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Abstract: Electroencephalography (EEG) signals can be analyzed in the temporal, spatial, or frequency
domains. Noise and artifacts during the data acquisition phase contaminate these signals adding
difficulties in their analysis. Techniques such as Independent Component Analysis (ICA) require
human intervention to remove noise and artifacts. Autoencoders have automatized artifact detection
and removal by representing inputs in a lower dimensional latent space. However, little research is
devoted to understanding the minimum dimension of such latent space that allows meaningful input
reconstruction. Person-specific convolutional autoencoders are designed by manipulating the size of
their latent space. A sliding window technique with overlapping is employed to segment varied-sized
windows. Five topographic head-maps are formed in the frequency domain for each window. The
latent space of autoencoders is assessed using the input reconstruction capacity and classification
utility. Findings indicate that the minimal latent space dimension is 25% of the size of the topographic
maps for achieving maximum reconstruction capacity and maximizing classification accuracy, which
is achieved with a window length of at least 1 s and a shift of 125 ms, using the 128 Hz sampling rate.
This research contributes to the body of knowledge with an architectural pipeline for eliminating
redundant EEG data while preserving relevant features with deep autoencoders.

Keywords: electroencephalography; latent space analysis; sliding windowing; convolutional autoencoders;
automatic feature extraction; dense neural network

1. Introduction

In the brain, multiple sources operate synchronously to carry out a specific mental
task. For instance, the brain’s occipital lobe perceives visual data, the temporal lobe sense
auditory signals, the parietal lobe gathers sensory data, the limbic lobe generates emotion,
the insula processes pain, and the frontal lobe makes decisions [1]. The brain executes
lobular activities in the span of milliseconds. Electroencephalography (EEG) is the most
frequently used physiological indicator to understand brain functioning and behavior. EEG
measures the voltage potentials of the neuronal excitations via electrodes mounted on
the head with a greater temporal resolution and precision, suggested to match the speed
of cognition [2—4]. EEG data can be analyzed in the temporal, spatial, or frequency domains.
However, noise and artifacts from eye and muscle movements during the data acquisition
phase contaminate EEG signals adding difficulties in their analysis.

Optimal EEG features are devoid of the noise and artifacts that capture the variability
of entire input EEG signals to the maximum possible extent by using smaller dimensions.
Hence there is a strong need to automate the extraction of optimal EEG features from
multidimensional EEG signals.

Several studies have used hand-crafted features and traditional machine learning
algorithms to discover salient features from EEG data. Hand-engineered feature selec-
tion can give an optimal solution. However, they are highly application-specific, for
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example, removal of outlying channels and EEG segments corrupted with noise and arti-
facts by visual inspection [5]. Moreover, hand-crafted features learn from trial and error,
which consumes time and human effort [6]. Principal Component Analysis (PCA) is a
dimensionality-reduction algorithm that projects higher dimensional feature vectors into
lower-dimensional orthogonal features [7,8]. Orthogonal features are independent vari-
ables that share no correlation, thus contributing to decision-making. Orthogonality in
the feature space produces the optimal features that explain the variability of the entire
input in the best possible way. However, the projected lower-dimensional feature space is
linear, making the principal components less interpretable [9,10]. Independent Component
Analysis (ICA) isolates noise and artifacts from the input source by decomposing them
into independent components from different sources [9,11]. Noise and artifacts appear
as high-frequency spikes, low-frequency drifts, or periodic fluctuations and can thus be
identified and removed. ICA algorithms such as InfomaxICA and FastICA work better
with stationary signals [12,13]. Adaptive Mixture ICA is suitable for non-stationary data
but is computationally expensive. Moreover, its effectiveness depends on the EEG Signal’s
Window Length (WL) and the number of channels [14,15]. Traditional methods such as
PCA and ICA do not improve with large EEG datasets [16]. Thus recent studies use Convo-
lutional Neural network (CNN)-based methods and Autoencoders to extract useful features.
Features selected from CNN-based methods improve the model’s accuracy compared to
traditional algorithms on large datasets. However, the drawback is that the quality of
the automatically learned features by CNN layers is not examined [17,18]. Autoencoder
examines the quality of the extracted features by reconstructing input from the latent
space and validating with the true inputs [19]. However, the optimal dimension of the
Autoencoder’s latent space is unknown in the existing literature. Exploratory analysis of
the latent space dimension’s power must be carried out to establish Autoencoder’s best
latent space dimension.

Our study aims to identify the optimal window length (WL) and window shift (WS)
of the sliding windowing from EEG signals that leads to an optimal latent space (LS) learned
by training person-specific Autoencoders. The fixed-size sliding windowing facilitates the
generation of multiple input instances of specified window length by linearly traversing
the EEG data with a specified window shift [20]. Person-specific Autoencoder captures
the features from an individual subject’s EEG data as the brain wave response of every
individual are unique and carry higher inter-subject variability for rest, task, and activity
evoked brain states [21]. Furthermore, the significance of the learned latent space is
examined by using reconstruction measures, including the Structural Similarity Index
Measure (SSIM), the Mean Squared Error (MSE), the Normalised Root Mean Squared
Error (NRMSE), and the Peak Signal-to-Noise Ratio (PSNR). Specifically, a classification
task’s utility is investigated to validate the learned latent space, including the accuracy and
F1-score measures. The above research objectives are aimed at answering the following
research question (RQ):

RQ: What are the optimal window length and window shift to segment continuous EEG
signals that leads to the formation of a latent space in person-specific Convolutional
Autoencoder that leads to maximum reconstruction capacity and maximum utility in
classification tasks?

The remainder of the article is organized as follows. A background on EEG feature
space with traditional pre-processing techniques is described in Section 2. Section 3 presents
the design of our experiment to construct person-specific convolutional autoencoders that
solve the research question along with the evaluation metrics. Section 4 presents the
findings, followed by a discussion in Section 5. Eventually, Section 6 summarizes this
study, highlighting its contribution to the body of knowledge and delineating future areas
of work.
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2. Related Work

Electroencephalography (EEG) is a widely used physiological technique that is easy
to operate and economical, which aims to measure the electrical activity of the neurons
in the brain propagated at the scalp level [9]. Thus EEG analysis has been extensively
used in diverse application areas such as epilepsy seizure onset prediction [22], brain-
computer interface (BCI) [23-25], emotion recognition [26,27], driver distraction [28], mental
workload measurement [29], and many other neurological disorder diagnoses [30,31].
However, EEG is a multidimensional, non-stationary signal with poor signal-to-noise ratio
characteristics [32]. EEG signals must be pre-processed to gain better insight into the data
and perform better analysis.

EEG signals can be analyzed in temporal, frequency, or spatial domains. The tem-
poral domain gives rhythmic voltage fluctuations at every time point for all the recorded
channels [2,32]. Temporal analysis methods such as the Time Domain Parameters (TDP)
display nominal computational complexity while maintaining acceptable outcomes for
classification tasks [33]. However, it is challenging to identify noise and artifacts in the time
domain as they exhibit randomness over frequencies. In contrast, noise identification is
easier when analyzing EEG data in the frequency domain. Noise is often spread across
entire frequency bands, and the noise amplitude is negligible compared to the amplitude
of the actual signal itself, thus more identifiable [2,32]. Additionally, in the frequency
domain, EEG data can be analyzed using an amplitude spectrum that separates signals into
frequency bands such as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz)
and gamma (3045 Hz) bands, usually employing Fourier transformation [34]. Eventually,
in the spatial domain, the locations of the electrodes can also give important information,
thus enriching the EEG data analysis [34,35]. For example, the EEG signal recorded at
a specific location could be de-noised considering the signals coming from neighboring
electrodes. Unfortunately, very few studies have focused on analyzing EEG data in all
three domains.

Several approaches exist to reduce noise and redundant features in EEG signals.
PCA tries to identify the subspace to represent the EEG data by eliminating linearly
dependent features [9,36,37]. Linear Discriminant Analysis (LDA) is a dimensionality
reduction method that maximizes inter-cluster spread and minimizes intra-cluster spread
among data points [9,36]. ICA is a linear decomposition technique that finds a new
basis to represent the data, solving the source separation problem [38]. A newfound
base separates independent components from the mixed signals and noise. Artifacts in
the independent components are removed by back-projection [9,36]. Common Spatial
Pattern (CSP) algorithm and their extensions [34,35,39] alleviate the adverse effect of
noise, signal artifacts, and non-stationary signal behavior by splitting EEG signals into
additive segments that have the most dissimilarities in the variance between two adjacent
windows [40]. All these techniques decompose EEG signals into different representations,
sometimes of lower dimensions. These representations are either automatically or manually
inspected for noise’s presence, and those containing noise are removed, retaining only
the relevant ones that are used to reconstruct EEG signals. Data from sliding windowing
further increases the efficiency of the previously listed techniques in extracting relevant
features from multidimensional EEG data, thereby becoming an effective tool for neural
signal analysis [20,41]. A fixed-length window will move along the time dimension of EEG
signals with a predetermined shift in the sliding window technique.

Very often, the relevant features extracted using the previous techniques are fed to
Machine Learning (ML) algorithms such as K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Random Forests (RF), or Gaussian Mixture Models (GMM) for prediction
or classification tasks [9,42-46]. These classifiers have proven to be fast and highly accurate
for small and medium-size datasets [42]. However, their performance does not improve
significantly for large datasets. On the contrary, the performance of Deep Learning (DL)
algorithms improves with a large dataset [47,48]. DL algorithms have also been employed
in the EEG pre-processing phase to automatically denoise EEG signals. These algorithms
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aim to discover vital features from EEG signals, thus automatizing the manual analysis,
often performed by humans, in the temporal, frequency, or spatial domains [18,26,30]. For
example, Convolutional Neural Networks (CNN) have been used to learn the essential EEG
features, improving models’ performance compared to traditional ML methods [13,17].
However, the quality of the selected features is often neither explained nor validated using
evaluation metrics, but ‘trusted” by researchers and engineers. Fortunately, within the
broader field of Deep Learning, an unsupervised technique can validate extracted features
using reconstruction metrics. Autoencoders are unsupervised neural networks that encode
the input into a lower dimensional latent space (LS), which is supposed to retain the essen-
tial features of the input and discard the irrelevant ones, such as redundant features and
noise [49]. The latent space is then decoded to reconstruct the input. This step is crucial as
it represents a straightforward way of validating the quality of latent space by evaluating
its capacity to reconstruct the input with which the model was trained successfully. Autoen-
coders are widely used in domains such as image denoising, compression, reconstruction,
dimensionality reduction, and visualization [4,13,50]. Recently, Autoencoders have been
used for neural signal analyses [17,19].

However, an investigation and exploratory analysis of the optimal dimension of
the Autoencoder’s latent space is still an open question. In particular to EEG signals, it
is essential to understand: (a) what is the ideal size of EEG windows that can be used
to construct single input instances for Autoencoders? (b) what is the effect of different
window time shifts? (c) what is the smallest latent space that can be constructed from the
Autoencoders without losing vital information?

3. Materials and Methods

An empirical study with secondary data was designed and implemented to answer
the research question. The research hypothesis was defined as follows:

IF a sliding window technique is used to segment multichannel EEG signals into windows,
AND topographic head-maps are formed from each window, which is used to train a
Convolutional Autoencoder (ConvAE) for reducing their dimensionality

THEN there exists an optimal window length (WL) AND window shift (WS) combination
that leads to the formation of a minimal latent space (LS) for ConvAE that maximizes
the mean reconstruction capacity of the input topographic maps, AND that has maximal
mean utility in a classification task.

While on the one hand, the mean reconstruction capacity is evaluated by employing
the Structural Similarity Index Measure (SSIM), the Mean Squared Error (MSE) and its
normalized version (NRMSE), as well as the Peak Signal-to-Noise Ratio (PSNR) of the input
topographic maps against the reconstructed ones, on the other hand, the mean utility of the
latent space is measured by accuracy and F1-score for a chosen classification task. In order
to test the research hypothesis, a set of phases has been designed, as illustrated in Figure 1,
and explained in the following subsections.
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Figure 1. (A) Data pre-processing pipeline gives topographic head-maps (TPHM) as output from
32 channel EEG signals (B) ConvAE for obtaining the latent space (C) Reconstruction metrics to
evaluate the latent space (LS) quality (D) DNN with LS and TPHM as inputs (E) Utility (U) to measure
the model’s performance.

3.1. DEAP Dataset

DEAP is a popular dataset of multichannel EEG data and peripheral physiological
data from 32 subjects [51]. Signals were recorded using the Biosemi ActiveTwo system
while each subject watched 40 one-minute-long music videos. Every video had the artist’s
name, title, and URL comprising various emotion tags such as happy, fun, sad, exciting,
pleasure, joy, and much more. DEAP is a benchmark dataset for video-induced emotion
research. Three-second baseline signals were added at the beginning of every one-minute
EEG recording. DEAP has an overall 40 channels, out of which 32 were EEG signals, and
the remaining 8 channels were peripheral signals. The 32 AgCl electrodes were mounted
on the scalp as per the international 10-20 standard and using the following channels: Fp1,
AF3,F3,F7,FC5,FC1,C3,T7,CP5,CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6,
FC2,Cz,C4,T8,CP6, CP2, P4, P§, PO4, O2.

3.2. Data Pre-Processing

The experiment’s first phase includes signal pre-processing (phase A of Figure 1).
EEG signals were captured with a sampling rate of 512 Hz, which was down-sampled to
128 Hz [51]. Electro-oculogram (EOG) artifacts resulting from eye blinking were removed as
part of the data-cleaning process. A band-pass frequency filter from 0.5-45.0 Hz was applied
to the recorded EEG signals. Three-second baseline data were also removed for every EEG
signal associated with each video. The electrodes positioned on the human scalp in the
3D space were mapped onto a 2D Cartesian plane using Azimuthal equidistant projection
(polar projection) (1 of Figure 1). The EEG signals gathered from each participant and each
video was sliced into windows with size 0.5 s, 1 s, 1.5 s, and 2 s and with window shift
of 125 ms, 250 ms, and 500 ms respectively. As anticipated in the research hypothesis, the
possible window length and shift configurations will be empirically evaluated. Noticeably,
these windows overlap significantly, and the rationale was to have a considerable amount
of windows that could be used as input to the subsequent deep learning phase. The next
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step in the pre-processing pipeline was to transform the EEG signals into the frequency
domain by employing the Fast Fourier Transform (FFT) (2 of Figure 1). The transformed
data in the frequency domain were separated into the five EEG bands: delta (0.5-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (3045 Hz) [34].

The final step was to generate topographic head-maps (TPHM) using the information
from the five EEG bands. A mesh grid of size 32 x 32 was created for each band by using
the 2D electrode positions on the grid. The piecewise cubic interpolation method was used
to fill values along the 2D grid surface with 32 electrode positions (3 of Figure 1). The five
head-maps (for delta, theta, alpha, beta, and gamma) were joined into a tensor of shape
32 x 32 x 5 which represented the input to a Convolutional Autoencoder (ConvAE) (phase
B of Figure 1) and a Dense Neural Network (DNN) (phase D of Figure 1), both described in
the following sections. In summary, the shape of the data associated with each participant
was of the order 40 x 32 x 128 x 60 that corresponded to the number of videos, the number
of channels, sampling frequency, and video duration. These data, as mentioned previously,
were further segmented with an overlapping sliding window technique. The window shift
(WS) determined the extent of the overlapping among consecutive frames. 0.5 s window
length achieved an overlap of 75%, 50%, and 0% (no overlap) from shifts of 125 ms, 250 ms,
and 500 ms. With 1 s window length, an overlap of 87.5%, 75%, and 50% was achieved.
Using 1.5 s window length, an overlap of 91.7%, 83.3%, and 66.7% was noted. Finally,
with 2 s window length, an overlap of 93.7%, 87.5%, and 75% was achieved with the same
shifts of 125 ms, 250 ms, and 500 ms respectively. Topographic maps were created for each
window. Thus the size of the resulting datasets changed based on the chosen window
length and window shift configurations. In detail, Table 1 shows the number of windows,
each useful for generating a 32 x 32 x 5 input tensor (5 topographic head-maps, one for
each EEG band) generated for each of the above configurations.

Table 1. Amount of EEG windows extracted from EEG data per video (60 s) and in total (for 40 videos)
as a function of window length (in s) and window shift (in ms) for each participant.

Window Window Amount Amount
Length (s) Shift (ms) (in 1 Video) (Total)
0.5 125 477 19,080
0.5 250 239 9560
0.5 500 120 4800
1.0 125 473 18,920
1.0 250 237 9480
1.0 500 119 4760
1.5 125 469 18,760
1.5 250 235 9400
1.5 500 118 4720
2.0 125 465 18,600
2.0 250 233 9320
2.0 500 117 4680

3.3. Convolutional Autoencoders (ConvAE)

Autoencoders learn optimal features from unlabelled input data without supervision.
The learning algorithm performs backpropagation by assigning input data as target values,
which means y* = x where x and y represent input and output, respectively, for an ith
training example [52]. The model & (1) learns an approximation to the identity function
with weights W and bias b.

hy p(x) ~ x 1)

Thus the generated output is similar to the input. An autoencoder consists of an
encoder—decoder block. The output of the encoder is the latent space (LS) which preserves
optimal features usually in a lower dimensional space, thus capturing the essence of input.
An autoencoder reconstructs the input by retaining essential features in the latent space,
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thereby eliminating redundant ones. The reconstructed output has the same shape as the
input. The holdout validation approach was used to partition the generated topographic
maps from each of the datasets (Table 1) into train, validation, and test sets, respectively
containing 75%, 12.5%, and 12.5% of the available data.

The ConvAE (phase B of Figure 1) consisted of multiple convolutional and max-
pooling layers. The initial convolutional layer had 64 kernel units. The kernels were
doubled for every subsequent convolutional layer to compensate for the reduced input size
at every passing max-pooling layer (Figure 2). The decoder was symmetrical to the encoder
with an equal number of layers. However, the kernels were halved at the subsequent
convolutional layer. Each convolutional layer used 3 x 3 kernels to convolve on each level
(5 EEG bands) of the input topographic head-map tensor (32 x 32 x 5). The rationale behind
the kernel size is that small-sized kernels are cost-effective, and odd-sized kernels possess
symmetric properties that make convolution without distortion [53]. Every convolutional
step used zero padding to prevent shrinkage of the image dimensions. Padding ensured the
input size remained the same at every convolutional layer. ReLU, a non-linear activation
function, was used in every layer:

z, ifz>0

flz) = { : )

0, otherwise.

where z = Wx + b.

ConvAE

TPHM!WII

Input Layer (5, 32, 32)
Conv2D (64, 32, 32)
Conv2D (128, 32, 32)
MaxPooling2D (128,16,16)
Conv2D (256,16,16)
MaxPooling2D (256,8,8)

LS ¢ P O

Conv2D (256,8,8)
UpSampling2D (256,16,16)
Conv2D (128,16,16)
UpSampling2D (128,32,32)
Conv2D (64,32,32)
Output Layer (5,32,32)

Figure 2. Convolutional Autoencoder’s (ConvAE) architecture for learning optimal latent space (LS)
from topology-preserving head-maps (TPHM) for delta, theta, alpha, beta, and gamma EEG bands.

The Autoencoder used Adam as an optimization algorithm where the optimal learning
rate was determined by performing hyperparameter tuning. The Autoencoder’s loss was
measured using the Mean Squared Error (MSE), which is given by

n . N
MSE = - Yo (X - X)?

ni3

®)

where n represents the number of predicted data points. The latent space (LS) was set
to be (2,2,5), (4,4,5), (8,8,5), and (16,16,5) respectively. Convolutional autoencoders
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were person-specific, meaning that only the data from a single participant were considered
for training a model. Thus 32 models, one for each participant and each configuration
of Table 1 were generated. The Autoencoder was trained for 100 epochs by incorporating
an early stopping mechanism.

3.4. Reconstruction Evaluation Metrics

Structural Similarity Index (SSIM), Mean Squared Error (MSE), Normalised Root Mean
Squared Error (NRMSE), and Peak Signal-to-noise Ratio (PSNR) were used to validate the
effectiveness of the person-specific autoencoder models and their reconstruction capacity
(phase C of Figure 1). SSIM measures the similarity between two topographic head-maps
x and y:

(2pxpty + 1) (20%y + 2)

SSIM =
(M3 + g +c1) (0% + 07 +ca)

4)

where jiy, py, 0y, and o, are mean and variance of x and y respectively, and ¢; and c; are the
stabilization constants of division. SSIM ranges between 0 and 1, where 1 means the perfect
match between the original and reconstructed topographic head-maps. SSIM measures
degradation in the reconstructed input resulting from data compression, which is based on
perception and saliency error properties [54].

MSE gives the cumulative squared difference between the original and reconstructed
topographic head-maps (Equation (3)). MSE gives absolute error [54] and is strictly positive:
the lower the MSE, minimal is the reconstruction error. RMSE measures the dissimilarity
between reconstructed and true pixel values from reconstructed and original topographic
head maps. RMSE is normalized, which facilitates the comparison of two topographic
maps with different scales. NRMSE with mean 7 for the measured data is defined by

NRMSE — JMSE (5)

RMSE = {/MSE(X) (6)

Similar to MSE, a lower NRMSE indicates more similarity between the two topographic
head-maps.

PSNR gives a peak signal-to-noise ratio for two different topographic head-maps
(Equation (7)) [54]. PSNR is measured in decibels where higher values indicate better

reconstruction quality.
2

PSNR = 101log;, % @)

R corresponds to the maximum amplitude variation in the input. The reconstruction
quality is measured based on perception, saliency, and absolute error properties.

3.5. Classification

A neural network was designed for a classification task to demonstrate the utility of
the latent space, learned by training the ConvAE (phase D of Figure 1). The goal was to
train a new predictive model using latent space as input and a video category as the target
feature (DEAP dataset, Section 3.1). The model was trained using a fully connected Dense
Neural Network (DNN) with input, hidden, and output layers (Figure 3) [55]. The input
was flattened and passed to the first dense layer with 512 units and the ReLU activation
function. The number of units in the subsequent hidden layers was decreased by a power of
2. Each hidden layer obtained its input from the previous layer, computed weight metrics
and bias typically using ReLU, a non-linear activation function, and transferred its output
to the next layer. Every hidden layer was interleaved with a Dropout layer with a dropout
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rate of 0.1. The output layer had 40 units with a softmax activation function. The Softmax
function was used at the output layer to work with a multiclass classifier.

ez
o(z;) = W (8)

0 is the softmax function, z is the input vector, e* and ¢* are the standard exponentia-
tion functions, and k represents the number of classes in the multiclass classification.

_ DNN

Input (TPHM/LS)

Flatten
Dense (512, RelLU)
Dropout (0.1)
Dense (256, RelLU)
Dropout (0.1)
Dense (128, ReLU)
Dropout (0.1)
: Dense (64, ReLU)
. Dense (40, Softmax)

Video 1 s Video 40

Figure 3. A fully connected Dense Neural Network (DNN) architecture for predicting Video ID in
music video classification problems. ConvAE’s LS and TPHM are input to DNN at separate instances
to examine optimal features.

Finally, the output of the softmax activation function was connected to the target
feature (video ID) [56]. In detail, two variants of the input were used to train the models,
one with the original topology preserving head-maps, treated as baseline (phase D of
Figure 1), and the other with the latent space of the ConvAE activated from the same
head-maps. The rationale of the baseline was to demonstrate the utility of the latent space
in the music video classification.

Initially, input data were shuffled to reduce variance and to make sure train/validation/
test sets were representative of the entire data distribution. A holdout validation approach
partitioned the shuffled topographic maps and related activated latent space inputs into
the train, validation, and test sets with 75%, 12.5%, and 12.5%, respectively. The DNN used
Adam as an optimization algorithm where the optimal learning rate was determined by
hyperparameter tuning. The DNN was trained using an early stopping mechanism with a
patience value set to 10. The training was halted if the validation loss did not show any
improvement (decrease) for more than 10 epochs. Accuracy and Fl-score were used as
evaluation metrics to assess the performance of the DNN in fitting the 40 video categories.
Accuracy is the fraction of the correct predictions for the data.

Right predictions
Total predictions

Accuracy = 9)
Fl-score is the harmonic mean of the precision and recall. The value of a perfect

Fl-scoreis 1. .
precision X recall

precision + recall

Fl-score = 2 x (10)
3.6. ConvAE and DNN Hyperparameter Tuning

Hyperparameter tuning was carried out separately for both the ConvAE and DNN to
optimize model performance. In detail, person-specific ConvAE and DNN were trained on
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three random participants and following the pipeline of Figure 1. Several hyperparameters
were manipulated, and the model trained highlighted the best configuration:

1.  Three convolutional layers, each in both encoder and decoder, lead to the best recon-
struction capacity of the ConvAE. No significant improvement in model performance
was observed for more than three convolutional layers. Thus the network was not
expanded. The Learning Rate (LR) scheduler gave 3 x 10~# for the Adam optimizer.
The optimal batch size was found to be 32. For encoders, performance was optimal
when the number of kernels was doubled at each convolutional layer while image di-
mensions were halved. Symmetrically, the number of kernels was halved for decoders
while dimensions doubled until the output layer, where the image size equaled the
original input.

2. For DNN, five dense layers gave the optimal performance. The LR scheduler gave
3 x 10~* for Adam optimizer. The optimal batch size was found to be 32. The Kull-
back-Leibler (KL) divergence outperformed other loss metrics including categorical
cross-entropy for multiclass classification with softmax activation in the output layer
with the one-hot encoded target variable (video ID). KL divergence is given by:

N .
Dua(pll) = L p(x) logi;gjﬁl’; a1

The problem of overfitting was handled with more data generation, L2 regularization,
and dropout regularization.

1.  As mentioned previously, more data were generated by overlapping EEG signal
windows using a window shift of 125 ms, 250 ms, and 500 ms.

2. L2 regularization was added to the convolutional layers of Autoencoder with the

regularization factor tuned to 0.01.

Dropout regularization was introduced in DNN with a rate of 0.1.

4.  Early stopping monitored training and validation epochs in both ConvAE and DNN.
Model training was stopped when no significant decrease was found in the validation
loss over 10 epochs.

W

3.7. Implementation Details

The initial training for a single participant was conducted in Google Colab with
TensorFlow, Keras, and machine learning libraries, using automatically allocated GPUs.
The experiment consisted of training 48 ConvAE models for window length, window shift,
and latent space configurations to compute reconstruction metrics for each participant
(4WL x 3WS x 4LS = 48 models). It also included 60 DNN models (48 + 12 using the
original topographic maps). Thus a total of 108 models for each participant were built.
Each model took, on average, between 45 and 55 min to train with Google Colab.

Training 108 models would have required between 4860 and 5940 min (81 to 99 h,
which is 3.4 to 4.1 days) for each participant. Consequently, 108 to 132 days were required
to run the entire experiment, with no interruptions and no accounting of potential technical
problems. Thus, it was decided to move to a dedicated server for training the remaining
participants. The server was an IBM machine with four Tesla P100 GPUs and 160 CPUs
with a Linux kernel 167-Ubuntu SMP version with a ppc64le architecture.

3.8. Statistics

The DNN's evaluation metrics accuracy and F1-score were used to assess the utility
of the various latent space dimensions by comparing before and after training each ConvAE
on the original topographic maps for every window length and window shift configuration.

The one-sided Wilcoxon signed-rank test (with & = 0.05) for equality of medians
on the paired samples (same subject) was used to test the null hypothesis: the utility values
for latent space parameters were less than or equal to the utility values for topographic
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maps against the alternate hypothesis: the utility values for latent space parameters were
greater than utility values for topographic maps.

4. Results
4.1. Convolutional Autoencoders (ConvAE)

Table 2 presents the results associated with the reconstruction metrics of the ConvAE
coupled with the box-plots in Figure 4, and the 3D plots in Figure 5. As it is possible
to notice, generally, all models achieved SSIM scores close to 1, which indicated that
the trained models were able to reconstruct topographic head-maps structurally very
similar to the original ones. The best-performing models were built with a window shift
of 125 ms. Small window shifts generated more topographic maps, which increased the
training data for the model to learn from, thereby improving the model performance by
minimizing the training error (Figure 4). Intuitively, the latent space of (16,16,5) of the
ConvAEs leads to models with a better SSIM score than its smaller counterparts of (4,4,5)
and (2,2,5). In (4,4,5) and (2,2,5), the feature size was further reduced with convolution
and pooling. The larger the latent space and the smaller the window shift, the higher the
SSIM score. This pattern was observed in every window length of 0.5s, 15, 1.5 s, and
2 s. However, the EEG window length does not affect the SSIM scores, as similar results
were produced across each window length. Furthermore, the latent space of (8,8,5) gave
promising results close to that of (16,16,5) for a 125 ms shift, signaling the potential of
obtaining a similar reconstruction capacity with an additional reduction in the size of the
input topographic maps.

Table 2. Reconstruction scores from Structural Similarity Index Measure (SSIM), Mean Squared Error
(MSE), Normalized Root Mean Squared Error (NRMSE), and Peak Signal-to-Noise Ratio (PSNR) for
48 models obtained with every possible window length (WL), window shift (WS), and latent space
(LS) combinations.

Model Configuration Reconstruction Metric Scores

WL (s) WS (ms) LS SSIM MSE NRMSE PSNR
0.5 125 (2,2,5) 0.9985 0.0000069 0.0361 55.75
0.5 125 (4,4,5) 0.9992 0.0000032 0.0279 58.14
0.5 125 (8,8,5) 0.9996 0.0000015 0.0206 60.78
0.5 125 (16,16,5) 0.9997 0.0000009 0.0158 63.32
0.5 250 (2,2,5) 0.9980 0.0000095 0.0461 53.56
0.5 250 (4,4,5) 0.9990 0.0000044 0.0345 56.27
0.5 250 (8,8,5) 0.9991 0.0000039 0.0312 57.48
0.5 250 (16,16,5) 0.9994 0.0000017 0.0220 60.60
0.5 500 (2,2,5) 0.9975 0.0000115 0.0510 52.89
0.5 500 (4/4,5) 0.9987 0.0000049 0.0369 55.42
0.5 500 (8,8,5) 0.9992 0.0000034 0.0303 57.25
0.5 500 (16,16,5) 0.9993 0.0000028 0.0257 59.20
1 125 (2,2,5) 0.9980 0.0000104 0.0384 54.27
1 125 (4,4,5) 0.9993 0.0000033 0.0251 57.98
1 125 (8,8,5) 0.9997 0.0000013 0.0169 61.23
1 125 (16,16,5) 0.9997 0.0000016 0.0182 61.39
1 250 (2,2,5) 0.9976 0.0000129 0.0442 52.97
1 250 (4/4,5) 0.9986 0.0000064 0.0360 55.35
1 250 (8,8,5) 0.9993 0.0000042 0.0276 57.17
1 250 (16,16,5) 0.9996 0.0000022 0.0211 59.36
1 500 (2,2,5) 0.9971 0.0000152 0.0514 51.74
1 500 (44,5) 0.9985 0.0000075 0.0391 53.92
1 500 (8,8,5) 0.9991 0.0000043 0.0308 56.31
1 500 (16,16,5) 0.9989 0.0000067 0.0326 56.47
1.5 125 (2,25 0.9978 0.0000128 0.0385 53.36
1.5 125 (4,4,5) 0.9992 0.0000035 0.0241 57.09
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Table 2. Cont.
Model Configuration Reconstruction Metric Scores
WL (s) WS (ms) LS SSIM MSE NRMSE PSNR
1.5 125 (8,8,5) 0.9996 0.0000017 0.0169 60.48
1.5 125 (16,16,5) 0.9997 0.0000013 0.0149 61.67
1.5 250 (2,25 0.9972 0.0000163 0.0455 52.01
1.5 250 (44,5) 0.9987 0.0000065 0.0335 54.38
1.5 250 (8,8,5) 0.9994 0.0000032 0.0228 57.99
1.5 250 (16,16,5) 0.9995 0.0000022 0.0200 59.28
1.5 500 (2,2,5) 0.9963 0.0000193 0.0542 50.66
1.5 500 (44,5) 0.9980 0.0000100 0.0412 52.69
1.5 500 (8,8,5) 0.9991 0.0000042 0.0276 56.16
1.5 500 (16,16,5) 0.9992 0.0000038 0.0257 56.95
2 125 (2,25 0.9984 0.0000085 0.0357 55.16
2 125 (4,4,5) 0.9992 0.0000033 0.0251 58.27
2 125 (8,8,5) 0.9997 0.0000014 0.0164 61.59
2 125 (16,16,5) 0.9998 0.0000010 0.0146 62.57
2 250 (2,2,5) 0.9979 0.0000101 0.0427 53.52
2 250 (44,5) 0.9988 0.0000047 0.0321 56.07
2 250 (8,8,5) 0.9994 0.0000023 0.0234 58.69
2 250 (16,16,5) 0.9991 0.0000037 0.0241 59.60
2 500 (2,2,5) 0.9973 0.0000127 0.0511 51.89
2 500 (4,4,5) 0.9980 0.0000078 0.0415 53.86
2 500 (8,8,5) 0.9987 0.0000051 0.0330 55.83
2 500 (16,16,5) 0.9990 0.0000033 0.0265 57.98

Similarly, the MSE results indicate that the larger the latent space, the smaller the
reconstruction error, with (16,16,5) being the best-performing latent space. The latent space
of (8,8,5) gives similar results to that of (16,16,5) for 125 ms shift (Figures 4 and 5). The
window shift has a more evident trend and shares a positive correlation with MSE: the
smaller the shift, the smaller the MSE. Window length again seems not to have any influence
on the MSE scores. The results associated with the NRMSE confirmed the observation made
with the MSE scores. In other words, the larger the latent space and smaller the window
shift, the lower the NRMSE score, with window lengths not leading to observable effects on
the NRMSE score. Finally, the results associated with the PSNR confirmed that the larger
the latent space dimension, the higher the peak signal-to-noise ratio of the reconstructed
topographic head-maps, with smaller window shifts better than larger shifts and window
size not influencing the PSNR score.
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Figure 4. Reconstruction ability, as measured by Structural Similarity Index (S5IM), Mean Squared
Error (MSE), Normalised Root Mean Squared Error (NRMSE), and Peak Signal-to-Noise Ratio (PSNR)
for 48 different ConvAE models with varying window length (WL), window shift (WS), and latent

space (LS).
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Figure 5. 3D plot depicting mean reconstruction scores (SSIM, MSE, NRMSE, and PSNR) for 48 dif-
ferent ConvAE models with varying window length (WL), window shift (WS), and latent space (LS).

4.2. Dense Neural Network (DNN)

The reconstruction metrics confirmed an intuitive trend whereby the less information
cut and the more training instances yield higher reconstruction capacity. However, the
results in this section aim to demonstrate whether such an information cut and variation in
training size affect the utility of the learned latent spaces of the various ConvAEs. Figure 6
compares the utility scores for DNN models in the form of a box-plot, while Figure 7
presents them as 3D plots. Every latent space of the models leads to better predictive
accuracy than those models trained with the original (full size) topographic maps (Figure 6)
except for (2,2,5) latent space with 500 ms window shift in 0.5 s and 1 s window length case.
The latent space of (2,2,5) with a 500 ms window shift leads to the creation of models with
accuracy in predicting video categories comparable to the original, full-size topographic
maps of (32,32,5). In general, the larger the latent space, the better the predictive accuracy
of the DNN models, with the accuracies of models built with latent space of (8,8,5) and
(16,16,5) nearly equal (Table 3, Figures 8 and 9).

The 125 ms window shift leads to models with the best accuracies, thereby adhering
to the previously established results that the smaller the window shift better the accuracy.
Finally, a larger window length improved the predictive accuracy of video categories with
a significant improvement observed from 0.5 s to 1 s window length, indicating that the
minimum length of the EEG windows has to be at least 1 second, with the current sampling
rate (128 Hz) to achieve a good performance.

Observation for Fl-scores was in line with the accuracy scores. Every latent space
leads to creating models with better F1-scores than those built with full-size original input
topographic maps except for (2,2,5) latent space with 500 ms window shift in 0.5 s and
1 s window length case. The latent space of (2,2,5) with a 500 ms window shift leads to
the creation of models with an F1-score in predicting video categories comparable to the
original, full-size topographic maps of (32,32,5). The latent spaces of (8,8,5) and (16,16,5)
lead to the formation of models with the highest F1-scores. Similarly, small window shifts
lead to better F1-scores. The larger the window length, the better the Fl-score, with 1s
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being the minimum length of the EEG windows, with the current sampling rate (128 Hz) to
achieve good performance.
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Table 3. Average accuracies of the classification models for all the participants trained with latent

spaces (LS) and the original topographic maps (TPHM), grouped by window length (WL) for the
optimal window shift of 125 ms.

WL LS Avg. Acc. TPHM Avg. Acc.
(2,2,5) 29.9%
0.5 E‘;’g’g; gg; (32,32,5) 22.4%
(16,16,5) 50.6%
(2,2,5) 59.0%
4,45 72.0% o
1 ES 8 5; 79.1% (32,32,5) 44.8%
(16,16,5) 79.9%
(2,2,5) 69.1%
1.5 E‘;"é'g; ;gg; (32,32,5) 49.0%
(16,16,5) 84.2%
(2,2,5) 73.3%
(4,4,5) 82.4% o
2 (8.85) 86.7% (32,32,5) 54.3%
(16,16,5) 86.6%
53.9
48.4
27-3 I I I I I
0.5 1 15 (2,25) (445)  (885) (16,16,5) (32325)
Window Length(s) Wlndow Shlﬂ(ms) Latent Space (LS)

Figure 8. Aggregate mean accuracy percentage of the 60 models on window length (WL), window
shift (WS), and latent space (LS).
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Figure 9. Accuracy distribution of the classification models for all the participants across window
length, window shift, and latent space.

4.3. Statistical Inferences

Table 4 presents the p-values associated with the pair-wise comparison of the distribu-
tions of the predictive accuracies and the Fl-scores of the DNN models trained respectively
with latent spaces and the original, full-size topographic maps using the Wilcoxon signed-
rank test. The results were statistically significant for 125 ms window shift irrespective
of window length and latent space. As we increased the window shift to 250 ms and
500 ms, few comparisons with latent spaces of (2,2,5) and (4,4,5) became non-significant.
The non-significant p-value suggests that, despite achieving good reconstruction scores in
reconstructing topographic EEG maps, the DNN models trained with latent space of (2,2,5)
and (4,4,5) dimensions were ineffective.

Table 4. Comparison of utility scores between two groups (topology preserved head-maps and each
latent space) for a population size of 32 in a paired one-sided Wilcoxon signed-rank test with « = 0.05
(*p <0.05,** p <0.01, *** p < 0.001).

LS

TPHM

p-Value for Accuracy p-Value for F1-Score

WS 125 ms WS 250 ms WS500ms WS 125 ms WS 250 ms WS 500 ms
WLO05s
(2,25) (32,325) 0.039* 0.839 0.999 2.637 x 1075 #* 0,064 0.683
(445) (32,325) 5.076 x 1070*+ 0.017* 0.982 1.626 x 1076 *#* 9219 x 107> **  0.051
88,5 (32,325) 4.787 x 1077 ** 1287 x 10~ =+ 0,102 5.406 x 1077 #* 2290 x 1076 **  (0.0001 ***
(16,16,5) (32,32,5) 5.264 x 10~7** 2103 x 1076 **  (.009 * 6.301 x 1077 **  6.863 x 1077 ** 2355 x 1075 ***
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Table 4. Cont.

LS TPHM

p-Value for Accuracy

p-Value for F1-Score

WS 125 ms WS 250 ms WS 500 ms WS 125 ms WS 250 ms WS 500 ms

WL1s

(2,25)  (32,32,5) 0.001 ** 0.492 0.994 0.0001 *** 0.071 0.752

(445) (32,32,5)5.533 x 1076 ** 0,004 ** 0.537 2.614 x 1070 **  0,0003 *** 0.035 *

(8,85) (32,32,5)5.264 x 1077 *** 3281 x 10-0 **  0.0005 *** 1.246 x 1076 ** 4817 x 1070 ** 2,096 x 1072 ***

(16,16,5) (32,32,5) 4.352 x 1077 ** 4787 x 1077 ** 4120 x 1075 ** 8376 x 1077 ** 1.226 x 1070 ** 2,501 x 1076
WL15s

(2,2,5)  (32,32,5) 0.0004 *** 0.239 0.969 4.675 x 1075+ 0.112 0.322

(4,45) (32,32,5) 1.112 x 1076 =+ 0,0002 *** 0.281 8.254 x 1077 **  0.0001 *** 0.003 **

(8,8,5) (32,32,5)3.954 x 10~7 ** 5533 x 10~6 **  (.0003 *** 8281 x 1077 ** 3,642 x 10760 ** 2555 x 10° ***

(16,16,5) (32,32,5) 4.352 x 107 ** 1219 x 1070 ** 3392 x 1075 ** 8445 x 1077 ** 1797 x 1076 ** 1929 x 107> ***
WL2s

(2,25) (32,32,5) 0.001 ** 0.043 * 0.631 0.0002 *** 0.010 * 0.050

(445) (32,32,5) 3.582 x 1076 **  0.001 ** 0.139 4.083 x 1070 **  0.0006 *** 0.008 **

(8,85) (32,32,5) 6.443 x 1077 **  1.756 x 1070 **  0.001 ** 1.211 x 1076 * 1,843 x 1076 **  0.0001 ***

(16,16,5) (32,32,5) 3.954 x 1077 ** 5264 x 1077 **  0.0001 *** 1.241 x 1076 1.226 x 1070 ** 2363 x 1072 *+*

5. Discussion
In general, the results associated with the person-specific ConvAE highlighted that:
() the larger the latent space, the higher the reconstruction ability,

(I) the smaller the window shift, the higher the reconstruction ability,

(II) window length did not have an important role, and it did not influence the recon-
struction ability,

(IV) on average, the utility of all the latent spaces learned in each ConvAE outperformed
that associated with the original topographic maps;

(V) the best utility of the latent space is when the input is of shape (8,8,5) with window

shift 125 ms and with a window length of at least 1 s.

For finding (I), the fact that the reconstruction ability is higher given larger latent spaces
is intuitively explained by the amount of information each latent space holds. (16,16,5)
had 1280 data points, (8,8,5), (4,4,5), and (2,2,5) had 320, 80, and 20 points respectively.
The larger latent space encompasses more meaningful internal representations of the
externally observed topographic maps—the inputs of ConvAE.

For finding (II), the smaller the window shift, the higher the reconstruction ability is
explained by the variability across the generated topographic maps. For example, for a
1 s window length, 473 topographic maps were generated for a shift of 125 ms, whereas
for 250 ms and 500 ms window shifts, 237 and 119 topographic maps were generated,
respectively. As encoded in a topographic map, more variation in cerebral activation exists
for smaller shifts. In other words, different brain dynamics can be represented and used to
train ConvAE with varying topographic maps.

For finding (III), the fact that the length of the window does not affect the recon-
struction capacity of the ConvAE is explained reasonably by the number of topographic
maps used for training each person-specific ConvAE. For example, by taking 125 ms as the
fixed value for a window shift, 477 topographic maps were produced with a 0.5 s window
length. The topographic maps generated for 1s, 1.5 s, and 2 s window lengths were 473, 469,
and 465, respectively. The cardinality of the training sets of the generated topographic maps
differs minimally across window lengths and their variability. Therefore, it can be argued
that reconstruction capacity across the different window lengths could be attributed to the
amount of training data. To verify this was untrue, all the person-specific ConvAE’s were
retrained by augmenting each training set by adding Gaussian noise. In detail, for each
training tensor of (32,32,5) in the training set, one, two, and three augmented tensors were



Mach. Learn. Knowl. Extr. 2022, 4

1060

generated by adding Gaussian noise (mean 0, std 1) [57]. The cardinality of each original
training set was increased by augmenting the data once, twice, and thrice respectively. The
results of this additional augmentation phase were consistent with the previous results,
whereby the manipulation of the window length did not improve the reconstruction ability
of each person-specific ConvAE.

For finding (IV), every latent space of the ConvAE outperformed the original to-
pographic maps when trained with a DNN to fit the selected classification task (video
categorization), clearly indicating its utility. The latent space likely contains an increas-
ing number of relevant representations of the original topographic maps, and they have
likely discarded their inherent noise and artifacts. Both utility metrics, namely accuracy
and Fl-score, were in unison with the established results: larger window length, smaller
window shift, and bigger latent space delivered a better utility score. Furthermore, the
analyses concerning the window lengths align with the results documented in [58] that
uses a variational autoencoder. Here, intuitively, the larger the window length, the better its
impact on the utility. However, it is beneficial to know the minimum amount of information
in the latent space of the Autoencoder that reconstructs its inputs successfully. Specifically,
our study finds the minimal window length, and the shift among windows required to
train a convolutional autoencoder.

For finding (V), the combination of latent space of shape (8,8,5) with 125 ms shift and a
minimal window length of 1 s can be justified by the following observations. Firstly, (8,8,5)
means a reduction of the dimensionality of the original topographic maps by 75%, which is
already a significant cut in information and, on average, gives nearly the same outcome
as obtained with (16,16,5). The latent space (8,8,5) is not only a necessary dimension to
capture the relevant features from the original data but also not larger for accommodating
redundant features. Reducing the latent space dimension further starts deteriorating the
utility faster. Secondly, as mentioned before, 125 ms allows more training instances to create
a substantial variability in cerebral activation that is encoded in additional topographic
maps. Intuitively, this variability in the input might be transitively expected in the activation
of the latent space of trained ConvAE, thus positively impacting the discrimination of the
video categories. Thirdly, 1 s is the minimal length for a window to contain relevant
information for discriminating video, presumably because of the FFT and the current
sampling rate in EEG data. In fact, with a sampling rate of 128 Hz, the FFT of the input
EEG signals can generate richer information in the frequency domain with at leasta 1s
window compared to that obtained from a 0.5 s window (only 64 points). Consequently,
the window length can likely affect the construction of precise topographic maps that better
reflect cerebral activity in the frequency domain and the induction of robust latent spaces,
maximizing their utility in categorizing videos.

Our research demonstrated that using a sliding window technique, spectral topo-
graphic head-maps can be formed from multichannel EEG signals, and ConvAE can be
trained to extract relevant features, thus performing meaningful dimensionality reduction.
The study illustrates the existence of an optimal window length (WL) of 1 s, at the mostly
adopted 128 Hz sampling rate, an optimal 125 ms window shift (WS), and an optimal latent
space (LS) of 25% the original size, that can maximize the mean reconstruction capacity
of the spectral topographic head-maps via trained ConvAE models and that has maximal
utility in a classification task.

Our study contributes to the body of knowledge with an architectural pipeline for
eliminating redundant EEG data while preserving relevant EEG features with deep autoen-
coders and establishing its limits and utility that can be used in ecological settings. Here
ecological settings mean naturalistic tasks performed by users like those executed in the
study that leads to the development of the DEAP dataset [51].

6. Conclusions

Electroencephalographic (EEG) signals can be analyzed in various domains, including
time, space, and frequency. However, noise and artifacts exist in these signals, including
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eye and muscle movements, to mention a few, adding difficulties to their analysis. For this
reason, techniques such as Principal Component Analysis (PCA) and Independent Compo-
nent Analysis (ICA) are used to detect and remove artifacts requiring human intervention.
Autoencoders, an unsupervised method that does not require human labeling, have autom-
atized artifact detection and removal by representing inputs in a lower dimensional latent
space. However, little research is devoted to understanding the minimum dimension of
such latent space that allows meaningful input reconstruction.

An empirical experiment was conducted to investigate the optimal latent space dimen-
sion with continuous EEG data gathered from 32 subjects while watching 40 music video
excerpts chosen to evoke different emotions in participants, thus exerting different mental
states. Person-specific ConvAE architectures were constructed by manipulating the size of
its latent space. A sliding window technique has been employed by segmenting continuous
EEG signals into windows of varying sizes and employing an overlapping strategy. Five
topographic head-maps were formed for every window in the frequency domain, one for
each EEG band (delta, theta, alpha, beta, and gamma). The latent space of autoencoders
was assessed according to the topographic maps’ reconstruction capacity and its utility in
classifying the 40 videos. Findings suggest that the minimal latent space dimension is 25%
of the size of the input topographic maps for achieving maximum reconstruction capacity
and maximizing classification accuracy. In detail, this was achieved with a window length
of at least 1 s and a shift of 125 ms with the sampling rate of 128 Hz.

Our study contributes to the body of knowledge with an architectural pipeline for
eliminating redundant EEG data while preserving relevant EEG features with deep autoen-
coders and establishing its limits and utility that can be used in ecological settings. Future
work will include the extension of this study to further strengthen its findings. For example,
larger time windows can be tested to understand further their impact on the reconstruction
capacity of autoencoders and the utility of the derived latent spaces. Similarly, smaller
shifts, and larger topographic head-maps, built with fewer or more electrodes can be
tested, and the current experiment can be replicated by employing different sampling rates.
The architectural pipeline can be applied to individual and different combinations of the
EEG bands (delta, theta, alpha, beta, gamma) to understand their impact on reconstruction
capacity and predictive utilities. Notions of explainability and techniques from explainable
artificial intelligence (XAI) can be employed [59] to analyze derived latent space with
visual explanations [60], including salient masks or using techniques such as the layer-wise
relevance propagation, which will provide scholars with a richer analysis tool and help
improve the design of the autoencoder architectures.
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Abbreviations

The following abbreviations are used in this manuscript:

EEG Electroencephalogram

CNN Convolution Neural Network
PCA Principal Component Analysis
ICA Independent Component Analysis
WL Window Length

LS Latent Space

WS Window Shift

TPHM Topology Preserved Head Maps
ConvAE Convolutional Autoencoder

SSIM Structural Similarity Index Measure
MSE Mean Square Error

NRMSE  Normalized Root-Mean-Square Error
PSNR Peak Signal-to-Noise Ratio

DNN Dense Neural Network

LDA Linear Discriminant Analysis

csp Common Spatial Pattern

KNN K-Nearest Neighbors

SVM Support Vector Machine

RF Random Forest

GMM Gaussian Mixture Model

DEAP A dataset for emotion analysis using eeg, physiological and video signals
EOG Electrooculogram

FFT Fast Fourier Transform

References

1.

o

10.

11.

12.

13.

14.

15.

Mars, R.B.; Sotiropoulos, S.N.; Passingham, R.E.; Sallet, J.; Verhagen, L.; Khrapitchev, A.A.; Sibson, N.; Jbabdi, S. Whole brain
comparative anatomy using connectivity blueprints. eLife 2018, 7, e35237. [CrossRef] [PubMed]

Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014.

Algin, O.F; Siuly, S.; Bajaj, V.; Guo, Y.; Sengu, A.; Zhang, Y. Multi-Category EEG Signal Classification Developing Time-Frequency
Texture Features Based Fisher Vector Encoding Method. Neurocomputing 2016, 218, 251-258. [CrossRef]

Stober, S.; Sternin, A.; Owen, A.M.; Grahn, J.A. Deep Feature Learning for EEG Recordings. arXiv 2015, arxiv:1511.04306.
Férat, V.; Seeber, M.; Michel, C.M.; Ros, T. Beyond broadband: Towards a spectral decomposition of electroencephalography
microstates. Hum. Brain Mapp. 2022, 43, 3047-3061. [CrossRef]

Abdeljaber, O.; Avcy, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.A.; Inman, D.J. 1-D CNNs for structural damage detection:
Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308-1317. [CrossRef]

Abdi, H.; Williams, L.J. Principal component analysis. Wires Comput. Stat. 2010, 2, 433—459. [CrossRef]

Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812-2831. [CrossRef]

Acharya, U.R;; Sree, S.V,; Swapna, G.; Martis, R.J.; Suri, ].5. Automated EEG analysis of epilepsy: A review. Knowl. Based Syst.
2013, 45, 147-165. [CrossRef]

Oosugi, N.; Kitajo, K.; Hasegawa, N.; Nagasaka, Y.; Okanoya, K.; Fujii, N. A New Method for Quantifying the Performance of
EEG Blind Source Separation Algorithms by Referencing a Simultaneously Recorded ECoG Signal. Neural Netw. 2017, 93, 1-6.
[CrossRef]

Korats, G.; Cam, S.L.; Ranta, R.; Hamid, M.R. Applying ICA in EEG: Choice of the Window Length and of the Decorrelation
Method. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies—BIOSTEC,
Vilamoura, Portugal, 1-4 February 2012.

Brunner, C.; Naeem, M.; Leeb, R.; Graimann, B.; Pfurtscheller, G. Spatial Filtering and Selection of Optimized Components in Four
Class Motor Imagery EEG Data Using Independent Components Analysis. Pattern Recogn. Lett. 2007, 28, 957-964. [CrossRef]
Xing, X,; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG.
Front. Neurorobot. 2019, 13, 37. [CrossRef] [PubMed]

Zhang, S.; You, B.; Lang, X.; Zhou, Y; An, F; Dai, Y,; Liu, Y. Efficient Rejection of Artifacts for Short-Term Few-Channel EEG Based
on Fast Adaptive Multidimensional Sub-Bands Blind Source Separation. IEEE Trans. Instrum. Meas. 2021, 70, 1-16. [CrossRef]
Hsu, S.H.; Mullen, T.; Jung, T.P.; Cauwenberghs, G. Real-Time Adaptive EEG Source Separation Using Online Recursive
Independent Component Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 1. [CrossRef] [PubMed]


http://doi.org/10.7554/eLife.35237
http://www.ncbi.nlm.nih.gov/pubmed/29749930
http://dx.doi.org/10.1016/j.neucom.2016.08.050
http://dx.doi.org/10.1002/hbm.25834
http://dx.doi.org/10.1016/j.neucom.2017.09.069
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1039/C3AY41907J
http://dx.doi.org/10.1016/j.knosys.2013.02.014
http://dx.doi.org/10.1016/j.neunet.2017.01.005
http://dx.doi.org/10.1016/j.patrec.2007.01.002
http://dx.doi.org/10.3389/fnbot.2019.00037
http://www.ncbi.nlm.nih.gov/pubmed/31244638
http://dx.doi.org/10.1109/TIM.2021.3115586
http://dx.doi.org/10.1109/TNSRE.2015.2508759
http://www.ncbi.nlm.nih.gov/pubmed/26685257

Mach. Learn. Knowl. Extr. 2022, 4 1063

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

You, S.D.; Li, Y.C. Predicting Viewer’s Preference for Music Videos Using EEG Dataset. In Proceedings of the 2020 IEEE
International Conference on Consumer Electronics—Asia (ICCE-Asia), Seoul, Republic of Korea, 1-3 November 2020; pp. 1-2.
[CrossRef]

Arabshahi, R.; Rouhani, M. A convolutional neural network and stacked autoencoders approach for motor imagery based
brain-computer interface. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, 29-30 October 2020; pp. 295-300. [CrossRef]

Zhang, P; Wang, X.; Zhang, W.; Chen, J. Learning Spatial-Spectral-Temporal EEG Features with Recurrent 3D Convolutional
Neural Networks for Cross-Task Mental Workload Assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 31-42. [CrossRef]
[PubMed]

Yao, Y.; Plested, J; Gedeon, T. Deep Feature Learning and Visualization for EEG Recording Using Autoencoders. In Proceedings
of the 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, 13-16 December 2018; Proceedings, Part VII.

Gaur, P; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A sliding window common spatial pattern for
enhancing motor imagery classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1-9. [CrossRef]

Wilaiprasitporn, T.; Ditthapron, A.; Matchaparn, K.; Tongbuasirilai, T.; Banluesombatkul, N.; Chuangsuwanich, E. Affective
EEG-based person identification using the deep learning approach. IEEE Trans. Cogn. Dev. Syst. 2019, 12, 486—496. [CrossRef]
Wang, X.; Wang, X.; Liu, W.; Chang, Z.; Kdrkkainen, T.J.; Cong, F. One dimensional convolutional neural networks for seizure
onset detection using long-term scalp and intracranial EEG. Neurocomputing 2021, 459, 212-222. [CrossRef]

Huang, L.; Zhao, Y.; Zeng, Y.; Lin, Z. BHCR: RSVP target retrieval BCI framework coupling with CNN by a Bayesian method.
Neurocomputing 2017, 238, 255-268. [CrossRef]

Qiu, Z,; Jin, J.; Lam, HK.; Zhang, Y.; Wang, X.; Cichocki, A. Improved SFFS method for channel selection in motor imagery based
BCI. Neurocomputing 2016,207, 519-527. [CrossRef]

Sadatnejad, K.; Ghidary, S.S. Kernel learning over the manifold of symmetric positive definite matrices for dimensionality
reduction in a BCI application. Neurocomputing 2016, 179, 152-160. [CrossRef]

Fei, Z.; Yang, E.; Li, D.D.U.; Butler, S.; ljomah, W.; Li, X.; Zhou, H. Deep convolution network based emotion analysis towards
mental health care. Neurocomputing 2020, 388, 212-227. [CrossRef]

Kurup, A.R.; Ajith, M.; Ramén, M.M. Semi-supervised facial expression recognition using reduced spatial features and Deep
Belief Networks. Neurocomputing 2019, 367, 188-197. [CrossRef]

Xin Zhang, Y.; Chen, Y.; Gao, C. Deep unsupervised multi-modal fusion network for detecting driver distraction. Neurocomputing
2021, 421, 26-38. [CrossRef]

Yin, Z.; Zhao, M.; Zhang, W.; Wang, Y.; Wang, Y.; Zhang, ]. Physiological-signal-based mental workload estimation via transfer
dynamical autoencoders in a deep learning framework. Neurocomputing 2019, 347, 212-229. [CrossRef]

Ieracitano, C.; Mammone, N.; Bramanti, A.; Hussain, A.; Morabito, EC. A Convolutional Neural Network approach for
classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 2019, 323, 96-107.
[CrossRef]

Su, R;; Liu, T.; Sun, C,; Jin, Q.; Jennane, R.; Wei, L. Fusing convolutional neural network features with hand-crafted features for
osteoporosis diagnoses. Neurocomputing 2020, 385, 300-309. [CrossRef]

Chambon, S.; Galtier, M.N.; Arnal, PJ.; Wainrib, G.; Gramfort, A. A Deep Learning Architecture for Temporal Sleep Stage
Classification Using Multivariate and Multimodal Time Series. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 758-769. [CrossRef]
Lee, S.B.; Kim, HJ.; Kim, H.; Jeong, ] H.; Lee, SW.; Kim, D.J]. Comparative analysis of features extracted from EEG spatial, spectral
and temporal domains for binary and multiclass motor imagery classification. Inf. Sci. 2019, 502, 190-200. [CrossRef]

Li, Z.; Wang, J.; Jia, Z.; Lin, Y. Learning Space-Time-Frequency Representation with Two-Stream Attention Based 3D Network for
Motor Imagery Classification. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy,
17-20 November 2020; pp. 1124-1129. [CrossRef]

Ang, KK,; Chin, Z.Y,; Wang, C.; Guan, C.; Zhang, H. Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV
Datasets 2a and 2b. Front. Neurosci. 2012, 6. [CrossRef]

Subasi, A.; Gursoy, M.I. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 2010,
37, 8659-8666. [CrossRef]

Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. EEG-Based Emotion Recognition Using Deep Learning Network with Principal
Component Based Covariate Shift Adaptation. Sci. World J. 2014, 2014, 627892. [CrossRef] [PubMed]

Viola, E.C.; Debener, S.; Thorne, J.; Schneider, T.R. Using ICA for the analysis of multi-channel EEG data. In Simultaneous EEG
and fMRI: Recording, Analysis, and Application: Recording, Analysis, and Application; Oxford Academic, New York, NY, USA, 2010;
pp- 121-133.

Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE
Trans. Biomed. Eng. 2005, 52, 1541-1548. [CrossRef] [PubMed]

Wu, W,; Chen, Z.; Gao, X.; Li, Y;; Brown, E.N.; Gao, S. Probabilistic common spatial patterns for multichannel EEG analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 2014, 37, 639-653. [CrossRef] [PubMed]

Qi, Y,; Luo, F; Zhang, W.; Wang, Y.; Chang, J.; Woodward, D.; Chen, A.; Han, J. Sliding-window technique for the analysis of
cerebral evoked potentials. 2003, 35, 231-235.


http://dx.doi.org/10.1109/ICCE-Asia49877.2020.9277435
http://dx.doi.org/10.1109/ICCKE50421.2020.9303717
http://dx.doi.org/10.1109/TNSRE.2018.2884641
http://www.ncbi.nlm.nih.gov/pubmed/30507536
http://dx.doi.org/10.1109/TIM.2021.3051996
http://dx.doi.org/10.1109/TCDS.2019.2924648
http://dx.doi.org/10.1016/j.neucom.2021.06.048
http://dx.doi.org/10.1016/j.neucom.2017.01.061
http://dx.doi.org/10.1016/j.neucom.2016.05.035
http://dx.doi.org/10.1016/j.neucom.2015.11.065
http://dx.doi.org/10.1016/j.neucom.2020.01.034
http://dx.doi.org/10.1016/j.neucom.2019.08.029
http://dx.doi.org/10.1016/j.neucom.2020.09.023
http://dx.doi.org/10.1016/j.neucom.2019.02.061
http://dx.doi.org/10.1016/j.neucom.2018.09.071
http://dx.doi.org/10.1016/j.neucom.2019.12.083
http://dx.doi.org/10.1109/TNSRE.2018.2813138
http://dx.doi.org/10.1016/j.ins.2019.06.008
http://dx.doi.org/10.1109/ICDM50108.2020.00136
http://dx.doi.org/10.3389/fnins.2012.00039
http://dx.doi.org/10.1016/j.eswa.2010.06.065
http://dx.doi.org/10.1155/2014/627892
http://www.ncbi.nlm.nih.gov/pubmed/25258728
http://dx.doi.org/10.1109/TBME.2005.851521
http://www.ncbi.nlm.nih.gov/pubmed/16189967
http://dx.doi.org/10.1109/TPAMI.2014.2330598
http://www.ncbi.nlm.nih.gov/pubmed/26005228

Mach. Learn. Knowl. Extr. 2022, 4 1064

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

Alickovic, E.; Kevric, ].; Subasi, A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and
wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control. 2018,
39,94-102. [CrossRef]

Atkinson, J.; Campos, D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers.
Expert Syst. Appl. 2016, 47, 35-41. [CrossRef]

Edelman, B.; Baxter, B.; He, B. EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. Ire Trans.
Med. Electron. 2016, 63, 4-14. [CrossRef]

Faust, O.; Acharya, U.R.; Adeli, H.; Adeli, A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy
diagnosis. Seizure 2015, 26, 56—64. [CrossRef]

Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless
Low-cost Off-the-Shelf Devices. IEEE |. Biomed. Health Inform. 2018, 22, 98-107. [CrossRef]

Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: a new paradigm to machine
learning. Arch. Comput. Methods Eng. 2020, 27, 1071-1092. [CrossRef]

Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine learning to deep learning: progress in machine intelligence for rational drug
discovery. Drug Discov. Today 2017, 22, 1680-1685. [CrossRef] [PubMed]

Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991.

Li, J.; Struzik, Z.R.; Zhang, L.; Cichocki, A. Feature learning from incomplete EEG with denoising autoencoder. arXiv 2015,
arXiv:1410.0818.

Koelstra, S.; Muhl, C.; Soleymani, M.; Jong-Seok Lee.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database
for Emotion Analysis ;Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18-31. [CrossRef]

Ng, A. Sparse autoencoder. CS294A Lecture Notes. 2011, 72, 1-19.

Ahlawat, S.; Choudhary, A.; Nayyar, A.; Singh, S.; Yoon, B. Improved handwritten digit recognition using convolutional neural
networks (CNN). Sensors 2020, 20, 3344. [CrossRef]

Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. . Comput.
Commun. 2019, 7, 8-18. [CrossRef]

Daoud, H.; Bayoumi, M. Deep Learning Approach for Epileptic Focus Localization. IEEE Trans. Biomed. Circuits Syst. 2020,
14, 209-220. [CrossRef]

Abdelhameed, A.M.; Daoud, H.G.; Bayoumi, M. Epileptic Seizure Detection using Deep Convolutional Autoencoder. In Proceed-
ings of the 2018 IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, South Africa, 21-24 October 2018;
pp. 223-228. [CrossRef]

Hussain, Z.; Gimenez, F; Yi, D.; Rubin, D. Differential data augmentation techniques for medical imaging classification tasks.
In Proceedings of the AMIA Annual Symposium Proceedings, American Medical Informatics Association, Washington, DC, USA,
4 November 2017; Volume 2017, p. 979.

Ahmed, T.; Longo, L. Examining the Size of the Latent Space of Convolutional Variational Autoencoders Trained With Spectral
Topographic Maps of EEG Frequency Bands. IEEE Access 2022, 10, 107575-107586. [CrossRef]

Vilone, G.; Longo, L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 2021,
76, 89-106. [CrossRef]

Vilone, G.; Longo, L. Classification of Explainable Artificial Intelligence Methods through Their Output Formats. Mach. Learn.
Knowl. Extr. 2021, 3, 615-661. . [CrossRef]


http://dx.doi.org/10.1016/j.bspc.2017.07.022
http://dx.doi.org/10.1016/j.eswa.2015.10.049
http://dx.doi.org/10.1109/TBME.2015.2467312
http://dx.doi.org/10.1016/j.seizure.2015.01.012
http://dx.doi.org/10.1109/JBHI.2017.2688239
http://dx.doi.org/10.1007/s11831-019-09344-w
http://dx.doi.org/10.1016/j.drudis.2017.08.010
http://www.ncbi.nlm.nih.gov/pubmed/28881183
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.3390/s20123344
http://dx.doi.org/10.4236/jcc.2019.73002
http://dx.doi.org/10.1109/TBCAS.2019.2957087
http://dx.doi.org/10.1109/SiPS.2018.8598447
http://dx.doi.org/10.1109/ACCESS.2022.3212777
http://dx.doi.org/10.1016/j.inffus.2021.05.009
http://dx.doi.org/10.3390/make3030032

	Introduction
	Related Work
	Materials and Methods
	DEAP Dataset
	Data Pre-Processing
	Convolutional Autoencoders (ConvAE)
	Reconstruction Evaluation Metrics
	Classification
	ConvAE and DNN Hyperparameter Tuning
	Implementation Details
	Statistics

	Results
	Convolutional Autoencoders (ConvAE)
	Dense Neural Network (DNN)
	Statistical Inferences

	Discussion
	Conclusions
	References

