2021, 9, 150637-150648. [CrossRef]

5. Thango, B.A.; Jordaan, J.A. Stray Gassing of Transformer Oil in Distributed Solar Photovoltaic (DSPV) Systems. In Proceedings of
the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 28 September-1 October 2020; pp. 484-488.
[CrossRef]

6. Cui, H; Yang, L.; Li, S.; Qu, G.; Wang, H.; Abu-Siada, A.; Islam, S. Impact of Load Ramping on Power Transformer Dissolved Gas
Analysis. IEEE Access 2019, 7, 170343-170351. [CrossRef]

7. Emara, M.M,; Peppas, G.D.; Gonos, LF. Two Graphical Shapes Based on DGA for Power Transformer Fault Types Discrimination.
IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 981-987. [CrossRef]

8.  Rao, UM,; Fofana, I; Rajesh, K.N.V.P.S.; Picher, P. Identification and Application of Machine Learning Algorithms for Transformer
Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1828-1835. [CrossRef]

9.  Badawi, M,; Ibrahim, S.A.; Mansour, D.-E.A.; El-Faraskoury, A.A.; Ward, S.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F.
Reliable Estimation for Health Index of Transformer Oil Based on Novel Combined Predictive Maintenance Techniques. IEEE
Access 2022, 10, 25954-25972. [CrossRef]

10. Faiz, J.; Soleimani, M. Assessment of computational intelligence and conventional dissolved gas analysis methods for transformer
fault diagnosis. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1798-1806. [CrossRef]

11.  IEC 60599:2022; Mineral Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases
Analysis. 2022. Available online: https://webstore.iec.ch/preview /info_iec60599%7Bed4.0.CMV%7Den.pdf (accessed on 14
August 2022).

12. Ma, H,; Saha, TK.; Ekanayake, C.; Martin, D. Smart Transformer for Smart Grid—Intelligent Framework and Techniques for

Power Transformer Asset Management. IEEE Trans. Smart Grid 2015, 6, 1026-1034. [CrossRef]


http://doi.org/10.1109/ACCESS.2021.3107332
http://doi.org/10.1109/TDEI.2021.009470
http://doi.org/10.1109/TDEI.2015.005410
http://doi.org/10.1109/ACCESS.2021.3125379
http://doi.org/10.1109/ENERGYCon48941.2020.9236522
http://doi.org/10.1109/ACCESS.2019.2926435
http://doi.org/10.1109/TDEI.2021.009415
http://doi.org/10.1109/TDEI.2021.009770
http://doi.org/10.1109/ACCESS.2022.3156102
http://doi.org/10.1109/TDEI.2018.007191
https://webstore.iec.ch/preview/info_iec60599%7Bed4.0.CMV%7Den.pdf
http://doi.org/10.1109/TSG.2014.2384501

Mach. Learn. Knowl. Extr. 2022, 4 851

13.

14.

15.

16.

17.

18.

Patekar, K.D.; Chaudhry, B. DGA analysis of transformer using Artificial neutral network to improve reliability in Power
Transformers. In Proceedings of the 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical
Systems (CATCON), Chennai, India, 21-23 November 2019; pp. 1-5. [CrossRef]

Soto, A.R.E,; Lima, S.L.; Saavedra, O.R. Incipient Fault Diagnosis in Power Transformers by DGA using a Machine Learning
ANN—Mean Shift Approach. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and
Computing (ROPEC), Ixtapa, Mexico, 13-15 November 2019; pp. 1-6. [CrossRef]

Muthi, A.; Sumarto, S.; Saputra, W.S. Power Transformer Interruption Analysis Based on Dissolved Gas Analysis (DGA) using
Artificial Neural Network. IOP Conf. Series: Mater. Sci. Eng. 2018, 384, 012073. [CrossRef]

Equbal, D.; Khan, S.A ; Islam, T. Transformer incipient fault diagnosis on the basis of energy-weighted DGA using an artificial
neural network. Turk. |. Electr. Eng. Comput. Sci. 2018, 26, 77-88. [CrossRef]

Thosar, P.S. A Comparative Analysis of DGA Methods for the Incipient Fault Diagnosis in Power Transformer Using ANN
Approach. Int. J. Sci. Eng. Res. 2015, 6, 387.

Hussein, A.R.; Dakhil, A.M.; Rashed, ].R.; Othman, M.F. Intelligent Expert System for Diagnosing Faults and Assessing Quality of
Power Transformer Insulation Oil by DGA Method. Misan |. Eng. Sci. 2022, 1, 47-57.


http://doi.org/10.1109/catcon47128.2019.pid6178475
http://doi.org/10.1109/ropec48299.2019.9057143
http://doi.org/10.1088/1757-899X/384/1/012073
http://doi.org/10.3906/elk-1704-229

	Introduction 
	Materials and Methods 
	Data Assemblage and Preprocessing 
	Proposed MLANN Model 
	Training Phase 
	Testing Phase 


	Results 
	Network Performance 
	Benchmarking of the Proposed Method with K-Nearest Neighbors (kNN) 
	Experimental Data 

	Conclusions 
	References

