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Abstract: The demands for machine learning and knowledge extraction methods have been booming
due to the unprecedented surge in data volume and data quality. Nevertheless, challenges arise amid
the emerging data complexity as significant chunks of information and knowledge lie within the
non-ordinal realm of data. To address the challenges, researchers developed considerable machine
learning and knowledge extraction methods regarding various domain-specific challenges. To
characterize and extract information from non-ordinal data, all the developed methods pointed to the
subject of Information Theory, established following Shannon’s landmark paper in 1948. This article
reviews recent developments in entropic statistics, including estimation of Shannon’s entropy and its
functionals (such as mutual information and Kullback–Leibler divergence), concepts of entropic basis,
generalized Shannon’s entropy (and its functionals), and their estimations and potential applications
in machine learning and knowledge extraction. With the knowledge of recent development in entropic
statistics, researchers can customize existing machine learning and knowledge extraction methods
for better performance or develop new approaches to address emerging domain-specific challenges.

Keywords: discrete data; non-ordinal data; non-parametric estimation; entropic statistics; information-
theoretic quantity

1. Introduction of Entropic Statistics

Entropic statistics is a collection of statistical procedures that characterize information
from non-ordinal spaces with Shannon’s entropy and its generalized functionals. Such
procedures includes but not limited to statistical methods involving Shannon’s entropy
(entropy) and Mutual Information (MI) [1], Kullback–Leibler divergence (KL) [2], entropic
basis and diversity index [3,4], and Generalized Shannon’s Entropy (GSE) and General-
ized Mutual Information (GMI) [5]. The field of entropic statistics is at the intersection
of information theory and statistics. Entropic statistics quantities are also referred as
information-theoretic quantities [6,7].

There are two general data types—ordinal and non-ordinal (nominal). Ordinal data
are data with an inherent numerical scale. For example, {52 F, 50 F, 49 F, 53 F}—a set of
daily high temperatures at Nuuk, Greenland—is ordinal. Ordinal data are generated from
random variables (which map outcomes from sample space to the real numbers). For
ordinal data, classical concepts, such as moments (mean, variance, covariance, etc.) and
characteristics functions, are powerful tools to induce various statistical methods, including
but not limited to regression analysis [8] and analysis of variance (ANOVA) [9].

Non-ordinal data are data without an inherent numerical scale. For example, {andro-
gen receptor, clock circadian regulator, epidermal growth factor, Werner syndrome RecQ
helicase-like}—a subset of human genes names—is a set of data without inherent numerical
scale. Non-ordinal data are generated from random elements (which map outcomes from
sample space to alphabet). Due to the absence of inherent numerical scale, the concept of
random variable is undefined according to its definition. Therefore, statistical concepts
involving ordinal scale (e.g., mean, variance, covariance, and characteristic functions) no
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longer exist. For example, consider the mentioned data of human genes names; what is the
mean or variance of the data? Such questions cannot be answered because the concepts of
mean and variance do not exist, while in practice, researchers need to measure the level
of dependence in non-ordinal joint space between gene types and genetic phenotype to
study the gene’s functionalities. One would use covariance and its generated methods
in ordinal data. However, the concept of covariance no longer exists in such non-ordinal
space. Furthermore, all well-established statistical methods that require ordinal scale (e.g.,
regression and ANOVA) cannot be directly applied anymore.

Non-ordinal data have several variant names, such as categorical data, qualitative data,
and nominal data. A common situation is a dataset is mixed with ordinal and non-ordinal
data. On such a dataset, a common practice is to introduce coded (dummy) variables [10].
However, introducing dummy variables is equivalent to separating the mixed dataset
according to the classes in non-ordinal variables to induce multiple purely ordinal subsets
and then utilizing ordinal methods (such as regression analysis) case-by-case on the induced
subsets. Unfortunately, this approach sometimes could be impractical because of the curse
of dimensionality, particularly when there are too many categorical variables or when some
categorical variable has too many categories (classes).

With the challenges from non-ordinal data, entropic statistics methods focus on un-
derlying probability distribution instead of associated labels. As a result, all the entropic
statistical quantities are location (permutation) invariant. The main strengths of entropic
statistics lie within non-ordinal alphabets, or a mixture data space that significant bulk
of information lies within the non-ordinal sub-space. For ordinal spaces, although ordi-
nal variables can be binned as categorical variables, the strength of entropic statistics are
generally incapable of overcoming the loss of ordinal information during discretization.
Therefore, ordinal statistical methods are preferred when they are capable of the needs. In
summary, potential scenarios for entropic statistics are:

1. The data lie within non-ordinal space.
2. The data are a mixture of ordinal and non-ordinal spaces, and the non-ordinal space

is expected to carry unneglectable bulk of information.
3. The data lie within ordinal space, yet the performance of ordinal statistics methods

fails to meet the expectation.

The following notations are used throughout the article. They are listed here for
convenience.

1. Let X = {xi; i = 1, 2, · · · } and Y = {yj; j = 1, 2, · · · } be two countable alphabets with
cardinalities K1 ≤ ∞ and K2 ≤ ∞, respectively.

2. Let the Cartesian product X ×Y be with a joint probability distribution pXY = {pi,j}.
3. Let the two marginal distributions be respectively denoted by pX = {pi,·} and

pY = {p·,j} where pi,· = ∑j pi,j and p·,j = ∑i pi,j; hence X is a variable on X with
distribution pX and Y is a variable on Y with distribution pY.

4. For uni-variate situations, K stands for K1, and p stands for pX .
5. Let {X1, X2, · · · , Xn} be an independent and identically distributed (i.i.d.) random

sample of size n from X . Let Cr = ∑n
i=1 1[Xi = lr]; hence Cr is the count of occurrence

of letter lr in a sample. Let p̂ = { p̂1, p̂2, · · · } = {C1/n, C2/n, · · · }. p̂ is called the
plug-in estimator of p. Similarly, one can construct the plug-in estimators for pY and
pXY and name them as p̂Y and p̂XY, respectively.

6. For any two functions f and g taking values in (0, ∞) with limn→∞ f (n) = limn→∞
g(n) = 0, the notation f (n) = O(g(n)) means

0 < lim inf
n→∞

g(n)
f (n)

≤ lim sup
n→∞

g(n)
f (n)

< ∞.
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7. For any two functions f and g taking values in (0, ∞), the notation f (n) = O(g(n))
means

lim
n→∞

f (n)
g(n)

= 0.

Many concepts discussed in the following sections have continuous counterparts under
the same concept name. The results reviewed in this article focus on non-ordinal data space.
Therefore, some notable results on ordinal space are not reviewed (for example, [11–13]). In
Section 2, estimation on some classic entropic statistics quantities are discussed. Section 3 re-
views estimation results and properties for some recently developed information-theoretic
quantities. Entropic statistics’ application potentials in machine learning (ML) and knowl-
edge extraction are discussed in Section 4. Finally, some remarks are given in Section 5.

2. Classic Entropic Statistics Quantities and Estimation

This section reviews three classic entropic concepts and their estimations, including
Shannon’s entropy (Section 2.1.1) and mutual information (Section 2.1.2), and Kullback–
Leibler divergence (Section 2.2). These three concepts are among the earliest entropic
concepts and have been intensively studied over the past decades. Enormous amounts
of statistical methods and computational algorithms are designed based on these three
concepts [14–16]. Nevertheless, most of those methods and algorithms use naive plug-in
estimation, which could be improved for a smaller estimation bias and better performance.
For this reason, this section reviews several notable estimation methods as a reference.
Some asymptotic properties are also presented as a reference. The asymptotic properties
provide a theoretical guarantee for the corresponding estimators with statistical procedures
such as hypothesis testing and confidence intervals.

2.1. Shannon’s Entropy and Mutual Information
2.1.1. Shannon’s Entropy

Established by Shannon in his landmark paper [1], the concept of entropy is the first
and still the most important building brick in characterizing information from non-ordinal
spaces. Many of the established information-theoretic quantities are linear functions of
entropy. Shannon’s entropy, H, is defined as

H = −∑
i

pi ln pi.

Some remarkable properties of entropy are:

Property 1 (Entropy).
1. H is a measurement of dispersion. It is always non-negative by definition.
2. H = 0 if and only if the probability of a letter l in X is 1; hence no dispersion.
3. For a finite alphabet with cardinality K, H is bounded from the above by ln K, and the

maximum is achieved when its distribution is uniform (pi = 1/K, i = 1, 2, · · · , K); hence
maximum dispersion.

4. For a countably infinite alphabet, H may not exist (See Example 4 in Section 3).

Entropy Estimation-The Plug-in Estimator

Estimation of entropy has been a core research topic for decades. Due to the curse of
“High Dimensionality” and “Discrete and Non-ordinal Nature”, entropy estimation is a
technically difficult problem. Advances in this area have been slow to come. The plug-in
estimator of entropy (also known as empirical entropy estimator), Ĥ, defined as

Ĥ = −∑
i

p̂i ln p̂i,
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is inarguably the most naive entropy estimator. Ĥ has been studied thoroughly in recent
decades. Ref. [17] provided the asymptotic properties for Ĥ when K is finite, namely,

Theorem 1 (Asymptotic property of Ĥ when K is finite).

√
n
(

Ĥ − H
)
/σ̂

D−→ N(0, 1),

where σ̂ =
√

∑i p̂i ln2 p̂i − Ĥ2.

Ref. [18] derived the bias of Ĥ for finite K

E(Ĥ)− H = −K− 1
2n

+
1

12n2

(
1−

K

∑
i=1

1
pi

)
+O

(
n−3

)
. (1)

Ref. [19] derived the asymptotic properties for Ĥ when K is countable infinite. Namely,

Theorem 2 (Asymptotic property of Ĥ when K is countable infinite). For any nonuniform
distribution {pi; i ≥ 1} satisfying ∑i

(
pi ln2 pi

)
< ∞, if there exists an integer-valued function

K(n) such that, as n→ ∞,

1. K(n)→ ∞,
2. K(n) = O(

√
n), and

3.
√

n ∑i≥K(n) pi ln pi → 0;

then √
n
(

Ĥ − H
)
/σ̂

D−→ N(0, 1),

where σ̂ =
√

∑k p̂k ln2 p̂k − Ĥ2.

As discussed in [19], the conditions with K(n) hold if pi ∼ 1/
(

i2 ln2 i
)

; the conditions

do not hold if pi ∼ 1/
(
i2 ln i

)
.

Entropy Estimation-The Miller–Madow and Jackknife Estimators

ĤMM [20] and ĤJK [21] are two notable entropy estimators with bias adjustments.
Namely,

ĤMM = Ĥ +
K̂− 1

2n
, (2)

where K̂ is the observed sample cardinality. For finite K, the bias of ĤMM is

E(ĤMM)− H = O
(

n−2
)

.

ĤJK is calculated in three steps:

1. for each i ∈ {1, 2, . . . , n}, construct Ĥ(i), which is a plug-in estimator based on a
sub-sample of size n− 1 obtained by leaving the ith observation out;

2. obtain Ĥ(i) = nĤ − (n− 1)Ĥ(i) for i = 1, · · · , n; and then
3. compute the jackknife estimator

ĤJK =
∑n

i=1 Ĥ(i)

n
. (3)
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Equivalently, (3) can be written as

ĤJK = nĤ − (n− 1)
∑n

i=1 Ĥ(i)

n
.

When K < ∞, it can be shown that the bias of ĤJK is

E
(

ĤJK
)
− H = O

(
n−2

)
.

Asymptotic properties for ĤMM and ĤJK were derived in [22]. ĤMM and ĤJK reduce the
rate of bias to a higher order power-decaying. Ref. [23] proved the convergence of Ĥ could
be arbitrarily slow. Ref. [24] proved that for finite K, an unbiased estimator for entropy
does not exist. As a result, it is only possible to reduce the bias to a smaller extent.

Entropy Estimation-The Z-Estimator

Recent studies on entropy estimation have reduced the bias to exponentially decaying.
For example,

Ĥz =
n−1

∑
v=1

{
1
v

n1+v[n− (1 + v)]!
n! ∑

i

[
p̂i

v−1

∏
j=0

(
1− p̂i −

j
n

)]}

is the entropy estimator provided in [25] with an exponentially decaying bias (Interested
readers may refer to [26] for discussion on an entropy estimator that is algebraically
equivalent to Ĥz). Ref. [27] derived the asymptotic properties for Ĥz . Namely,

Theorem 3 (Asymptotic property of Ĥz when K is finite).

√
n
(

Ĥz − H
)
/σ̂

D−→ N(0, 1),

where σ̂ =
√

∑i p̂i ln2 p̂i − Ĥ2.

The following asymptotic properties for Ĥz when K is countable infinite were provided
in [28].

Theorem 4 (Asymptotic property of Ĥz when K is countable infinite). For a nonuniform
distribution {pi; i ≥ 1} ∈ P satisfying ∑i

(
pi ln2 pi

)
< ∞, if there exists an integer-valued

function K(n) such that, as n→ ∞,

1. K(n)→ ∞,
2. K(n) = o(

√
n/ ln n), and

3.
√

n ∑i≥K(n) pi ln pi → 0;

then √
n
(

Ĥz − H
)
/σ̂

D−→ N(0, 1),

where σ̂ =
√

Ĥ2z − Ĥ2
z and Ĥ2z = ∑i

{
p̂i ∑

n−np̂i
v=1

[(
∑v−1

s=1
1

s(v−s)

)
∏v

j=1

(
1− np̂i−1

n−j

)]}
.

The sufficient condition given in Theorem 4 for the normality of Ĥz is slightly more
restrictive than that of the plug-in estimator Ĥ as stated in Theorem 2, and consequently
supports a smaller class of distributions. The sufficient conditions of Theorem 4 still holds
for pi = Cλi−λ where λ > 2, but not for pi = C/

(
i2 ln2 i

)
, which satisfies the sufficient

conditions of Theorem 2. However, it is discussed in [28] that simulation results indicate
that the asymptotic normality of Ĥz in Theorem 4 may still hold for pi = C/

(
i2 ln2 i

)
for

i ≥ 1 though not covered by the sufficient condition.
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Remarks

Another perspective of entropy estimation is to combine Ĥz and ĤJK. Namely, one
could use Ĥz in place of each Ĥ(i) in (3). Interested readers may refer to [25] where a
single layer combination of Ĥz and ĤJK was discussed. In addition, ref. [29] presented a
non-parametric entropy estimator (Ĥchao) when there are unseen species in the sample.
Ĥchao has a smaller sample root mean squared error than ĤMM and a smaller bias than
ĤJK, according to the simulation study. Unfortunately, the bias decaying rate for Ĥchao was
not theoretically offered. Based on their simulation study of Ĥchao, it seems that the bias
decaying rate is O(1/n2), which is slower than Ĥz. Asymptotic properties of Ĥchao are not
developed in the literature.

There are several parametric entropy estimators for specific interests. For example,
Dirichlet prior Bayesian estimator of entropy [30,31] and shrinkage estimator of entropy [32].
This review article focuses on results from non-parametric estimation methods. To conclude
this section, a small scale comparison between Ĥ and Ĥz from [33] is provided in Table 1.

Table 1. Estimation comparison between Ĥ and Ĥz via simulation. In the simulation, the real
underlying distribution is pi = i/2001000, where i = 1, 2, . . . , 2000 (i.e., a triangle distribution).
Under this setting, the true entropy H = 7.408005. To compare the two estimators, 10,000 samples
were independently generated following the triangle distribution for each of the six sample size
settings in the table (i.e., we generate 60,000 random samples in total). The average values of Ĥ and
Ĥz under different sample sizes are summarized and reported in the table. The simulation shows
that Ĥ would consistently underestimate H more than Ĥz. The underestimation is more severe when
the sample size is smaller.

n 100 300 500 1000 1500 2000

avg. of Ĥ 4.56 5.57 6.00 6.51 6.75 6.89

avg. of Ĥz 5.11 6.09 6.49 6.92 7.11 7.21

2.1.2. Mutual Information

In the same paper defining Shannon’s entropy, the concept of Mutual Information (MI)
was also described [1]. Shannon’s entropies for X , Y , and X ×Y are defined as

H(X) = −∑
i

pi,· ln pi,·,

H(Y) = −∑
j

p·,j ln p·,j,

H(X, Y) = −∑
i

∑
j

pi,j ln pi,j,

and MI between X and Y is defined as

MI(X, Y) = H(X) + H(Y)− H(X, Y).

Some notable properties of MI are:

Property 2 (Mutual Information).

1. MI is a measurement of dependence. It is always non-negative by definition.
2. MI = 0 if and only if the two marginals are independent.
3. MI > 0 if and only if the two marginals are dependent.
4. A non-zero MI does not always indicate the degree (level) of dependence.
5. MI may not exist when the cardinality of joint space is countably infinite.
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MI Estimation-The Plug-in Estimator and Z-Estimator

Since MI is a function of entropy, estimation of MI is essentially entropy estimation.
Let {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} be an i.i.d. random sample of size n from the joint
alphabet (X ,Y). Based on the sample, plug-in estimators of the component entropy of MI
can be obtained. Namely,

Ĥ(X) = −∑
i

p̂i,· ln p̂i,·,

Ĥ(Y) = −∑
j

p̂·,j ln p̂·,j,

Ĥ(X, Y) = −∑
i

∑
j

p̂i,j ln p̂i,j,

where p̂i,· is the plug-in estimator for pi,·, p̂·,j is the plug-in estimator for p·,j, and p̂i,j is the
plug-in estimator for pi,j. Then the plug-in estimator of mutual information between X and
Y is defined as

M̂I(X, Y) = Ĥ(X) + Ĥ(Y)− Ĥ(X, Y).

With various entropy estimation methods, one could estimate MI by replacing Ĥ with
a different entropy estimator. For example, using the entropy estimator with the fastest
bias decaying rate, Ĥz, the resulting estimator (M̂Iz) also has a bias with an exponentially
decaying rate [34], namely,

M̂Iz = Ĥz(X) + Ĥz(Y)− Ĥz(X, Y).

The asymptotic properties for M̂I-s (M̂I and M̂Iz) shall be discussed under two
situations: (1) MI = 0, and (2) MI > 0.

The first situation of MI = 0 is used for testing independence. For example, in feature
selection, irrelevant (to the outcome) non-ordinal features shall be dropped, and a feature is
irrelevant if it is independent of the outcome. Let A be the potential irrelevant feature and B
be the outcome; hence one must test H0 : MI(A, B) = 0 against Ha : MI(A, B) > 0. To test
such a hypothesis, one needs the asymptotic properties of M̂I-s under the null hypothesis:
MI = 0, derived in [35]. Namely,

Theorem 5 (Asymptotic properties of M̂I and M̂Iz when MI = 0). Provided that MI = 0,

2nM̂I D−→ χ2
(K1−1)(K2−1)

and
2nM̂Iz + (K1 − 1)(K2 − 1) D−→ χ2

(K1−1)(K2−1),

where n is the sample size and χ2
(K1−1)(K2−1) stands for chi-squared distribution with degrees of

freedom (K1 − 1)(K2 − 1).

For the second situation of MI > 0 (recall that MI > 0 if and only if the two marginals
are dependent), the following asymptotic properties were due to [34].

Let

v̂ =
(

p̂1, · · · , p̂K1K2−1
)τ

=
(

p̂1,1, p̂1,2, · · · , p̂1,K2 , p̂2,1, p̂2,2, · · · , p̂2,K2 , · · · , p̂K1,1, p̂K1,2, · · · , p̂K1,K2−1
)τ
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be the enumeration of joint probabilities plug-in estimators. Let

Σ(v̂) =


p̂1(1− p̂1) − p̂1 p̂2 · · · − p̂1 p̂K1K2−1
− p̂2 p̂1 p̂2(1− p̂2) · · · − p̂2 p̂K1K2−1
· · · · · · · · · · · ·

− p̂K1K2−1 p̂1 − p̂K1K2−1 p̂2 · · · p̂K1K2−1
(
1− p̂K1K2−1

)
,

and

g(v̂) =



ln
(

p̂K1,· p̂·,K2 p̂k
)
− ln

(
p̂i,· p̂·,j p̂K1,K2

)
, if k’s corresponding {i, j} satisfying

i 6= K1 and j 6= K2

ln
(

p̂·,K2 p̂k
)
− ln

(
p̂·,j p̂K1,K2

)
, if k’s corresponding {i, j} satisfying

i = K1 and j 6= K2

ln
(

p̂K1,· p̂k
)
− ln

(
p̂i,· p̂K1,K2

)
, if k’s corresponding {i, j} satisfying

i 6= K1 and j = K2

,

where k ∈ {1, 2, · · · , K1K2 − 1}. Then,

Theorem 6 (Asymptotic properties of M̂I and M̂Iz when MI > 0). Provided that MI > 0,

√
n(M̂I −MI)[gτ(v̂)Σ(v̂)g(v̂)]−

1
2 L→ N(0, 1)

and √
n
(

M̂Iz −MI
)
[gτ(v̂)Σ(v̂)g(v̂)]−

1
2 → N(0, 1).

The following examples describe a proper use of MI and properties in Theorems 5 and 6.

Example 1 (Genes TMEM30A and MTCH2—data and descriptions are in Example 1 of [34]).
In the example, data were from two different genes in 191 patients. It has been calculated in [34]
that M̂Iz = 0.0552. The hypothesis test in Example 1 of [35] gave a p-value of 0.0567, which
suggests MI = 0 at α = 0.05. However, one shall use the property in Theorem 6 to obtain a
confidence interval of MI. One must not use the property in Theorem 5 for the purpose of the
confidence interval in this situation (because the asymptotic distribution in Theorem 5 assumes a
specific location for MI under the null hypothesis).

Example 2 (Genes ENAH and ENAH—data and descriptions are in Example 2 of [34]). In
the example, data were from different probes of the same genes on 191 patients. It has been calculated
in [34] that M̂Iz = 0.1157. The hypothesis test in Example 2 of [35] gave a p-value of 0.0012,
which suggests MI > 0 at α = 0.05. Furthermore, one shall use the property in Theorem 6 to
obtain a confidence interval of MI. One must not use the property in Theorem 5 for the purpose of
the confidence interval in this situation.

Example 3 (Compare the MI between Examples 1 and 2). From Examples 1 and 2, M̂Iz(TME
M30A, MTCH2) = 0.0552 and M̂Iz(ENAH1, ENAH2) = 0.1157. Although the second esti-
mation value is higher, one cannot conclude that the level of dependence between ENAH1 and
ENAH2 is higher than that between TMEM30A and MTCH2 due to the limitation described in the
4-th property in Property 2. To compare the level of dependence, one shall refer to the standardized
mutual information in Section 3.1.

Recall that MI is always non-negative. For the same reason, M̂I is always non-negative
(note that M̂I can be viewed as the MI for the distribution p̂). Nevertheless, M̂Iz can be
negative under some scenarios. A negative M̂Iz suggests the level of dependence between
the two random elements is extremely weak. If one uses the results from Theorem 5 to test
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if H0 : MI = 0, a negative M̂Iz would lead to a fail-to-reject for most settings of α (level of
significance).

Remarks

There is another line of research on multivariate information-theoretic methods, the
Partial Information Decomposition (PID) framework [36–38]. The PID may be viewed as a
direct extension of MI to a measures of information provided by two or more variables about
a third. Interesting applications of the PID are, for example, in explaining representation
learning in neural networks [39] or in feature selection from dependent features [40]. PID
aims to characterize redundancy with information decomposition. Another approach to
characterize redundancy is to utilize MI on a joint feature space [33]. Additional research
to compare the two approaches is needed.

2.2. Kullback–Leibler Divergence

Kullback–Leibler divergence (KL) [2], also known as relative entropy, is the distance
between two probability distributions, introduced by [2], and is an important measure of
information in information theory. The notations to define KL and describe its properties dif-
fer slightly from other sections. Let P = {pk : k = 1, · · · , K} and Q = {qk : k = 1, · · · , K} be
two discrete probability distributions on the same finite alphabet, X = {`k : k = 1, · · · , K},
where K ≥ 2 is a finite integer. KL is defined to be

KL = KL(P‖Q) =
K

∑
k=1

pk ln(pk/qk) =
K

∑
k=1

pk ln(pk)−
K

∑
k=1

pk ln(qk).

Note that many also use D as the notation of KL, namely, D(P‖Q). KL is not a metric since
it does not satisfy the triangle inequality and is not symmetric. Some notable properties of
KL are:

Property 3 (Kullback–Leibler divergence).
1. KL is a measurement of non-metric distance between two distributions on the same alphabet

(with the same discrete support). It is always non-negative because of Gibbs’ inequality.
2. KL = 0 if and only if the two underlying distributions are the same. Namely, P = Q for each

k = 1, · · · , K.
3. KL > 0 if and only if the two underlying distributions are different. Namely, pk 6= qk for

some k.

The use of KL has several variants, including but not limited to, (1) P and Q are
unknown; (2) Q is known; (3) P and Q are continuous distributions. The second variant
is an alternative method of the Pearson goodness-of-fit test. Interested readers may refer
to [41] for more discussion on the second variant. Although utilizing entropic statistics on
continuous spaces is generally not recommended, interested readers may refer to [42,43]
for discussions on the third variant.

2.2.1. KL Point Estimation-The Plug-in Estimator, Augmented Estimator, and Z-Estimator

Although KL is not exactly a function of entropy, it still carries many similarities with
entropy. For that reason, KL estimation is very similar to entropy estimation. For example,
KL can be estimated from a plug-in perspective. Let p̂k be the plug-in estimator of pk and
q̂k be the plug-in estimator of qk, then the KL plug-in estimator is

K̂L = K̂L(P‖Q) =
K

∑
k=1

p̂k ln( p̂k)−
K

∑
k=1

p̂k ln(q̂k).
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Because K̂L could have an infinite bias [44], an augmented plug-in estimator of KL
was presented in [44]:

K̂L
∗
=

K

∑
i=1

p̂k ln( p̂k)−
K

∑
k=1

p̂k ln(q̂∗k ),

where

q̂∗k = q̂k +
1[q̂k = 0]

m
,

and m is the sample size of the sample from Q. The bias of K̂L is no faster than O(1/n),
where n is the sample size of the sample from P [44].

Since the K̂L could have an infinite bias, its estimation in perspectives of ĤMM or ĤJK
will not help in reducing the bias to a finite extent. In the perspective of Ĥz, a KL estimator
with exponentially decaying bias was offered in [44]:

K̂Lz = K̂Lz(P‖Q) =
K

∑
k=1

p̂k

[
m−mq̂k

∑
v=1

1
v

v

∏
j=1

(
1− mq̂k

m− j + 1

)
−

n−np̂k

∑
v=1

1
v

v

∏
j=1

(
1− np̂k − 1

n− j

)]
.

2.2.2. Symmetrized KL and Its Point Estimation

As mentioned in the first property of Property 3, KL is generally an asymmetric
measurement. For certain interests that require a symmetric measurement, a symmetrized
KL is defined to be

S = S(P, Q) =
1
2
[KL(P‖Q) + KL(Q‖P)]

=
1
2

(
K

∑
k=1

pk ln(pk)−
K

∑
k=1

pk ln(qk)

)
+

1
2

(
K

∑
k=1

qk ln(qk)−
K

∑
k=1

qk ln(pk)

)
.

The symmetrized KL S, as a function of KL, can be similarly estimated in the perspec-
tive of K̂L, K̂L

∗
, and K̂Lz. The respective estimators are

Ŝ =
1
2

(
K

∑
k=1

p̂k ln( p̂k)−
K

∑
k=1

p̂k ln(q̂k)

)
+

1
2

(
K

∑
k=1

q̂k ln(q̂k)−
K

∑
k=1

q̂k ln( p̂k)

)
,

Ŝ∗ =
1
2

(
K

∑
k=1

p̂k ln( p̂k)−
K

∑
k=1

p̂k ln(q̂∗k )

)
+

1
2

(
K

∑
k=1

q̂k ln(q̂k)−
K

∑
k=1

q̂k ln( p̂∗k )

)
,

where p̂∗k = p̂k + 1[ p̂k = 0]/n (n is the sample size of the sample from P), and

Ŝz =
1
2

K

∑
k=1

p̂k

[
m−mq̂k

∑
v=1

1
v

v

∏
j=1

(
1− mq̂k

m− j + 1

)
−

n−np̂k

∑
v=1

1
v

v

∏
j=1

(
1− np̂k − 1

n− j

)]

+
1
2

K

∑
k=1

q̂k

[
n−np̂k

∑
v=1

1
v

v

∏
j=1

(
1− np̂k

n− j + 1

)
−

m−mq̂k

∑
v=1

1
v

v

∏
j=1

(
1− mq̂k − 1

m− j

)]
.

2.2.3. Asymptotic Properties for KL and Symmetrized KL Estimators

The asymptotic properties for K̂L, K̂L
∗
, K̂Lz, Ŝ, Ŝ∗, and Ŝz are all presented in [44].

All the asymptotic properties therein require P 6= Q (namely, KL > 0). When P = Q,
the asymptotic property of KL (or S) estimators are currently missing from the literature.
The derivation of such asymptotic properties is not complicated yet unnecessary. The
only purpose of such asymptotic property under P = Q is to test if H0 : P = Q against
Ha : P 6= Q. For such a purpose, the two-sample goodness-of-fit chi-squared test can be
used (see p. 616 in [45]).
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3. Recently Developed Entropic Statistics Quantities and Estimation

In this section, various recently developed entropic statistics quantities are introduced
and discussed. Some quantities are quite new with limited estimation properties developed
other than the plug-in estimation. Therefore, some of the following discussions focus on
conceptual spirits and application potentials.

3.1. Standardized Mutual Information

Mutual information between two random elements (on non-ordinal alphabets) is
similar to the covariance between two random variables (on ordinal spaces) regarding
properties and drawbacks. For example, the covariance does not provide general informa-
tion on the degree of correlation, and the concept correlation of coefficient was defined to
fill the gap. Similarly, recall the fourth property of MI that MI generally does not provide
information about the degree of dependence, standardized mutual information (SMI), κ,
has been studied and defined in various ways. To name a few, provided H(X, Y) < ∞,

κ1 =
MI(X, Y)
H(X, Y)

,

κ2 =
MI(X, Y)

min{H(X), H(Y)} , (4)

κ3 =
MI(X, Y)√
H(X)H(Y)

,

κ4 =
MI(X, Y)

(H(X) + H(Y))/2
,

κ5 =
MI(X, Y)

max{H(X), H(Y)} ,

κ6 =
MI(X, Y)

H(X)
.

The quantity κ6 is also called information gain ratio [46]. The benefits of SMI are supported by
Theorem 7.

Theorem 7 (Theorem 5.4 in [28]). Suppose H(X, Y) < ∞. Then

0 ≤ κ ≤ 1

Moreover, (1) κ = 0 if and only if X and Y are independent, and (2) κ = 1 if and only if X
and Y have a one-to-one correspondence.

Interested readers may refer to [47–50] for discussions on SMI. A detailed discussion
of the estimation of various SMI may be found in [51].

3.2. Entropic Basis: A Generalization from Shannon’s Entropy

Shannon’s entropy and MI are powerful tools to quantify dispersion and dependence
on non-ordinal space. More concepts and statistical tools are needed to characterize non-
ordinal space information from different perspectives.

Generalized Simpson’s diversity indices were established in [52] and coined in [3].

Definition 1 (Generalized Simpson’s Diversity Indices). For a given p = {pk; k ≥ 1} and an
integer pair (u ≥ 1, v ≥ 0), let ζu,v = ∑k≥1 pu

k (1− pk)
v. Let

ζ = {ζu,v; u ≥ 1, v ≥ 0}

be defined as the family of generalized Simpson’s diversity indices.
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Generalized Simpson’s Diversity Indices are the foundation of entropic basis and
entropic moment. Interested readers may refer to [53] for discussions on entropic moments
and a goodness-of-fit test under permutation based on entropic moments. In estimating ζu,v,

zu,v =
[n− (u + v)]!nu+v

n!
× ∑

k≥1

{
1
[

p̂k ≥
u
n

][u−1

∏
i=0

(
p̂k −

i
n

)][v−1

∏
j=0

(
1− p̂k −

j
n

)]}

was derived in [52], where n is the sample size; u and v are given constants; p̂k is the
sample proportion of the k-th letter(category); 1[·] stands for indicator function. zu,v is an
uniformly minimum-variance unbiased estimator (UMVUE) of ζu,v for any combination
of (u, v) non-negative integers pair as long as u + v ≤ n, where n is the corresponding
sample size.

Based on ζu,v, ref. [3] defined the entropic basis.

Definition 2 (Entropic Basis). Given Definition 1, the entropic basis is the sub-family

ζ1 = {ζ1,v; v ≥ 0}

of ζ.

All diversity indices can be represented as a function of ζ1 [3] (most representations
are due to Taylor’s expansion). For example,

1. Simpson’s index [54]:
λ = ∑

k≥1
p2

k = ζ1,0 − ζ1,1

2. Gini–Simpson index [54,55]:

1− λ = ∑
k≥1

pk(1− pk) = ζ1,1

3. Shannon’s entropy:

H = − ∑
k≥1

pk ln(pk) =
∞

∑
v=1

1
v

ζ1,v

4. Rényi equiv. entropy [56]:

hr = ∑
k≥1

pr
k = ζ1,0 +

∞

∑
v=1

v

∏
i=1

(
i− r

i

)
ζ1,v

5. Emlen’s index [57]:

D = ∑
k≥1

pke−pk =
∞

∑
v=0

e−1

v!
ζ1,v

6. Richness index (population size):

K = ∑
k≥1

1[pk > 0] =
∞

∑
v=0

ζ1,v

7. Generalized Simpson’s index:

ζu,m = ∑
k≥1

pu
k (1− pk)

m =
u−1

∑
v=0

(−1)v
(

u− 1
v

)
ζ1,m+v.
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In practice, plug-in estimation is used in estimating diversity indices. The represen-
tations of the diversity index on an entropic basis allow a new estimation method with
a smaller bias. Namely, z1,v, the UMVUE for ζ1,v, exist for all v up to n − 1. If one re-
places {ζ1,0, ζ1,1, · · · , ζ1,n−1} with {z1,0, z1,1, · · · , z1,n−1}, and let all the other ζs (namely,
{ζ1,n, ζ1,n+1, · · · }) to be zero, then the resulting estimator is exactly the same as plug-in es-
timator. However, the estimation can be further improved if one estimate {ζ1,n, ζ1,n+1, · · · }
based on {z1,0, z1,1, · · · , z1,n−1}.

For example, let K̂ (the observed number of categories) be the plug-in estimator of
K. Meanwhile, ∑n−1

v=0 z1,v (the estimator in perspective of entropic basis representation) is
algebraically equivalent to K̂ [58]. Namely,

K = ∑
k≥1

1[pk > 0] =
∞

∑
v=0

ζ1,v =
n−1

∑
v=0

ζ1,v +
∞

∑
v=n

ζ1,v

is a decomposition of K, then

K̂ = ∑
k≥1

1[ p̂k > 0] =
n−1

∑
v=0

ζ1,v;

whereas

K̂entropic =
n−1

∑
v=0

ζ1,v +
∞

∑
v=n

ζ1,v = K̂ + estimator of
∞

∑
v=n

ζ1,v.

K̂entropic has a smaller bias than K̂. Interested readers may refer to [58] for details on the
estimation of ∑∞

v=n ζ1,v. Similar estimation could benefit the estimation of Rényi equiv.
entropy, Emlen’s index, and any other diversity indices or theoretical quantities which
contain the terms ∑∞

v=n ζ1,v after Taylor’s expansion.

3.3. Generalized Shannon’s Entropy and Generalized Mutual Information

Because of the advantages in characterizing information in non-ordinal space, Shan-
non’s entropy and MI have become the building blocks of information theory and essential
aspects of ML methods. Yet, they are only finitely defined for distributions with fast
decaying tails on a countable alphabet.

Example 4 (Unbounded entropy). Let X = {2, 3, 4, · · · } be a random variable following the
distribution P(X = k) = pk = c/(k ln2 k), where k = 2, 3, 4, · · · , and c is the constant to make
the distribution valid (total probability add up to 1). Such a constant uniquely exists because the
summation ∑∞

i=2 1/(i ln2 i) converges. Then

H(X) =
∞

∑
k=2

pk ln
1
pk

=
∞

∑
k=2

(
c

k ln2 k
ln

k ln2 k
c

)

=
∞

∑
k=2

(
c

k ln2 k
(ln k + 2 ln ln k− ln c)

)
=

∞

∑
k=2

c
k ln k

+
∞

∑
k=2

(
c(2 ln ln k− ln c)

k ln2 k

)
= ∞,

because
∞

∑
k=2

c
k ln k

= ∞

and
∞

∑
k=2

(
c(2 ln ln k− ln c)

k ln2 k

)
< ∞.

Therefore the entropy H(X) is unbounded.
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The unboundedness of Shannon’s entropy and MI over the general class of all distri-
butions on an alphabet prevents their potential utility from being fully realized. Ref. [5]
proposed GSE and GMI, which are finitely defined everywhere. To state the definition of
GSE and GMI, Definition 3 is stated first.

Definition 3 (Conditional Distribution of Total Collision (CDOTC)). Given X = {xi; i ≥ 1}
and p = {pi}, consider the experiment of drawing an identically and independently distributed
(iid) sample of size m (m ≥ 2). Let Cm denote the event that all observations of the sample take
on the same letter in X , and let Cm be referred to as the event of a total collision. The conditional
probability, given Cm, that the total collision occurs at the letter xi is

pm,i =
pm

i
∑s≥1 pm

s
,

where m ≥ 2. pm = {pm,i} is defined as the m-th order CDOTC.

The idea of CDOTC is to adopt a special member of the family of the escort distribu-
tions introduced in [59]. The utility of CDOTC is endorsed by Lemmas 1 and 2, which are
proved in [5].

Lemma 1. For any order m, p and pm uniquely determine each other.

Lemma 2. For any order m, pXY = {pi,j} = {pi,. × p.,j} if and only if pXY,m = {pm,i,j} =
{pm,i,. × pm,.,j}.

It is clear that pm is a probability distribution induced from p = {pk}. An example is
provided to help understand Definition 3.

Example 5 (The second-order CDOTC). Let p = {pi} = {6i−2/π2; i = 1, 2, 3, . . . }, the
second-order CDOTC is then defined as

p2 = {p2,i},

where

p2,i =
p2

i
∑s≥1 p2

s
=

36i−4/π4

∑s≥1[36s−4/π4]
=

i−4

∑s≥1 s−4

for i = 1, 2, 3, . . . .

Based on Definition 3, GSE and GMI are defined as follows.

Definition 4 (Generalized Shannon’s Entropy (GSE)). Given X = {xi; i ≥ 1}, pX = {pi},
and pX,m = {pm,i}, generalized Shannon’s entropy (GSE) is defined as

Hm(X) = −∑
i≥1

pm,i ln pm,i,

where pm,i is defined in Definition 3, and m = 2, 3, . . . is the order of GSE. GSE with order m is
called the m-th order GSE.

Definition 5 (Generalized Mutual Information (GMI)). Let X = {xi; i ≥ 1} and Y ={
yj; j ≥ 1

}
. Let pXY =

{
pi,j
}

and pXY,m = {pm,i,j}. Let X∗ and Y∗ be the marginal distri-
butions of pXY,m. The m-th order generalized mutual information (GMI) between X and Y is
defined as

MIm(X, Y) = H(X∗) + H(Y∗)− Hm(X, Y);
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or equivalently
MIm(X, Y) = H(X∗) + H(Y∗)− H(X∗, Y∗);

To help understand Definitions 4 and 5, Examples 6 and 7 are provided as follows.

Example 6 (The second-order GSE). Let X = {xi; i ≥ 1} and p = {pi} = {6i−2/π2; i =
1, 2, 3, . . . }. The second-order GSE, H2(X), is then defined as

H2(X) = −∑
i≥1

p2,i ln p2,i,

where

p2,i =

{
i−4

∑s≥1 s−4 ; i = 1, 2, . . .
}

is given in Example 5.

Example 7 (The second-order GMI). Let X = {xi,.; i ≥ 1}, Y =
{

x.,j; j ≥ 1
}

, and X ×Y ={
xi,j; i ≥ 1, j ≥ 1

}
. Let

pXY =
{

pi,j
}
=

{
24
[
(i + j− 1)2 + i− j + 1

]−2

π2 ; i ≥ 1, j ≥ 1

}
,

and

pXY,2 = {p2,i,j} =
{

p2
i,j

∑s≥1,t≥1 p2
s,t

; i ≥ 1, j ≥ 1

}
.

Further, let

pX∗ =

{
∑

j
p2,i,j; i ≥ 1

}
and

pY∗ =

{
∑

i
p2,i,j; j ≥ 1

}
.

The second-order GMI, MI2(X, Y), is then defined as

MI2(X, Y) = H(X∗) + H(Y∗)− H(X∗, Y∗),

where H(X∗), H(Y∗), and H(X∗, Y∗) are Shannon’s entropy based on pX∗ , pY∗ , and pXY,2,
respectively.

GSE’s and GMI’s plug-in estimators are stated in Definitions 6 and 7.

Definition 6 (GSE’s plug-in estimators). Let X1, X2, . . . , Xn be i.i.d. random variables taking
values in X = {xi; i ≥ 1} with distribution pX . The plug-in estimator for pX is p̂X = { p̂i}. The
plug-in estimator for the m-th order GSE, Ĥm(X), is

Ĥm(X) =−∑
i≥1

[ p̂m,i ln p̂m,i]

=−∑
i≥1

[
p̂m

i
∑s≥1 p̂m

s
ln

p̂m
i

∑s≥1 p̂m
s

]
.
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Definition 7 (GMI’s plug-in estimators). Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be i.i.d. random
variables taking values in X ×Y =

{
(xi, yj); i ≥ 1, j ≥ 1

}
with distribution pXY = {pi,j}. Let

p̂XY = { p̂i,j} be the plug-in estimator of pXY. The plug-in estimator for the m-th order GMI,
M̂Im(X, Y), is

M̂Im(X, Y) = Ĥ(X∗) + Ĥ(Y∗)− Ĥ(X∗, Y∗),

where

Ĥ(X∗) =−∑
i≥1

[(
∑
j≥1

p̂m
i,j

∑s≥1,t≥1 p̂m
s,t

)
ln

(
∑
j≥1

p̂m
i,j

∑s≥1,t≥1 p̂m
s,t

)]
,

Ĥ(Y∗) =−∑
j≥1

[(
∑
i≥1

p̂m
i,j

∑s≥1,t≥1 p̂m
s,t

)
ln

(
∑
i≥1

p̂m
i,j

∑s≥1,t≥1 p̂m
s,t

)]
,

Ĥ(X∗, Y∗) =− ∑
i≥1,j≥1

[
p̂m

i,j

∑s≥1,t≥1 p̂m
s,t

ln
p̂m

i,j

∑s≥1,t≥1 p̂m
s,t

]
.

The following asymptotic properties for GSE’s plug-in estimators are given in [60].

Theorem 8. Let pX = {pk; k ≥ 1} be a probability distribution on a countably infinite alphabet
X , without any further conditions,

√
n
(

Ĥm(X)− Hm(X)

σ̂m

)
d−→ N(0, 1),

where

σ̂2
m =

∞

∑
k=1

[
m2

p̂k

(
p̂m,k ln p̂m,k + p̂m,k Ĥm(Z)

)]2

. (5)

Theorem 9. Let pX = {pk; k = 1, 2, . . . , K} be a non-uniform probability distribution on a
countably finite alphabet X , without any further conditions,

√
n
(

Ĥm(X)− Hm(X)

σ̂m

)
d−→ N(0, 1),

where

σ̂2
m =

K

∑
k=1

[
m2

p̂k

(
p̂m,k ln p̂m,k + p̂m,k Ĥm(Z)

)]2

.

The properties in Theorems 8 and 9 allow interval estimation and hypothesis testing
with Ĥm. The advantage of shifting the original distribution to an escort distribution is
reflected in Theorem 8-the asymptotic normality requires no assumption on a countable
infinite alphabet. Theorem 9 can be viewed as a special case of Theorem 8 under a finite
situation, where the uniform distribution shall be omitted because a uniform distribution
has no variation between different category probabilities and hence results in a zero GSE
and degenerate asymptotic distribution.

Nevertheless, suppose one is certain that the cardinality of distribution is finite. In that
case, one shall use Shannon’s entropy instead of GSE because Shannon’s entropy always
exists under a finite distribution. There are various well-studied estimation methods with
Shannon’s entropy (whereas only plug-in estimation on GSE has been studied by far).
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Asymptotic properties for GMI plug-in estimator have not been studied yet. Nonethe-
less, a test of independence with modified GMI [61] has been studied. The test does not
require the knowledge of the number of columns or rows of a contingency table; hence it
yielded an alternative other than Pearson’s chi-squared test of independence, particularly
when a contingency table is large or sparse.

4. Application of Entropic Statistics in Machine Learning and Knowledge Extraction

Applications of entropic statistics in ML and knowledge extraction can be clustered in
two directions. The first direction is to solve an existing question from a new perspective
by creating a new information-theoretic quantity [61] or revisiting an existing information-
theoretic quantity for additional insights [62]. The second direction is to use different
estimation methods in existing methods to improve the performance by reducing bias
and/or variation [32]. Application potentials in the second direction are very promising
because theoretical results from recent-developed estimation methods suggest the perfor-
mance of many existing ML methods could be improved, yet not much research has been
conducted in the direction. In this section, many established ML and knowledge extraction
methods are discussed with their potential to improve in the second direction.

4.1. An Entropy-Based Random Forest Model

Ref. [63] proposed an entropy-importance-based random forest model for power
quality feature selection and disturbance classification. The method used a greedy search
based on entropy and information gain for node segmentation. Nevertheless, only the
plug-in estimation of entropy and information gain was considered. The method could be
improved by replacing the plug-in estimation with smaller bias estimation methods, such
as Ĥz in [25]. Further, one can also combine Ĥz with the jackknife procedure in (3) to obtain

ĤzJK =
∑n

i=1 Ĥz(i)

n
,

where Ĥz(i) = nĤz − (n− 1)Ĥ(i)
z , and use ĤzJK in place of the adopted plug-in estimation.

The benefit of using ĤzJK is the potential smaller bias, and variance [25]. However, asymp-
totic properties for ĤzJK are yet developed. When asymptotic properties are desired (e.g.,
for confidence interval or hypothesis testing purposes), one shall consider estimators with
established asymptotic properties (also called theoretical guarantee), such as Ĥ, ĤMM, ĤJK,
and Ĥz.

4.2. Feature Selection Methods

In [16,64], various information-theoretic feature selection methods were reviewed and
discussed. The two review articles did not mention that all the discussed methods adopted
plug-in estimators for the corresponding information-theoretic quantities. Improving the
performance with different estimation methods is possible, and investigation is needed.
For example, some of the discussed methods are summarized in Table 2 with suggestions
to utilize smaller bias and/or variance estimation methods.
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Table 2. Selected information-theoretic feature selection methods reviewed in [16,64] with potential
perspectives to improve the performance using smaller bias and/or variance estimation methods.
The proposed criterion uses the same notations as their original forms for readers’ ease in tracing
them back to the original articles, except some terms are equivalently re-denoted as M̂I or κ̂ to
help readers follow the same notations in the previous sections. To further clarify the notations,
M̂I(X1, X2) and M̂I(X1; X2) are the same. M̂I(X1, X2|Y) is the plug-in estimator of conditional
mutual information. By its definition, M̂I(X1, X2|Y) = Ĥ(X1, Y) + Ĥ(X2, Y)− Ĥ(X1, X2, Y)− Ĥ(Y).
Similarly, M̂Iz(X1, X2|Y) = Ĥz(X1, Y) + Ĥz(X2, Y)− Ĥz(X1, X2, Y)− Ĥz(Y), where each Ĥz could
be further replaced using Ĥz with jackknife procedure.

MIM [65] Proposed Criterion (Score) M̂I

MIFS [66]

Different Estimation Method Use M̂Iz with jackknife procedureJMI [67]

IF [68]
Proposed Criterion (Score) M̂I(C, F)

Different Estimation Method Use M̂Iz with jackknife procedure

FCBF [69]
Proposed Criterion (Score) κ̂4

Different Estimation Method Use κ̂4z [51] with jackknife procedure

AMIFS [70]
Proposed Criterion (Score) M̂I(C; fi)− β ∑s∈S κ̂6(C; fs)M̂I( fs; fi)

Different Estimation Method Use M̂Iz and κ̂6z [51] with jackknife procedure

CMIM [71]
Proposed Criterion (Score) M̂I(Y; Xn) and M̂I(Y; Xn|Xm)

Different Estimation Method Use M̂Iz with jackknife procedure

MRMR [72]
Proposed Criterion (Score) max

[
M̂I(xi; c)− 1

|s| ∑xi ,xj∈S M̂I
(

xi, xj

)]
Different Estimation Method Use M̂Iz with jackknife procedure

ICAP [73]
Proposed Criterion (Score) arg maxX∈A

(
M̂I(X; Y) + ∑A∈Amin{0, M̂I(X; Y; A)}

)
Different Estimation Method Use M̂Iz with jackknife procedure

CIFE [74]
Proposed Criterion (Score) argmax

θt

{
M̂I
(

y(t); c
)
−∑t−1

u=1

[
M̂I
(

y(u); y(t)
)
− M̂I

(
y(u); y(t) | c

)]}
Different Estimation Method Use M̂Iz with jackknife procedure

DISR [75]
Proposed Criterion (Score) arg maxXi∈X−S

{
∑Xj∈XS

κ̂1

(
Xi,j; Y

)}
Different Estimation Method Use κ̂1z [51] with jackknife procedure

IGFS [76]
Proposed Criterion (Score) arg maxX∈X−s

(
M̂I(Xi; Y) + 1

d ∑Xj∈XS
M̂I
(

Xi; Xj; Y
))

Different Estimation Method Use M̂Iz with jackknife procedure

SOA [77]
Proposed Criterion (Score) ∑i M̂I(Xi, Y)−∑i ∑j>i M̂I

(
Xi, Xj

)
+ ∑i ∑j>i M̂I

(
Xi, Xj | Y

)
Different Estimation Method Use M̂Iz with jackknife procedure

CMIFS [78]
Proposed Criterion (Score) M̂I(C; fi | f1) +

[
M̂I( fn; fi | C)− M̂I( fn; fi | f1)

]
Different Estimation Method Use M̂Iz with jackknife procedure

4.3. A Keyword Extraction Method

Ref. [79] proposed a keyword extraction method with Rényi’s entropy

SR(w, q) =
1

1− q
log2

Fw

∑
i=1

pq
i ,
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and used the plug-in estimator therein. Namely, ŜR(w, q) = 1
1−q log2 ∑Fw

i=1 p̂q
i . Nevertheless,

SR(w, q) can be represented as

SR(w, q) =
1

1− q
log2

[
ζ1,0 +

∞

∑
v=1

(
v

∏
j=1

(
j− q

j

)
ζ1,v

)]

=
1

1− q
log2

[
ζ1,0 +

n−1

∑
v=1

(
v

∏
j=1

(
j− q

j

)
ζ1,v

)
+

∞

∑
v=n

(
v

∏
j=1

(
j− q

j

)
ζ1,v

)]
,

where ζ1,v has the UMVUE z1,v for v = 0, 1, 2, · · · , n− 1. For v ≥ n, ζ1,v could be estimated
based on regression analysis [58]. Hence, SR(w, q) can be estimated as

ŜRz(w, q) =
1

1− q
log2

[
z1,0 +

n−1

∑
v=1

(
v

∏
j=1

(
j− q

j

)
z1,v

)
+

∞

∑
v=n

(
v

∏
j=1

(
j− q

j

)
z∗1,v

)]
,

where the construction of z∗1,v needs investigation using regression analysis [58]. The
resulting ŜRz(w, q) would have a smaller bias than that of ŜR(w, q) to help improve the
established keyword extraction method. Note that if one wishes to use z1,v up to n− 1 only,
the resulting estimator would become

Ŝ∗Rz(w, q) =
1

1− q
log2

[
z1,0 +

n−1

∑
v=1

(
v

∏
j=1

(
j− q

j

)
z1,v

)]
. (6)

(6) is the same as Ĥ]
r (n) in [3]. Asymptotic properties for Ĥ]

r (n) were provided therein
(Corollary 3 in [3]) for interested readers.

5. Conclusions

Entropic statistics is effective in characterizing information from non-ordinal space.
Meanwhile, it is essential to realize that non-ordinal information is inherently difficult
to identify due to its non-ordinal and permutation invariant nature. This survey article
aims to provide a comprehensive review of recent advances in entropic statistics, including
classic entropic concepts estimation, recent-developed entropic statistics quantities, and
their applications potentials in ML and knowledge extraction. This article first introduces
the concept of entropic statistics and emphasizes challenges from non-ordinal data. Then
this article reviews the estimation for classic entropic quantities. These classic entropic
concepts, including Shannon’s entropy, MI, and KL, are widely used in established machine
learning and knowledge extraction methods. Most, if not all, of the established methods use
plug-in estimation, which is computation efficient yet with a large bias. The surveyed dif-
ferent estimation methods would help researchers to potentially improve existing methods’
performance by adopting a different estimation method or adding theoretical guarantee
to the existing methods. Recent-developed entropic statistics concepts are also reviewed
with their estimation and applications. These new concepts not only allow researchers to
estimate existing quantities in a new perspective, but also support additional aspects in
characterizing non-ordinal information. In particular, the generalized Simpson’s diversity
indices (with the induced entropic basis and entropic moments) have significant applica-
tion and theoretical potential to either customize existing ML and knowledge extraction
methods or to establish new methods considering domain-specific challenges. Further, this
article provides some examples of how to apply the surveyed results to some of the existing
methods, including a random forest model, fourteen feature selection methods, and a
keyword extraction model. It should be mentioned that the aim of the survey is not to claim
the superiority of some estimation methods over others but to provide a comprehensive
list of recent advances in entropic statistics research. Specifically, although an estimator
with a faster-decaying bias seems theoretically preferred, it has a longer calculation time
even with the convenient R functions, particularly when multiple layers of jackknife (boot-
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strap) are involved. The preference of estimation varies case by case—some may prefer an
estimator with a smaller bias, some may prefer one with a smaller variance, while some
may need a trade-off between them. Furthermore, the article focuses on non-parametric
estimation, while parametric estimation would perform better if the specified model fits
the domain-specific reality. In summary, one should always investigate if a new estimation
method fits the needs.

Enormous additional works are still needed in entropic statistics. For example, (1) the
asymptotic properties for many established estimators (such as Ĥchao and ĤzJK) are not
clear when cardinality is infinite. (2) With the transition from original distribution to escort
distribution, GSE and GMI fill the void left by Shannon’s entropy and MI. However, only
plug-in estimations of GSE and GMI have been studied. The biases of these plug-in estima-
tors have not been studied, and additional estimation methods are undoubtedly needed.
(3) Calculations for many entropic statistics are not yet supported in R, such as entropic
basis, GSE, and GMI. Furthermore, more work is needed to implement the new entropic
statistics concepts in programming software other than R (some of the reviewed estimators
are implemented in R and are listed in Appendix A as a reference), particularly in Python.
With additional theoretical development and application support, entropic statistics meth-
ods would be a more efficient tool to characterize more non-ordinal information and better
serve the demands arose from the emerging domain-specific challenges.
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Abbreviations
The following abbreviations are used in this manuscript:

ANOVA Analysis of Variance
GSE Generalized Shannon’s Entropy
GMI Generalized Mutual Information
i.i.d. independent and identically distributed
KL Kullback–Leibler Divergence
MI Mutual Information
ML Machine Learning
PID Partial Information Decomposition
SMI Standardized Mutual Information
UMVUE Uniformly Minimum-Variance Unbiased Estimator

Appendix A. R Functions

Statistic R Package Name Function Name

Ĥ entropy [80] entropy.plugin
ĤMM entropy entropy.MillerMadow
ĤJK bootstrap [81] jackknife

Ĥchao entropy entropy.ChaoShen
Ĥz EntropyEstimation [82] Entropy.z

σ̂ in Theorems 1 and 3 EntropyEstimation Entropy.sd
M̂I entropy mi.plugin
M̂Iz EntropyEstimation MI.z

[gτ(v̂)Σ(v̂)g(v̂)]
1
2 in Theorem 6 EntropyEstimation MI.sd

K̂L entropy KL.plugin
K̂Lz EntropyEstimation KL.z

Ŝ EntropyEstimation SymKL.plugin
Ŝz EntropyEstimation SymKL.z

Ĥ]
r (n) EntropyEstimation Renyi.z
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