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Abstract: The modern development of the biomedical engineering area is accompanied by the
availability of large volumes of data with a non-linear response surface. The effective analysis of
such data requires the development of new, more productive machine learning methods. This paper
proposes a cascade ensemble that combines the advantages of using a high-order Wiener polynomial
and Stochastic Gradient Descent algorithm while eliminating their disadvantages to ensure a high
accuracy of the approximation of such data with a satisfactory training time. The work presents flow
charts of the learning algorithms and the application of the developed ensemble scheme, and all the
steps are described in detail. The simulation was carried out based on a real-world dataset. Procedures
for the proposed model tuning have been performed. The high accuracy of the approximation based
on the developed ensemble scheme was established experimentally. The possibility of an implicit
approximation by high orders of the Wiener polynomial with a slight increase in the number of its
members is shown. It ensures a low training time for the proposed method during the analysis of
large datasets, which provides the possibility of its practical use in the biomedical engineering area.

Keywords: ensemble learning; biomedical engineering; approximation; Wiener polynomial; SGD;
fast machine learning; cascade ensemble

1. Introduction

Biomedical engineering as a science was formed in the 1950s. As an interdisciplinary
field of knowledge, it combines engineering and medical knowledge to solve various
complex problems [1]. The development of smart medical equipment and microelectrome-
chanical systems, the development of clinical engineering and bioinformatics, and many
other specializations of biomedical engineering rely on intelligent data analysis. It is facili-
tated by the rapid modern growth of computing power, the appearance of various portable
devices for collecting information, broadband Internet access, etc. [2,3]. All this provides a
foundation for building smart systems that will combine technical and medical–biological
knowledge to increase the efficiency of decision-making processes. In addition, the modern
development of most specializations and areas of research in biomedical engineering is
characterized by the collection of a huge amount of information. These are tabular datasets,
images, videos, biosignals, etc. [4–6]. All this requires effective methods for the intellectual
analysis of such data.

The need to process tabular datasets is characteristic of most biomedical engineering
specializations. This is actually the collection of tabular data or the transformation of
signals or images into tabular sets in the form of extracted features, etc. [7,8]. That is why
the improvement of the best existing techniques, as well as the development of new models
and methods for the intelligent analysis of tabular datasets, is an urgent task today. It is not
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straightforward, both by the large volumes of collected data and the high dimensionality
of such data. Important tasks that, ideally, should be solved simultaneously when using
machine learning methods, in this case, are the following:

• Ensuring the highest possible approximation/classification accuracy via the selected
method of intellectual analysis;

• Providing high generalization properties of the model based on such an analysis;
• Guaranteeing the high speed of the intelligent analysis method, particularly in the

training mode.

The ability to build effective software and hardware smart systems for medical use
depends largely on the effective solution to these three problems [9]. This will significantly
affect the possibility or effectiveness of their practical application when solving real-world
problems in various specializations and areas of biomedical engineering research [10,11].

The existing machine learning methods from the linear class are often used for solving
applied problems of biomedical engineering [12] as they provide the highest speed of oper-
ation. However, such a models’ approximation/classification accuracy and generalization
properties are lost in this case. An example would be research [13–16], which demonstrates
the high speed of linear methods, but the low accuracy of their work.

The machine learning methods from the class of non-linear, on the contrary, require
more time to implement training procedures [17–19]. However, on the other hand, they
can increase the prediction accuracy of models embedded in their basis [20]. An example
of applying such methods in the biomedical engineering area is solving the material
classification tasks in the production of a medical implant [21].

Ensemble learning methods, which have gained a significant popularity in recent
years, provide a high prediction/classification accuracy and increase the generalization
properties compared to the single machine learning methods [22–24]. Despite this, some
methods in this area require a lot of computing resources and memory for their practical
implementation in biomedical engineering tasks [25,26]. It is also reflected in the duration
of their training procedures.

Let us consider in more detail the three primary classes of building ensemble methods
(Figure 1): bootstrap aggregating, boosting, and stacking.
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Figure 1. Three main classes of ensemble methods.

Bootstrap aggregating or bagging (Figure 1 left) is based on using two main steps:
bootstrap and aggregation. The idea of the method is to divide a large sample of data
into smaller ones that do not correlate with each other (bootstrap) and to process them
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in parallel [27]. The final result of the model is formed based on the generalization of the
results of all models (aggregation). The disadvantage of this approach is that each model
will process only a part of the entire dataset, which should be representative and, at the
same time, not correlated with others. In addition, it is necessary to carefully choose the
averaging method for the regression task or the voting method for the classification task,
which will best combine the solutions obtained from all ensemble elements. An example of
applying such methods in a biomedical data analysis is [28].

Boosting is based on training the model iteratively so that the current model’s training
depends on the previous models’ results [29]. That is, learning of this class of methods will
take place only sequentially. It should be noted that each subsequent model focuses on
processing the data that the previous one could not handle. Such a coherent adaptation
of the weak predictors ensures the construction of one strong predictor. It is due to a
step-by-step increase in the prediction accuracy while analyzing the most complex sample
objects obtained from previous models. Despite this, the main disadvantages of this
ensemble model are that it is sensitive to outliers and it is almost impossible to scale up.
The prediction of the medical treatment in patients with acute bronchiolitis using such an
approach is described in [30].

The idea of methods from the third ensemble strategy, stacking, is to train several
weak models (which can be different machine learning methods) and combine them to
train a metamodel that will generalize the prediction [31]. This strategy is quite inter-
esting due to the possibility of a parallel processing of the different machine learning
methods and implementing the second learning step: a meta-algorithm to increase the
prediction/classification accuracy. However, none of the weak stacking predictors uses
the entire dataset for analysis. In addition, such a strategy requires considerable resources
to train each ensemble element. Moreover, the practical application of stacking involves
the selection of optimal parameters for each ensemble member, which will be completely
different. Implementing such procedures when analyzing large datasets takes a lot of time.
The promising stacking-based approach applied to solve the mortality risk prediction of
COVID-19 patients is presented in [32].

In general, ensemble methods can reduce variance using the bagging strategy, reduce
bias using the boosting methods, or improve the prediction accuracy using the stacking
approach. However, considering the considerable resources required for operation methods
from the above three classes, their application is limited to small tasks during the analysis
of large volumes of data.

Processing large datasets in the biomedical engineering area should be simple and
accurate. Based on these considerations, the authors of [33] developed a method for the
combined use of the quadratic Wiener polynomial and SGD to improve the accuracy and
speed of the data approximation. Such a combination eliminates the disadvantages of
both methods, bringing only their advantages into the combined model. In particular,
the accuracy of an SGD operation is improved due to the high approximation properties
of SGD. On the other hand, the search for Wiener polynomial coefficients is significantly
accelerated using SGD. However, the proposed scheme will not be effective when analyzing
large datasets with a significant nonlinearity. In this case, it is necessary to use a high orders
Wiener polynomial to approximate significantly non-linear response surfaces. However,
this approach will lead to an almost unrealistic growth of its members, which will reduce
the accuracy and generalization properties of SGD during their analysis. In addition, this
approach can provoke an overfitting. Moreover, in the case of vast amounts of data, it will
require a lot of time and resources to implement training, even for the SGD algorithm.

Therefore, this paper aims to design a new cascade-based ensemble scheme of a
high-degree Wiener polynomial approximation using the SGD algorithm to improve
the performance of solving prediction tasks in biomedical engineering for cases of large
dataset processing.

The main contribution of this paper can be summarized as follows:



Mach. Learn. Knowl. Extr. 2022, 4 1091

• We designed a new ensemble scheme for a higher degree’s Wiener polynomial approx-
imation using SGD regressors that provide a high performance during the analysis of
large datasets in the biomedical engineering area;

• We chose the optimal parameters of the designed ensemble (loss of the function of the
SGD algorithm, Wiener polynomial degree, and cascade levels that help us to obtain
a higher prediction accuracy with strong generalization properties and decrease the
duration of its training time;

• We show a higher prediction accuracy and speed of the proposed ensemble scheme
when solving the heart rate prediction task using large datasets compared with the
existing methods.

The structure of the paper is as follows: prerequisites and details of the proposed
ensemble model are described in Section 2. Section 3 contains the results of the modeling
and optimal parameters selections procedures. A comparison and discussion are presented
in Section 4. Section 5 contains the conclusions and prospects for future research.

2. Materials and Methods

Many biomedical engineering tasks are characterized by large volumes of data in-
tended for analysis. Machine learning methods are used for their effective processing.
However, they do not always provide a sufficient approximation accuracy, especially in
the case of complex non-linear response surfaces. In this case, we can apply a non-linear
expansion of the inputs to increase the accuracy of its analysis. One of the options for
implementing such an approach is the use of a quadratic Wiener polynomial. However,
in the case of very complex response surfaces, the quadratic polynomial approximation
does not provide a sufficient accuracy. In these cases, it is worth using higher orders of
this polynomial. However, during the analysis of large volumes of data, this approach
is accompanied by a significant increase in the training time, and in the case of using
polynomial orders higher than 3, a significant complication of the training procedure.

This paper proposes a new ensemble scheme for approximation by the Wiener poly-
nomial of high orders in an implicit form. It is characterized by a significantly lower
complexity of the training procedure compared to the use of direct approximation by high
orders of this polynomial.

The advanced ensemble method is based on the principles of cascading machine
learning methods and the use of SGD for the high-speed identification procedure of its
members. Let us consider in detail all the components of the proposed approach in
more detail.

2.1. Wiener Polynomial

As a discrete analog of the Volterra series, the Wiener polynomial is often used to solve
problems of the approximation of non-linear dependencies [34,35]. In particular, it is the
basis of the well-known group method of data handling [36]. However, in this case, the
quadratic Wiener polynomial is usually used. It provides a sufficient prediction accuracy
in cases of the analysis of medium-sized datasets with a small level of nonlinearity [37]. In
this case, the search for its coefficients is carried out using the least squares method [38].
The general form of this polynomial can be represented as follows [33]:

Y(x1, . . . , xn) = βi +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j=i

βi,jxixj+
n

∑
i=1

n

∑
j=i

n

∑
l=j

βi,j,l xixjxl + . . . +
n

∑
i=1

n

∑
j=i

n

∑
l=j

. . .
n

∑
z=k−1

βi,j,l, ..., z xixjxl . . . xz,

where βi are the polynomial coefficients that should be found by the chosen method;
x1, . . . , xn are the inputs attributes and Y is a searching parameter that should be predicted.

The main drawback of using the quadratic Wiener polynomial is that it does not
provide a satisfactory approximation accuracy in the case of very complex, non-linear
response surfaces [39], which are characteristic of many applied biomedical engineering
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tasks. Additionally, in this case, the least squares method is not the best option for finding
coefficients for its members [40].

To eliminate this shortcoming in the case of processing medium and large datasets,
in [33], the authors proposed the use of SGD. Let us consider its work in more detail.

2.2. SGD

The class of gradient methods includes many optimization algorithms that are used in
machine learning. In particular, a classical gradient descent is used to find the minimum
value of the loss function. That is, obtaining the smallest possible error and increasing
the prediction/classification accuracy. It should be noted here that the used loss functions
may be different. Detailed mathematical explanations of the work of this method are given
in [41].

Even though the gradient descent is an iterative method where the gradient vector of
the objective function is considered at each step, it is characterized by the simplicity of its
implementation. We considered two main options for implementing a gradient descent:
batch and stochastic. In the first case, each iteration of the algorithm involves processing
the entire training sample, and only after that are the weighting coefficients adjusted. In
this case, the gradient is calculated over the entire available training sample. This approach
can be computationally complex and therefore can only be effective when processing short
and medium-sized datasets [42]. In the case of processing large volumes of data, it is not
optimal. The stochastic version of the gradient descent eliminates this drawback [43]. In
this case, only one subsample from N is randomly selected at each algorithm iteration.
That is, updating the weighting coefficients takes place only based on the processing of this
random subsample.

Among the disadvantages of this approach, the use of approximate gradients should
be noted, which leads to a general approximate estimate of the loss function. However, the
main advantage of SGD is the high speed of the learning process on extensive data. This
advantage became the main argument for using SGD in the developed ensemble scheme
since the volume of the input data is sufficiently large.

This paper uses a variant of the non-linear expansion of the inputs based on the Wiener
polynomial to improve the accuracy of an SGD operation. Using the Wiener polynomial and
SGD provides a significantly higher approximation accuracy with a significant reduction
in the time of obtaining the coefficients of the Wiener polynomial members compared
to the least squares method. However, in the case of the need to approximate by this
polynomial with higher orders, the dimension of the input data space and the SGD training
time will increase significantly [33]. Accordingly, this approach will not be optimal for
analyzing large datasets. In this paper, we developed a new ensemble scheme to eliminate
the shortcomings mentioned above.

2.3. Proposed Ensemble Scheme Using Wiener Polynomial and SGD

The ensemble scheme developed in this work is intended for processing large datasets.
It is based on the method of the approximation of response surfaces based on using the
Wiener polynomial and SGD, which was developed in [33]. The authors of [33] show an
increase in the approximation accuracy using higher orders of this polynomial. However, in
analyzing large sets of biomedical data, the developed approach will be very resource and
time consuming. In addition, a significant increase in the number of independent features,
the characteristic of high orders of the Wiener polynomial, can provoke an overfitting.

In order to avoid all the shortcomings mentioned above of the existing method, the
developed ensemble scheme is based on an approach to cascade the machine learning
methods. In this case, the number of independent features of an input dataset using the
quadratic Wiener polynomial does not increase significantly. The use of several levels
of the ensemble ensures the reduction in its errors. Using one of the fastest machine
learning methods, SGD, ensures a high performance, especially when analyzing large sets
of biomedical data.
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In more detail, let us consider the training and application algorithms of the developed
ensemble scheme.

2.3.1. Training Algorithm for the Proposed Scheme

The available dataset is divided into the training and test samples to implement
both the training and application algorithms of the developed approach. Both sets are
normalized. In this paper, we used the Min–Max scaler.

To implement the training procedure, the training sample must be divided into parts
(datasample1, datasample2, etc., datasampleN). Each part will correspond to each new
node from N nodes of the cascade scheme. At each node, the inputs will be expanded
nonlinearly using the Wiener polynomial, and its coefficients will be searched based on
the SGD algorithm. A feature of the developed scheme is that each subsequent node of the
cascade will process its data sample, containing an additional attribute: the output from
the previous node of the developed scheme.

Figure 2 shows a flowchart of the training algorithm of the proposed ensemble scheme
using the Wiener polynomial and SGD.
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Therefore, the algorithmic implementation of the training procedure for the developed
ensemble scheme will consist of the following steps:

1. We perform a non-linear expansion of the inputs for datasample1 based on (1). Then,
we train the SGD of the first node of the ensemble (SGD_1);

2. We apply datasample2 on the previously trained node (SGD_1) from step 1. We
add the predicted output as a new independent feature to datasample2. We perform
procedure (1) and train the SGD of the second node of the ensemble (SGD_2);

3. We perform steps 1 and 2 for datasample3 in application mode. We operate (1) on
datasample3 extended by one independent variable as a result of step 2, and train the
SGD of the third node of the ensemble (SGD_3);

4. . . . ..
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5. We sequentially perform all the previous steps in the application mode to train the
last of the N nodes of the ensemble. Next, we apply (1) to the expanded datasample3
and perform the SGD training procedure of the last node of the ensemble (SGD_N).

As a result of performing all the above actions, we get a pre-trained cascade ensemble
of N-nodes, where N determines the number of data samples into which the training data
sample was divided.

2.3.2. An Application Algorithm for the Proposed Scheme

The application mode is characterized by having a dataset or one data vector with an
unknown output to be predicted, as well as a pre-trained cascade ensemble with N nodes.

The algorithmic implementation of the procedure for applying the developed ensemble
scheme will consist of the following sequential steps:

1. We perform a non-linear expansion of the inputs for a test sample or one data vector
based on (1) and apply it to the first node of the ensemble (SGD_1);

2. We add the predicted output from SGD_1 as a new independent feature, then perform
the procedure (1) and apply it to the second node of the ensemble (SGD_2);

3. We add the predicted output from SGD_2 as a new independent feature, then perform
the procedure (1) and apply it to the second node of the ensemble (SGD_3);

4. . . .
5. We perform similar operations with all the other ensemble nodes until we reach the

last one. The prediction result of the last node of the ensemble will be the sought
value.

Figure 3 shows a flowchart of the application algorithm of the proposed ensemble
scheme using the Wiener polynomial and SGD.
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The following should be noted among the apparent advantages of the proposed scheme:
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• Ensuring a high approximation accuracy due to the use of the Wiener polynomial,
applied at each step of the ensemble;

• Ensuring the high performance due to the use of SGD as weak predictors;
• The possibility of a high-order approximation of the Wiener polynomial in an im-

plicit form.

The last point is achieved by using a quadratic Wiener polynomial at each node of the
ensemble scheme. In addition, each subsequent node of the ensemble uses the result of the
work of the previous one. That is, when using the result of the first node of the ensemble
(for which quadratic Wiener polynomials are used) in the second node of the ensemble (for
which quadratic Wiener polynomials are also used), as a result, we get the fourth order of
the polynomial implicitly. Each subsequent node of the ensemble, in the case of using a
quadratic Wiener polynomial, doubles the order of the polynomial implicitly compared
to the previous one. At the same time, the number of independent attributes grows very
slowly compared to the use of a direct approximation by a high-order Wiener polynomial.

This approach provides a high approximation accuracy, similar to the direct approxi-
mation by a high-order Wiener polynomial, but without a significant increase in the input
data space at each node and works at a high speed.

3. Modeling and Results

The modeling of the new ensemble method took place on an ultrabook with the
following parameters: Dell Intel Core i5, RAM 8 GB, and SSD 512 GB. Experimental
studies were conducted for a set of biomedical data of a large volume. Let us consider it in
more detail.

3.1. Dataset Descriptions

This paper solved the problem of predicting the heart rate of a person. We used a
real-world dataset from the Kaggle repository [44]. It was formed based on the electrocar-
diograms of patients with different heart rate levels. The dataset’s authors selected several
features from the electrocardiograms, the main characteristics of which are presented in
Table 1.

Table 1. The main characteristics of the dataset.

Attribute Title Mean Value Std Min Value Max Value

Mean of RR intervals (MEAN_RR) 845.914 124.485 547.595 1322.01
Median of RR intervals (MEDIANR_R) 841.156 132.003 517.51 1653.12

Standard deviation of RR intervals (SDRR) 109.26 76.8158 27.2406 563.48
Root mean square of successive RR interval differences (RMSSD) 14.9808 4.12688 5.53346 26.6232
Standard deviation of successive RR interval differences (SDRR) 14.9801 4.12688 5.53336 26.623

Ratio of SDRR/RMSSD 7.38995 5.12581 2.66038 54.3399
Percentage of successive RR intervals that differ by more than

25 ms (pNN25) 9.84384 8.20845 0 39.4

Percentage of successive RR intervals that differ by more than
50 ms (pNN50) 0.86997 0.9921 0 5.4

Kurtosis of distribution of successive RR intervals (KURT) 0.52599 1.78593 −1.8947 62.6724
Skew of distribution of successive RR intervals (SKEW) 0.044 0.69987 −2.1363 6.56471

Mean of relative RR intervals (MEAN_REL_RR) −0.001 0.00016 −0.0012 0.00123
Median of relative RR intervals (MEDIAN_REL_RR) −0.0005 0.00087 −0.0044 0.0021

Standard deviation of relative RR intervals (SDRR_REL_RR) 0.01859 0.00547 0.00899 0.03654
Root mean square of successive relative RR interval differences

(RMSSD_REL_RR) 0.00972 0.00392 0.00322 0.02695

Standard deviation of successive relative RR interval differences
(SDSD_REL_RR) 0.00972 0.00392 0.00322 0.02695

Ratio of SDRR/RMSSD for relative RR interval differences
(SDRR_RMSSD_REL_RR) 2.005 0.37551 1.18126 3.70231

Kurtosis of distribution of relative RR intervals (KURT_REL_RR) 0.52599 1.78593 −1.8947 62.6724
Skew of distribution of relative RR intervals (SKEW_REL_RR) 0.044 0.69987 −2.1363 6.56471

Heart rate of the patient at the time of data recorded (HR) 74.0103 10.3811 48.7372 113.727
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The dataset contains more than 360,000 observations. The dataset was randomly
divided into training (70%) and test samples (30) for the simulation.

3.2. Performance Indicators

A number of performance indicators were chosen to evaluate the performance of the
proposed ensemble scheme. They will ensure the possibility of performing a comprehensive
analysis of the results of the method.

Let us suppose that we have the actual value of the searching attribute and its predicted
value ypred

i by choosing machine learning models for each from the N observations in the
stated set of data (training or test) i = 1, N. Using this, we can calculate the following
performance indicators:

• Maximum residual error (ME):

ME
(

yactual
i , ypred

i

)
= max

(∣∣∣yactual
i − ypred

i

∣∣∣), (1)

• Median absolute error (MedAE):

MedAE
(

yactual
i , ypred

i

)
= median

(∣∣∣yactual
i − ypred

i

∣∣∣, . . . ,
∣∣∣yactual

N − ypred
N

∣∣∣), (2)

• Mean absolute error (MAE):

MAE
(

yactual
i , ypred

i

)
=

1
N

N

∑
i

∣∣∣yactual
i − ypred

i

∣∣∣, (3)

• Mean square error (MSE):

MSE
(

yactual
i , ypred

i

)
=

1
N

N

∑
i

(
yactual

i − ypred
i

)2
, (4)

• Mean absolute percentage error (MAPE):

MAE
(

yactual
i , ypred

i

)
=

1
N

N

∑
i

∣∣∣yactual
i − ypred

i

∣∣∣
yactual

i
, (5)

• Root mean square error (RMSE):

RMSE
(

yactual
i , ypred

i

)
=

√√√√√ N
∑
i

(
yactual

i − ypred
i

)2

N
, (6)

• Coefficient of determination (R2):

R2
(

yactual
i , ypred

i

)
= 1 −

N
∑
i

(
yactual

i − ypred
i

)2

N
∑
i

(
yactual

i − yi
)2

, yi =
1
N

N

∑
i

yactual
i , (7)

where yactual
i is the i-th actual value and ypred

i is the i-th predicted value for i = 1, N where
N is the number of observations in the dataset.

In addition, since the proposed method is focused on the analysis of large datasets, the
ensemble training time Training_time (in seconds) was also taken into account. Actually,
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this indicator is the sum of the time of training procedures timel for the regressors at each
of the l-th levels of the ensemble:

Training_time =
l

∑
k

timek, k = 1, l. (8)

3.3. Investigating the Impact of Loss Function on the Prediction Accuracy of the SGD Algorithm

The basis of the proposed ensemble scheme is the use of a regressor based on the
SGD algorithm. This choice is justified by its very high performance when analyzing large
datasets. As explored in our previous work [33], this machine learning method’s accuracy
depends on the loss function’s choice. The Python library from which we will use the basic
implementation of SGD contains four implemented loss functions [33]:

• Epsilon insensitive;
• Huber;
• The squared epsilon insensitive;
• The squared loss.

In order to select the optimal loss function during our dataset analysis, we conducted
several experimental studies, the results of which are summarized in Table 2.

Table 2. Performance indicators for different loss functions.

Loss Function ME MedAE MAE MSE MAPE RMSE R2 Training
Time, s

Training mode
Huber 21.168 2.291 2.810 13.908 0.037 3.729 0.869 6.61

Epsilon insensitive 15.192 0.749 1.176 3.745 0.016 1.935 0.965 5.06
Squared error 10.454 0.816 1.159 2.811 0.016 1.677 0.974 5.03

Squared epsilon insensitive 9.995 0.808 1.146 2.705 0.016 1.645 0.975 5.05
Test mode

Huber 20.973 2.300 2.821 14.008 0.037 3.743 0.870 -
Epsilon insensitive 15.150 0.753 1.181 3.745 0.016 1.935 0.965 -

Squared error 10.456 0.821 1.164 2.840 0.016 1.685 0.974 -
Squared epsilon insensitive 9.998 0.814 1.151 2.736 0.016 1.654 0.975 -

In order to visualize the obtained results, Figure 4 shows the SGD performance errors
when using all four loss functions.
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As can be seen from Table 2 and Figure 4, the lowest accuracy and, at the same time, the
longest training time is demonstrated by the SGD when using the huber loss function. The
other three loss functions show very close results regarding both the performance accuracy
and SGD training time when using them. However, to a small extent, the squared epsilon
insensitive loss function stands out among them, demonstrating both the highest accuracy
of the work among those considered and a satisfactory time of the training procedure. That
is why it was chosen as the primary loss function for the following experiments.

3.4. Investigating the Impact of Wiener Polynomial Degree on the Prediction Accuracy and
Training Time of the SGD Algorithm

Despite the high training speed, the SGD algorithm is not characterized by a high
operation accuracy. In order to eliminate this shortcoming, in [33], it is proposed to
perform a non-linear expansion of the inputs with a Wiener polynomial. The authors of [33]
experimentally showed that increasing this polynomial order increases the SGD algorithm’s
accuracy. However, they operated with a short dataset. In this paper, we also conducted
some experimental studies on the accuracy of the classical SGD using the quadratic Wiener
polynomial. Increasing the order of the Wiener polynomial when processing large volumes
of data is not appropriate. In addition to the fact that this will significantly increase the
training time of the model, a significant increase in the input data space can cause an
overfitting. The results of this experiment are summarized in Table 3.

Table 3. Performance indicators for different Wiener polynomial degrees.

Method ME MedAE MAE MSE MAPE RMSE R2 Training
Time, s

Training mode
SGD algorithm 9.995 0.808 1.146 2.705 0.016 1.645 0.975 5.05

SGD algorithm + 2nd degree of
Wiener polynomial 5.265 0.276 0.428 0.452 0.006 0.672 0.996 15.81

Test mode
SGD algorithm 10.038 0.814 1.151 2.741 0.016 1.656 0.975 -

SGD algorithm + 2nd degree of
Wiener polynomial 5.250 0.276 0.428 0.454 0.006 0.674 0.996 -

In order to visualize the obtained results, Figure 5 shows the dynamics of changes
in the SGD operation error and its training time when using the classic SGD in an input
expansion scheme with a quadratic Wiener polynomial.

As seen in Table 3, applying the quadratic Wiener polynomial significantly increased
the SGD operation’s accuracy compared to its accuracy on the original dataset. However,
its training time increased from 5 to 15 s.

Experimental studies in [33] were carried out by increasing the power of the Wiener
polynomial up to six. However, the dataset used by the authors was small. In our case, we
are working with a large dataset. That is why using the Wiener polynomial of higher orders
in an explicit form can also increase the prediction accuracy. However, it will significantly
complicate the procedure and training time in connection with many attributes in the
form of members of the Wiener polynomial of high orders, which will be submitted to
the algorithm’s input. Since this paper proposes a cascade scheme for the approximation
by a Wiener polynomial of high degrees in an implicit form, in further experimental
studies, we will stop at the use of a quadratic Wiener polynomial. It provides a sufficient
operation accuracy with satisfactory time characteristics of the training procedure, which is
a significant point during its further use as part of the proposed ensemble scheme.
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Figure 5. Influence of the Wiener polynomial degree on the performance of the SGD algorithm:
(a) RMSE; (b) training time, seconds.

3.5. Investigating the Impact of Cascade Level on the Prediction Accuracy of the Proposed Scheme

Cascade algorithms are characterized by the need to select one crucial parameter: the
number of cascade levels [45]. As mentioned in subSection 3.4, the number of nodes in the
ensemble scheme developed in this work is set by the user. It can also be implemented
automatically until the required accuracy of the method is obtained. In both cases, it is
necessary to select the optimal number of levels to receive the highest possible accuracy of
the method on the one hand, and the highest generalization properties of the method on
the other.

Therefore, we carried out experimental studies to determine the optimal value of this
indicator. The results of this experiment are summarized in Table 4.

Table 4. Performance indicators for a different level number of the proposed ensemble.

Level Number of the
Proposed Ensemble

ME MedAE MAE MSE MAPE RMSE R2 Training
Time, s

Training mode
1 5.265 0.276 0.428 0.452 0.006 0.672 0.996 15.81
2 4.189 0.225 0.313 0.207 0.004 0.455 0.998 4.08
3 8.155 0.228 0.303 0.199 0.004 0.446 0.998 4.09
4 8.019 0.236 0.318 0.211 0.004 0.459 0.998 5.29

Test mode
1 5.250 0.276 0.428 0.454 0.006 0.674 0.996 -
2 4.266 0.227 0.317 0.213 0.004 0.462 0.998 -
3 10.739 0.228 0.304 0.198 0.004 0.445 0.998 -
4 13.032 0.240 0.323 0.224 0.004 0.474 0.998 -

In order to visualize the obtained results, Figure 6 shows the dynamics of changes
in the SGD operation errors when using a different number of levels in the proposed
ensemble scheme.
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Figure 6. Influence of the proposed scheme’s levels on the prediction accuracy of the proposed
ensemble scheme: (a) MAE; (b) MSE. The ox-axis, in this case, indicates the ensemble levels (1, 2, 3,
and 4).

As can be seen from Figure 6, the errors of the first level of the developed scheme
correspond to the errors of the SDG with a quadratic Wiener polynomial. However, the
further increase in the number of levels of the proposed scheme significantly increased the
accuracy of its operation. In addition, the training time dropped significantly, according
to (9). This is because the training time is calculated as the training procedure duration of
both SGDs from the two levels of the ensemble scheme. Each of them, in turn, processes
half the amount of data than the SGD of the first level of the proposed scheme. That is why
the training time has decreased by more than 3.5 times.

However, in this case, the main advantage is that the two-level developed scheme
provided an implicit approximation by the resulting Wiener polynomial of the fourth
degree. It happened because the first level of the scheme uses a quadratic polynomial. The
result of its work is transmitted and considered by the second-level regressor, which also
uses a quadratic Wiener polynomial. As a result, we get a Wiener polynomial of the 4th
degree, but without a significant input expansion, as this could happen in the case of a
direct use of this polynomial degree.

The use of a three-level scheme further increased the prediction accuracy. In addition,
the power of the Wiener polynomial doubled again. The approximation, in this case, took
place using the eighth power of the polynomial (again in an implicit form). A further
increase in the number of levels of the proposed ensemble scheme shows an increase in
all the training and application mode errors. The deterioration of properties explains this
before the generalization. That is why the optimal value of the number of nodes of the
developed ensemble scheme during the analysis of the dataset we studied is three.

3.6. Results of the Application of the Cascading Scheme Using Ito Decomposition and SGD

Table 5 summarizes the performance indicators of its work in training and test modes
based on the selected optimal parameters of the work of the developed ensemble scheme.
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Table 5. Performance indicators for the proposed ensemble scheme with optimal parameters.

Optimal Parameters/Performance Indicators ME MedAE MAE MSE MAPE RMSE R2 Training
Time, s

MinMaxScaler();
quadratic Wiener polynomial;

SGD with squared epsilon insensitive loss function;
3 levels of the proposed ensemble scheme

Training mode
8.155 0.228 0.303 0.199 0.004 0.446 0.998 4.09

Test mode
10.739 0.228 0.304 0.198 0.004 0.445 0.998 -

The results show that the three-level ensemble scheme using the quadratic Wiener
polynomial provides a high approximation accuracy and generalization ability when
analyzing a sizeable biomedical dataset. In addition, a possible overfitting due to an
increase in the number of inputs is not observed.

The developed ensemble scheme with the optimal parameters will be used further to
evaluate its effectiveness with the effectiveness of the several existing, most similar methods.

4. Comparison and Discussion
4.1. Comparison with Existing Methods

To compare the performance indicators of the proposed ensemble scheme, we chose
similar methods from different classes:

1. The SGD algorithm [41];
2. The SGD algorithm with quadratic Wiener polynomial [33];
3. The Gradient Boosting ensemble [46];
4. The AdaBoost ensemble [47].

Performance indicators for all the investigated methods in raining and test modes are
presented in Table 6.

Table 6. Performance indicators for all investigated methods.

Method (Test Mode) ME MedAE MAE MSE MAPE RMSE R2 Training
Time, s

Proposed method 10.739 0.228 0.304 0.198 0.004 0.445 0.998 4.089
Gradient Boosting Regressor [46] 6.412 0.227 0.343 0.264 0.005 0.514 0.998 169.547
SGD algorithm + 2nd degree of

Wiener polynomial [33]
5.250 0.276 0.428 0.454 0.006 0.674 0.996 15.810

SGD algorithm [41] 9.998 0.814 1.151 2.736 0.016 1.654 0.975 5.047
AdaBoost Regressor [47] 5.160 1.518 1.585 3.359 0.022 1.833 0.969 66.531

In order to visualize the obtained results, Figure 7 shows the values of the most
informative operating errors of all the studied methods in the application mode.

As can be seen from Figure 7, the largest values of all the errors were obtained for
regressors based on the AdaBoost and classical SGD. A significantly better result (more
than six times smaller MSE) was demonstrated by the SGD using the quadratic Wiener
polynomial. Another advantage of using such a combination is improving the accuracy
of solving regression problems in the case of large datasets in biomedical engineering. A
regressor based on Gradient Boosting demonstrated a slightly better result in terms of the
accuracy but a much worse (by more than ten times) training time.

The highest accuracy of solving the stated task was obtained using the developed three-
level ensemble scheme based on the SGD and quadratic Wiener polynomial. In addition, the
proposed scheme demonstrates a 41 times faster implementation of the training procedure
compared to the nearest competitor in terms of the accuracy. It is even though the Gradient
Boosting worked exclusively with the initial dataset, and the developed scheme processed a
significantly increased number of features of the set due to the application of the developed
Wiener quadratic polynomial scheme at each level.
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4.2. Limitations of the Proposed Approach

A feature of the non-linear expansion of the inputs by the Wiener polynomial, as a
discrete analog of the Voltaire series, is a significant increase in the approximation accuracy.
At the same time, the number of features of the dataset represented by members of the
Wiener polynomial increases almost unrealistically as its order increases. It imposes several
limitations on using this tool in an explicit form during the big data analysis.

The complexity of the models based on the Wiener polynomial can be determined by
the number of coefficients near its members. Therefore, the approximation by a high-order
polynomial leads to a significant increase in the complexity of the calculations. That is
why the main advantage of the developed scheme is the possibility of approximating large
datasets with non-linear response surfaces by high orders of the Wiener polynomial in an
implicit form. That is, without significantly increasing the number of inputs of the selected
regressor. In particular, Figure 8 shows a graph of the change in the number of Wiener
polynomial members (red line) generated for a stated set of data when using different
powers up to and including eight. Next to it, a green line shows a graph of the change
in the number of the attributes of the multilevel developed scheme which, at the third
level, also performs an approximation by the Wiener polynomial of the eighth degree
(however implicitly).

The graph clearly shows that the number of coefficients that should be searched
for when using an approximation by a polynomial of the eighth degree is unrealistically
large. At the same time, the developed scheme provides the same result in accuracy
with a significant reduction in the computational complexity and training time. It is
explained by the fact that the number the polynomial members at each cascade node
does not increase significantly. Despite this, the number of inputs using the proposed
approach keeps growing compared to the original data set due to their quadratic polynomial
expansion. It can be a problem when solving applied biomedical engineering tasks, which
are characterized by large volumes of data with a lot of initial input attributes.
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Figure 8. The number of the Wiener polynomial members during approximation of the stated
dataset by different polynomial degrees (2–8) via direct and proposed cascade approximations. The
first number in the chart indicates the polynomial degree, and the second number indicates the
member’s number.

4.3. Possibilities for the Future Research

Suppose the response surface of a specific task is significantly non-linear, and the
quadratic polynomial, even in the proposed ensemble scheme, does not provide a sufficient
prediction accuracy. In that case, using the cubic Wiener polynomial at each cascade step
will be appropriate. The advantage of such an approach will be that the cubic polynomial
is characterized by higher approximation properties, which will increase the accuracy and
cause a significant increase in the independent features of the initial dataset.

That is why, in the perspective of further research, it is necessary to consider the
possibility of reducing the number of attributes at each level of the proposed scheme while
maintaining the accuracy of its operation.

For this, dimensionality reduction procedures (PCA) can be used based on the neural
network tools. Therefore, future research can be done according to the scheme presented in
Figure 9.
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In particular, using dimensionality reduction blocks (PCA) at each level of the ensem-
ble scheme will allow one to control the number of independent features before applying
them to the selected regressor. It will significantly reduce the training time of the latter.

This approach will improve the effectiveness of using the developed ensemble scheme
in the case of many independent attributes of the initial dataset, which a significantly
non-linear response surface will characterize.

In addition, among the prospects for further research, it would be good to consider
other options for the non-linear expansion of the inputs, as well as the use of different
methods as a basic regressor or classifier at each level of the developed ensemble scheme.

5. Conclusions

This paper solved the problem of approximating large datasets in the biomedical engi-
neering area using a machine learning approach. Since single machine learning methods
do not provide a sufficient approximation accuracy and high generalization, the authors
consider the class of ensemble machine learning. The paper outlines the shortcomings
of three main groups of ensemble machine learning methods in the case of the analysis
of large datasets. Among them are the high complexity of training procedures, the large
computing resources for its implementation, and a considerable duration of its work.

Previous studies [33] demonstrate the high efficiency of approximating non-linear
dependencies by the Wiener polynomial. The high-speed implementation of machine learn-
ing procedures to implement this approach is based on one of the fastest machine learning
methods, SGD. However, increasing the approximation accuracy requires expanding the
order of this polynomial, which causes a significant increase in the number of independent
features for analysis. This, in turn, leads to an increase in the duration of the training
procedures, which is critical when analyzing large datasets. In addition, this approach can
provoke an overfitting of the selected machine learning method.

In order to eliminate these shortcomings, the authors developed a new ensemble
structure that combines both of the above instruments but avoids the drawbacks of their
work. The procedures of its training and application are described and illustrated in detail.
The cascade scheme allows for a high-order approximation of the Wiener polynomial
without significantly increasing the number of independent features in the dataset.

The modeling was carried out using a real-world dataset of a large volume. The paper
presents several results of the experimental studies on selecting the optimal parameters
of the developed ensemble scheme. The results of the implicit ensemble approximation
by the eighth-order polynomial shows no significant increase in the feature number of the
set compared with the direct approximation by the Wiener polynomial of the eighth order.
It was established that the developed ensemble scheme demonstrates a 41 times faster
learning procedure and almost twice lower errors than the Gradient Boosting method.

Among the disadvantages of all the methods of the cascading class, the need for a
sequential execution of all the algorithm steps should be noted, which increases the training
procedure time compared with other classes of the ensemble methods. To eliminate this
shortcoming, further studies suggest using a PCA at each level of the ensemble scheme.
The control of the amount of input data at each node of the ensemble scheme will ensure the
preservation of the accuracy of the work while significantly reducing the time of its training.
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