machine learning &
knowledge extraction

Article

Lottery Ticket Search on Untrained Models with Applied
Lottery Sample Selection

Ryan Bluteau ** and Robin Gras *

check for
updates

Citation: Bluteau, R.; Gras, R. Lottery

Ticket Search on Untrained Models
with Applied Lottery Sample
Selection. Mach. Learn. Knowl. Extr.
2023, 5,400-417. https://doi.org/
10.3390/make5020024

Academic Editor: Andreas

Holzinger

Received: 6 March 2023
Revised: 11 April 2023

Accepted: 16 April 2023
Published: 18 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Computer Science, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
* Correspondence: bluteaur@uwindsor.ca
t These authors contributed equally to this work.

Abstract: In this paper, we present a new approach to improve tabular datasets by applying the
lottery ticket hypothesis to tabular neural networks. Prior approaches were required to train the
original large-sized model to find these lottery tickets. In this paper we eliminate the need to train the
original model and discover lottery tickets using networks a fraction of the model’s size. Moreover,
we show that we can remove up to 95% of the training dataset to discover lottery tickets, while still
maintaining similar accuracy. The approach uses a genetic algorithm (GA) to train candidate pruned
models by encoding the nodes of the original model for selection measured by performance and
weight metrics. We found that the search process does not require a large portion of the training data,
but when the final pruned model is selected it can be retrained on the full dataset, even if it is often
not required. We propose a lottery sample hypothesis similar to the lottery ticket hypotheses where a
subsample of lottery samples of the training set can train a model with equivalent performance to the
original dataset. We show that the combination of finding lottery samples alongside lottery tickets
can allow for faster searches and greater accuracy.

Keywords: lottery ticket hypothesis; pruning; lottery sample; tabular neural network

1. Introduction

The lottery ticket hypothesis has shifted the field of pruning networks and allows us to
create a standard for discovering smaller networks within larger neural network. It states
that given a dense neural network that is randomly initialized, there exists a subnetwork
that can match the performance of the original using at most the same number of training
iterations. The weights that allow us to find such a subnetwork are ideally lottery ticket
weights, which are the key weights to fit the dataset properly. The hypothesis tells us a
smaller subnetwork should be possible, but often it requires us to train the original network
in order to select potential lottery weights. To validate subnetworks, the subnetwork must
be reinitialized to the original weights (prior to training) and retrained, thus making a
redundant use of training. Moreover, the dataset itself is not optimized in any way during
this process. Should a subnetwork require the entire dataset?

In this paper we aim to reverse how we discovery lottery tickets. We first propose an
approach to search for lottery tickets without training the original model. This removes the
redundancy of first training the original network, then retraining the subnetwork. Second,
we propose an expansion to the lottery ticket hypothesis by applying it to the training set
of the model. Given a training dataset for a network, we claim there exists a subset of
samples to train the same network (or subnetwork) with equivalent performance to that
achieved from the original dataset. This would allow researchers to explore the idea of
applying approaches learned from lottery ticket algorithms to dataset reduction for higher
quality datasets.

We apply some of these ideas to tabular neural networks on a large variety of datasets.
The tabular neural network was shown to be a leading model for tabular datasets in our

Mach. Learn. Knowl. Extr. 2023, 5, 400-417. https:/ /doi.org/10.3390/make5020024

https:/ /www.mdpi.com/journal /make

https://doi.org/10.3390/make5020024
https://doi.org/10.3390/make5020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-9777-0711
https://orcid.org/0000-0002-0563-0250
https://doi.org/10.3390/make5020024
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5020024?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2023, 5

401

recent paper [1]. It has been shown to be leading in many other tabular problems [2-5].
In particular a highway study mentions “Fast.ai neural network model for tabular data:
Fast.ai model has demonstrated the state-of-art performance in the tabular data modeling
in this study.” [5]. And is often used to achieve state-of-the-art performance, “the FastAl
tabular model was selected because it has thus far obtained the best classification result
on the [Anatomical Therapeutic Chemical (ATC)] benchmark” [3]. The network design
allows for categorical embedding and continuous features to be processed through a series
of linear layers and optional batch normalization.

The contributions of our paper is as follows: (1) the lottery ticket search no longer
limited by the size of the original model; (2) we remove the need to train the large original
network (which is usually trained and tested multiple times); (3) we show that large parts of
the training dataset, up to 95% reduction, is not required to find lottery tickets; (4) we show
these improvements are not tradeoffs, but allow the algorithm to perform equivalently
or better than prior methods at searching for lottery tickets; (5) we present an extention
of the lottery ticket hypothesis to include the ability to also prune the dataset using a
similar approach.

Our paper is organized as follows. First, we present previous works on the lottery
ticket hypotheses, dataset reduction, tabular models, and the use of the genetic algorithm
for pruning techniques. Second, we describe the datasets we use and the approach we take
to prune our models using a genetic algorithm and reduce training samples. Third, we
present our experiments and results of our pruning strategy. Finally, the paper is concluded
including future work.

2. Previous Works

The lottery ticket hypothesis [6] has been tested on a variety of network architectures.
All use a similar goal to prune a network by a large margin, usually over 80%, and have a
model perform similarly or even better than the original network. For example, there have
been many attempts at pruning convolutional neural networks (CNNs) which include the
original paper on lottery tickets itself [6] (80-90% prune rate), a generalized approach [7]
to prune across many vision datasets (such as MNIST, SVHN, CIFAR-10/100, ImageNet,
and Places365), and an object detection variant [8] pruned up to 80%.

There have been many tests of the lottery ticket hypotheses applied to large pre-
trained networks. In this case we have large pre-trained models which no longer have the
original weights, so the test of the lottery ticket hypotheses is be performed on downstream
tasks [9]. In this case they did not structurally prune the model but applied masks leading
to a 40-90% sparsity depending on the downstream task. Other papers, such as [10],
have proposed to structurally prune transformers using question-answering tasks and
achieving double inference speeds with a minor loss of accuracy. S. Prasanna, A. Rogers,
and A. Rumshisky [11] made an interesting study on good and bad subnetworks found
based on the down-steam task.

We use a mix of regression and classification tasks for evaluation. Many works focus
on these types of problems, for example some different areas of focus are sentiment analy-
sis [12], malware detection [13], ensemble of models focusing on a task [14], and camera
messaging systems [15,16]. Our work aims at tackling regression and classification prob-
lems in a generic set of tasks within a tabular context. Generally tabular data is processed
by models like random forest (RF), k-nearest neighbors (KNN), gradient boosting (GB), etc.
There are high performance deep neural networks that have been shown to perform well on
tabular data such as timeseries TabBERT [17], and TabTransformer [18], both based on the
natural language processing transformer model using attention [19]. We chose the FastAl
network for its ability to perform given its small size in line with our goal to propose a
method to produce small networks in a stable manner without training the original model,
adaptable to many different datasets.

Our approach uses a genetic algorithm in order to produce small networks by pruning
them through generations of subnetwork tests by fixing the size and optimizing for best

Mach. Learn. Knowl. Extr. 2023, 5

402

accuracy, and in particular our approach aims to avoid training the original network
altogether. Genetic algorithms have been used for pruning in other works. For example
Z. Wang et al. [20] use a genetic algorithm to prune channels of a CNN by optimizing for
size and minimizing accuracy loss at the same time. The authors directly mention “after
pruning, the structure of the new network and the parameters of the reserved channels
must be retrained” [20]. D. Mantzaris et al. [21] use a genetic algorithm as a feature selection
approach which in turn reduces input nodes but is not directly testing the idea of lottery
ticket pruning which would fix weights and search for subnetworks. C. Yang et al. [22]
also prune a CNN with a two step process. “First, we prune the network by taking the
advantages of swarm intelligence. Next, we retrain the elite network and reinitialize the
population by the trained elite.” [22]. Note that they must “retrain the elite genome so that
the remained weights can compensate for the loss of accuracy” [22]. PJ. Hancock [23] from
1992 even tested the idea of pruning a network using a genetic algorithm. The method
first trains the original network, then uses the genetic algorithm to prune it, “then prunes
connections prior to retraining of the remainder” [23]. We aim to eliminate the training
process of the original network which also eliminates the redundancy of retraining the
subnetwork. Thus instead of the typical approach, 1. train original network, 2. select sub
networks, 3. retrain subnetworks independently, we instead skip step 1 and simply train
instead of “retrain” the subnetwork.

There are a few other things we wanted to highlight. First the original lottery paper [6]
mentions that normal pruning often leads to less accurate models, but applications of
pruning in search of lottery tickets tends to resolve this issue. Second, in the generalized
work on pruning CNNs [7] they mention larger datasets tend to produce better lottery
tickets. Finally, in our previous work [1] we found that larger networks tend to hold more
lottery tickets which made it easier to find a set of tickets when pruning. This leads us
to the idea that the approach or concept of lottery tickets can be applied to datasets, like
finding lottery samples. For instance, in comparison to the first point, removal of training
data generally leads to less accurate models which is well known so ideally finding lottery
samples could relieve this issue. In the second point larger dataset tends to produce better
lottery tickets which can suggest that there was a higher chance the dataset contains key
lottery samples to find better lottery tickets, much like how a larger network may contain
more lottery tickets just by chance. The idea here is that samples are tied to lottery tickets,
thus the set of samples that belong to a subnetwork of lottery tickets would be lottery
samples. Thus we propose the idea that a subset of samples, or lottery samples, can be
found and used to find lottery tickets and train a subnetwork with similar accuracy to the
original larger network on the full dataset.

Much like pruning prior to the lottery ticket hypotheses, the concept of training
reduction has been tested in many papers. For example, S. Ougiaroglou et al. [24] used
dataset reduction in order reduce the amount of space and inference complexity KNN
requires from holding the dataset for nearest neighbor comparisons. In this case it is a
model specific example of how a few key samples can result in a similar model. However,
KNN and similar distance based algorithms can be very inefficient and does not indicate if
this reduced training dataset can be useful to other models. F.U. Nuha et al. [25] applies
dataset reduction to generative adversarial networks (GANSs) to show that a dataset with
50k samples is ideal and can outperform a larger noisy dataset. J. Chandrasekaran et al. [26]
uses random sampling to reduce the dataset with the goal of tuning the hyperparameters
of a model faster. They show that the reduction of the dataset down to 800 samples has the
same coverage as the original allowing them to use the reduced dataset for model testing.

What we propose is that dataset reduction can benefit from reshaping the problem as
lottery samples through a combination of sample selection and lottery ticket pruning. The
pruning process would allow the network to properly fit a given dataset reduction without
overfitting and allow for faster training times without complex selection algorithms. For
example, we show a random subsampling is enough for us to achieve equivalent models
when we use it in conjunction with lottery ticket pruning (as the tickets found fit the subset

Mach. Learn. Knowl. Extr. 2023, 5

403

of data), allowing us to potentially reduce training datasets down to 5% their original
size, some at just 13 samples. This would also open dataset reduction to techniques found
by lottery ticket pruning that can be applied to sample selection problems (such as the
genetic algorithm we propose for lottery ticket selection) to stabilize the reduction and
improve coverage.

3. Materials and Methods

In this section we introduce the datasets used to test our lottery ticket search algorithm,
then we describe the algorithm in the following subsection. The approach is split into two
subsections where the methodology of our lottery ticket node pruning strategy (without
training of the original network) is first described in the genetic lottery node selection
subsection. In the next subsection we describe our application of lottery sample selection
to our algorithm to improve the algorithm’s performance.

3.1. Datasets

The lottery ticket search algorithm is built on our previous work [1] which presented
improvements in tabular neural networks using pruning strategies based on the lottery
ticket hypotheses. We use the same datasets to evaluate our search algorithm, we refer to
our previous work for more details on the datasets used in our evaluation. In summary,
the datasets have a wide variety of tabular qualities such as many (or little) categorical
and/or continuous features, missing or poor data, a range of a few hundred to millions
of samples including simulated data, defined and undefined prediction goals and test
sets, etc. The exact quality of each dataset can be found in our paper [1], we included this
information in Appendix A. We kept the same train/valid/test split sizes as our previous
paper, shown in Table A1, although the split may not contain exactly the same samples due
to different randomization initializations and variations of code.

We include the following datasets in our tests: Alcohol [27], Video Games Sales (https:
/ /github.com/GregorUT/vgchartzScrape, kaggle: https:/ /www.kaggle.com/gregorut/
videogamesales, accessed on 26 September 2022), Wine Quality [28], Chocolate Ratings
(https:/ /www.kaggle.com/rtatman/chocolate-bar-ratings, accessed on 26 September 2022),
Poker Hand [29], Titanic (https://www.kaggle.com/c/titanic/data, accessed on 26 Septem-
ber 2022), Health Insurance (https:/ /www.kaggle.com/anmolkumar/health-insurance-
cross-sell-prediction, accessed on 26 September 2022), Susy dataset [30] (see Table 1).

Table 1. Summary of the datasets used to evaluate our approach. The special quality column describes
attributes of the dataset that can be interesting. The Titanic dataset is a difficult variant (low feature)
since another variant exists with more features to achieve 100% accuracy:.

Name Metric Categorical Continuous Size Special Quality
Alcohol RMSE 17 10 395 Smallest dataset.
Games RMSE 4 4 16,598 No defined goal.
Wine RMSE 0 11 1599 All continuous.

Chocolate RMSE 6 1 1795 N/A
Poker RMSE 10 0 1,025,010 1,000,000 test set,
all categorical.
Titanic F1 6 2 772 Low feature variant.
Health F1 5 5 93,320 N/A

Contains simulated

Susy Fl 0 18 5,000,000 data, all continuous.

The datasets use RMSE or F1 as a metric which depends on the type of classification or
regression task used in each dataset. For example, the health dataset is a classification task
which aims to predict 1 or 0, so we use F1 as a metric. On the other hand we have continuous
tasks which is ideally measured with regression metrics such as RMSE, like the video game
dataset focused on sales. The details on all datasets and tasks are provided in Appendix A.

https://github.com/GregorUT/vgchartzScrape
https://github.com/GregorUT/vgchartzScrape
https://www.kaggle.com/gregorut/videogamesales
https://www.kaggle.com/gregorut/videogamesales
https://www.kaggle.com/rtatman/chocolate-bar-ratings
https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

Mach. Learn. Knowl. Extr. 2023, 5

404

Some datasets could use either metric, RMSE or F1, but these are mainly decided in our
previous work and thus kept the same for this work for comparison purposes.

3.2. Methodology Overview

Our method is a general machine learning approach to train a small but accurate
neural network. Our method is applied to a larger untrained model where it selects as little
as 10% of nodes to be tested. The still-untrained nodes, once selected, will be copied to
a smaller neural network architecture. From there we apply a random dataset selection
which can reduce the amount of data to process by up to 95%. Together, these two pieces
allow us to fully evaluate the smaller neural network efficiently to search the node space in
our proposed approach. See the diagram of this prune process in Figure 1.

Copy remaining nodes to
new architecture and train the model

Selected nodes for
removal

Full network

Untrained

OO O
O 0O00
O

Um[ai ned Trained

OO
O

Network 2

O
OO
O

Network N

OO
O

O

Full Dataset Pruned Dataset Final Dataset
Sample 1 Sample 1 R
Sample 2 X g:m l
Sample 3 X P
Sample 4 Sample 4
Sample 5 X Sample M
Sample N Sample N

Figure 1. The overall prune process of our approach. We start with the full untrained model and full
dataset on the left. Then we select nodes for removal (red noeds or with an X) using our proposed
approach while also randomly subsampling the training dataset (removed samples with an X). Finally
we copy the nodes into a smaller neural network architecture and train on the smaller dataset. The
process continues using the Genetic Algorithm approach proposed.

In this section we present our proposed approach in two subsections. The purpose of
the algorithm is to improve model pruning based on the lottery ticket hypotheses, which is
described in the first subsection. As a result of improving model pruning, we find a smaller
equivalent (or better) model. Our approach uses a genetic algorithm (GA) to search for
lottery tickets which allows us to prune non-lottery ticket nodes. Throughout generations
of the GA we search for pruned models maintaining the original accuracy of the larger
model. The approach contributes a design that does not require training of the original

Mach. Learn. Knowl. Extr. 2023, 5

405

network, thus saving on computations with a scalable design. Other approaches like
iterative pruning would require training of a large network several times over (iteratively),
repeated for each test.

The next subsection we improvement on our approach by applying an extention to
the lottery ticket hypotheses that we propose. This extension states we don’t need the full
dataset to search for lottery tickets, meaning we can find a smaller equivalent model using
a fraction of the training data. This method applies random selection of the training data in
conjunction with lottery ticket pruning to show that lottery samples exist. These lottery
samples save on training requirements by removing up to 95% of the original dataset, thus
allowing us to efficiently search for pruned models.

3.2.1. Genetic Lottery Node Selection

We recreated the FastAl [31] tabular neural network in order to build a prune strategy
on top of it based on the lottery ticket hypothesis. The network consists of embeddings to
process categorical features which are then appended to the set of continuous features. This
layer is processed through a series of linear layers with optional batch normalization at
each stage. Since our goal is to reduce network size, we eliminated all batch normalization
layers, but we also have tested with batch normalization which did not perform as well
for smaller networks [1]. We apply some preprocessing to the datasets which include con-
verting categorical features to IDs for embeddings, filling in missing data, and normalizing
continuous features. The training strategy used increases and lowers the learning rate in
cycles to reach a better local minima of the loss function. We perform early stopping on the
best validation score for a fixed number of training cycles.

We outline the general structure of the approach in Figure 2. The goal of our approach
is to find a pruned network as performant as the original network without having to train
the original network. Our previous approach would require the original network trained
in order to measure the weights and generate a metric to prune them. With our current
approach we do not need to train the original network, although we do in this paper for
comparison purposes to validate the approach. This would allow the option to create a
large search area for lottery tickets without the consequence of having to train the large
network. To avoid training the original network, we pre-prune the network using a genetic
algorithm (GA) approach. The genetic algorithm requires a population, and a means to
evaluate the population to select and produce the next generation of individuals.

Initial Random Untrained Full
encodings Sized Network
l Population
Pnpula_tlon pruned to 10%
Encodings based on node
encodings
v
Order pupulau‘on Generate 7?% Mutate all
based on valid new population,

Train Population —*population based

scare, cross keep 25% top on global state
pairs. performers.
Update Global

State

Figure 2. The general structure of our genetic algorithm approach for lottery ticket search. The
approach uses encodings of the network’s nodes as population for the genetic algorithm. Each
encoding in the population represents the selection of the nodes to be pruned for one network
configuration.

Mach. Learn. Knowl. Extr. 2023, 5

406

The population is a list of encodings which describe which node of the network to
retain or prune. The encoding is a sequence of 1s and 0s ordered with the nodes of the
(original) network to represent their prune status. We can fix the number of retained nodes
in the search algorithm, which we have determined to be optimal around 10% in our tests,
or 90% prune rate. The population size per generation was fixed to 30 for large datasets,
and 60 for smaller datasets, selected for how much we can process on a 2-cpu machine as a
criteria. Some of the small datasets of a few hundred samples could likely handle larger
populations but we wanted to keep the size roughly fixed across all tests.

The initial population is randomly generated with the fixed prune rate. The population
is evaluated by training the subnetworks and recording their validation scores (the test
scores are not used). We then use a weight measure to score the weights of the subnetworks
(see Appendix B). This measure can be norms as typically done with pruning, or can be
custom metrics such as weight mean and variance, or can be a global network metric
such as the validation score from evaluation. We tested many different measures in our
experiments, including combinations, but overall found that the simplest metrics L0 to be
one of the best performers on average for all datasets.

When the weights are measured, they are recorded into a global prune state matrix
where each node (ordered by its position in the original network) has a representative
entry in the global state. The global prune state is maintained throughout all generations to
grow a map of knowledge regarding node quality. We provided an example of how the
global state is used and updated along with the overall crossover, adjustment, and mutation
process of individuals in Figure 3. Each subnetwork will contribute its node weight scores to
their respective global state entry (using the mean of multiple scores if different population
overlap in nodes). The quality scores in the global state are normalized to a value between
1 and 0, 1 being the best quality measurable. Since the nodes are initially untested, they
start with a full quality score of 1. The quality scores are normalized to probabilities when
used to mutate or select nodes during the crossing processes.

We reorder the individuals with a random selection weighted by normalizing their
validation score, then pair them in that order. At this point we no longer need the network
itself and work with the node encoding. The encoding is a sequence of 1/0s representing
which nodes have been selected for the subnetwork, 0 being pruned. First, we cross
the encoding pairs at K random points in the encoding. This crossover may result in an
imbalance of nodes with more or less than the fixed requirement. Note that for all random
node selections we use a weighted random selection using the global state’s normalized
quality scores (used as probabilities). Given more nodes, we remove selected nodes at
random. Otherwise, we randomly select new nodes to introduce into the individual.
Then each new individual will have a series of mutations by pruning a random node and
reselecting a pruned node to maintain node balance. The choice of node is random for
selecting new nodes, but when removing selected nodes the random selection is weighted
to weaker nodes by inverting the quality scores and normalizing for probabilities again.
This process first allows generations to build off high performant networks using a cross of
their encodings, then mutate them towards a potentially better selection of nodes and/or
untested nodes.

We found through parameter adjustments that retaining 25% of the top performing
networks of the current generation benefitted the selection process for the next generation.
Note that 75% of the next generation will be newly generated population while 25% is top
performers, all of which get mutated. To save time, if the same network/encoding ever
reoccurs, we use their recorded score rather than retraining the network. This can happen
if the original network is small or if only a few high quality nodes are available to select,
thus the algorithm may converge towards similar networks. Moreover, we retain 25%
of top performers with mutations applied which can reappear as they mutate to similar
nodes each generation, so we see most of these top performers reoccur. For example,
the alcohol dataset had about 26% of networks reoccur (over 40 generations), largely from
the retained top performers, thus we save a lot of time using a simple dictionary lookup

Mach. Learn. Knowl. Extr. 2023, 5

407

(where the key is the encoding). We used a fixed 40 generations for all our tests, then use
the best model of the final generation as our pruned model. In our results we show that the
fixed 40 generations can be reduced in general if we optimize globally across all datasets,
and reduced even more if optimized per dataset. At no point is it required to train the
original network.

Initialized Global State Example: individuals pruned down to 2 nodes
(25 node network) Individual A's node | [Individual B's node | | Individual C's node
1.0 1.0 1.0 1.0 1.0 scores scores scores
1.0 1.0 1.0 1.0 1.0 B1 B2 C1
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 Al
1.0 1.0 1.0 1.0 1.0
A2 cz2
A
Updated Global State
(25 node network)
B1i 1.0 1.0 |(B2+C1)/2| 1.0 <
1.0 1.0 1.0 1.0 1.0
1.0 Al 1.0 1.0 1.0 Order individuals based on validation score and cross (ex. A/B
1.0 1.0 1.0 1.0 1.0 top performers)
1.0 c2 1.0 A2 1.0

Individual A genetic encoding (1 for used node) (flattened)
loJoJo]o[o]o]o]o[o]o[o]1]0]o[o]o[0]o]o]o]o[o]o]1]o]

Individual B genetic encoding
[1]o]o]1]oJo[oJo]o]olo]o]o]o]o[o]o]o]elo]o]o[o]o]o]

K point cross of individuals A and B
[1]o]o]o]o]o]o]o]o]o]o[1]o]o]ofo]o]o]o]1]o]o]o[1]o]

» Correct imbalanced node count (using global state) X
[1lofoJofolo]ofoo[olo 10]o]olo[o[olo[o]o[o]o]0]0]

» Mutate new individual (using global state)
[oo[1]ooJooJo]ololo 1]oJo]o[o]o]o]olo]olo[o]o]o]

Figure 3. How the global state is updated where each entry is a node quality score updated after
each generation. Then the process explains the global state’s involvement in crossing individuals to
generate new samples. Node imbalance is maintained to keep a fixed prune rate for new individuals,
in this case a fixed prune rate of roughly 90%. Node imbalances and mutations are marked red with
bold, green cells (not bold) are tested nodes from subnetworks.

3.2.2. Lottery Sample Selection

The genetic algorithm we proposed to find lottery nodes requires training of many
small networks (compared to the potentially large original network). While the networks
are small in size, the dataset used for training can still impose inefficient search times,
for example when training on the Susy dataset with 5 million samples. To solve this
problem we propose an extension to the lottery ticket hypothesis which states that not only
can a subnetwork be found as performant as the original, but a subset of the training dataset
(lottery samples) in conjunction with a subnetwork of lottery weights (found and trained
using the subset) can be as performant as the original network using the original dataset.
The validation and test sets remain the same, but the training dataset can be searched for
lottery samples and used to train a model with equivalent performance, and in some cases
better performing networks due to outlier and poor sample quality removal.

We found simply reducing the training dataset does not produce equivalent perfor-
mance. It was required to first reduce the dataset, then find appropriate lottery weights
for this dataset. We believe that the reduced dataset becomes simplified, thus requiring
a simpler network to generalize the data better (using quality lottery weights). In this
case we extended our genetic algorithm to first reduce the training dataset at random to a
fraction of its size, then run the lottery node search for this reduced dataset. This allowed

Mach. Learn. Knowl. Extr. 2023, 5

408

us to reduce search time for the algorithm directly proportional to the reduction in training
data. We run tests with 25% to 95% reduction.

4. Experimentations, Results, and Discussion

In our previous paper we had already performed parameter searches regarding model
training such as number of neurons, layers, learning rate, etc. We built on these parameters
and continued to test our approach for the lottery pruning parameters specifically. Many of
the parameters were tested in a grid-style approach. For example, the retained population
parameter was searched in a range of 0-25 which was limited to 25 since we wanted a
diverse population. The number of generations were set higher than the optimal value since
we can fully exaust the performance of the genetic algorithm without loss of accuracy due to
the retained population. From there we analysed the generational validation performance
to determine the best stopping point in individual datasets and across all datasets. The
number of subnetworks were limited by our hardware which was a 2-CPU machine,
mainly to show that we can achieve great performance on low hardware requirements.
Our previous paper, previous works, and in our own tests have found 80-95% prune rates
to work well, so we have tested in this range. We performed a grid search on the dataset
reduction testing 0%, 25%, 50%, 75%, 90%, and 95% dataset reduction. Finally we test a
wide variety of pruning metrics which measure the quality of the nodes pruned.

After parameter searches for the genetic algorithm, we found 25% retained population
at each generation to be ideal. We chose a fixed 40 generations for all tests, but early
stopping can be applied if validation performance slows or does not improve. We used
30 subnetworks per generation for large datasets, and 60 for small datasets. Population
size was chosen to optimize search times on two CPUs, although with more hardware
performance a higher search area can be used with more networks. We found across all
datasets about 90% node reduction was optimal, so we fixed this prune rate for all our
tests. We used dataset reduction as a variable search between 25-95%. The node selection
measure was tested using many different norms, weight metrics, and training metrics as
described in our methodology.

Our approach for lottery ticket pruning and sample selection is tested across many
trials. We present results categorized by the prune method, each tested across many same
reductions. The first method uses the best performing norm in our tests, L0, to measure the
quality of nodes and is used across all datasets. The next test shows that a combination
of norms and metrics (LO, L1, Linf, and random noise) can improve the results of our
lottery ticket search further. Finally, we show that focusing on selecting the proper norm
and metrics for individual datasets can lead to even greater performance. We also push
the approach to its limit and describe some results of lottery ticket pruning with extreme
dataset reduction.

For the first test, Table 2 highlights our best scores using the norm LO as a single
measure across all datasets. In general, it was shown to find better performing networks on
5 of 8 datasets up to 30%+ improvement. We note a loss of accuracy by 1.2% in Chocolate,
3.1% in Poker and 6.1% in Wine. In particular, it is not a surprise that the Wine dataset
has poor performance since it has been shown to be resistant to lottery ticket strategies in
our tests from our previous paper [1] We could not find a weight reduction of any size to
improve its performance.

For the second test, Table 3 highlights our best scores using multiple norms and
measures across all datasets. We simply tried random combinations of the individual
measures used in an attempt to find a better pruned subnetwork. In this case we found
the combination of L0, L1, Linf, and some random noise allowed the genetic algorithm to
find roughly equivalent subnetworks in all but the Wine dataset, however the Wine dataset
compared to LO selection was improved marginally as well. If we think logically about the
score combination used, the L1 norm is the sum of all weights, L0 is the number of non-zero
weights, and Linf is the largest element. Thus, the score of their combination is looking
for nodes with dense information in an attempt to reduce empty space with zero-weight

Mach. Learn. Knowl. Extr. 2023, 5

409

counting and small-weight sums. This is likely why LO outperformed as an individual
score as it simply looks for the densest nodes of the network, but adding weight sums with
L1 can help differentiate ties when density is maxed out.

Table 2. Full set of results using only LO as a measure for all datasets. Highlighted in bold are results
that found a proper subnetwork by either improving over original or being nearly identical (which
we consider to be an improvement due to training reduction and model size reduction). Note that
GA is the result of the genetic algorithm we proposed and ‘Retrained’ is the score if we take the best
sub-model and retrain it on the entire dataset. The amount of dataset reduction used is noted in
column “Best Reduction’. ‘Original Reduction’ is the original network but trained with the reduced
dataset size (same dataset as GA). The final two columns are the difference between the best GA
improvement and the improvement generated by random pruning (best score over 150 randomly
pruned subnetworks) where one uses dataset reduction. Underlined are the results where random
has generated a positive difference to GA’s improvement.

% Improvement Difference
. . Best . Original Random

Original Reduc. GA Retrained Reguc. Reduc. Random
Alcohol 0.9871 25% 3.17% 6.51% —9.07% —4.02% —2.24%
Games 0.4854 50% 17.77% 31.81% 10.21% —26.96% —1.81%
Wine 0.6027 25% —8.44% —6.08% —2.16% —2.18% —0.51%
Chocolate 0.5098 90% —-121% —2452% —60633% —742% —17.79%
Poker 0.7399 25% —4.52% —3.09% —2.56% —-1.19% —-1.19%
Titanic (F1) 0.7611 25% 5.59% 2.93% 1.58% —0.96% —1.85%
Health (F1) 0.8232 50% 0.10% —0.04% 0.15% 0.09% —0.12%
Susy (F1) 0.7716 90% 0.35% —0.20% —1.20% —0.47% —0.45%

Table 3. Full set of results using the mean of L0, L1, Linf, and random as a measure for all datasets.
Highlighted in bold are results that found a proper subnetwork by either improving over original or
being nearly identical. The final two columns are the difference between the best GA improvement
and the improvement generated by random pruning. Underlined are the results where random has
generated a positive difference to GA’s improvement.

% Improvement Difference
- Best . Original Random

Original Reduc. GA Retrained Re%luc. Reduc. Random
Alcohol 0.9871 25% 3.61% 6.16% —9.07% —3.67% —1.89%
Games 0.4854 50% 6.03% 31.25% 10.21% —26.4% —1.25%
Wine 0.6027 25% —9.02% —5.68% —2.16% —2.58% —0.92%
Chocolate ~ 0.5098 95% 4.94% —25.89% —14,007.50% —13.58% —23.95%
Poker 0.7399 75% —0.33% —4.56% —4.54% —3.94% —3.95%
Titanic (F1) 0.7611 25% 1.26% 1.80% 1.58% 2.83% 1.93%
Health (F1) 0.8232 50% 0.27% 0.00% 0.15% —0.09% —0.30%
Susy (F1) 0.7716 25% —-0.12% —0.25% 0.06% —0.01% 0.01%

The previous two tables presented results where the same measures were used on all
datasets, however optimizing each dataset individually can improve results further. For the
third test, Table 4 presents the best measure found for each dataset individually. The Wine
dataset had a loss of accuracy of 1.6% which is only marginally worse than original. We
therefore argue in every dataset we found a nearly equivalent subnetwork using a subset
of the training data.

Mach. Learn. Knowl. Extr. 2023, 5

410

Table 4. The best measure for each dataset and their respective improvements and comparisons to
random. Highlighted in bold are results that found a proper subnetwork by either improving over
original or being nearly identical. The final two columns are the difference between the best GA
improvement and the improvement generated by random pruning. There are no results to underline
for this table.

% Improvement Difference
.. Best . Original Random
Measure Dataset Original Reduc. GA Retrained Re%luc. Reduc. Random
Valid Alcohol 0.9871 25% 2.78% 6.71% —9.07% —4.22% —2.44%
Valid Games 0.4854 50% 4.40% 34.13% 10.21% —29.28% —4.13%
LO + inf Wine 0.6027 25% —6.36% —1.55% —2.16% —6.71% —5.05%
L0+ L1+inf+Rand Chocolate 0.5098 95% 4.94% —25.89% —14,007.5% —13.58% —23.95%
Linf Poker 0.7399 50% 0.37% —2.33% —1.89% —4.64% —4.65%
LO Titanic (F1) 0.7611 25% 5.59% 2.93% 1.58% —0.96% —1.85%
Valid Health (F1) 0.8232 50% 0.28% —0.07% 0.15% —0.10% —0.31%
LO Susy (F1) 0.7716 90% 0.35% —0.20% —1.20% —0.47% —0.45%

We include a graph of the validation improvement over the 40 generations for the GA
algorithms of Table 4 in Figure 4. The improvement is in percentage (shown as a log chart
for visibility) compared to the first generation, so all datasets start at 0% improvement
and we show how the algorithm progresses over each generation. The chart shows in
some cases, such as Poker, Wine and Alcohol, the full 40 generations continue to improve
validation scores. For the other datasets, we find that the improvement flattens early on
suggesting an early stop can be implemented for some datasets. In many datasets we
could stop at generation 15, and in some even at 7 generations. Across all datasets, after
25 generations there is little performance gain, but still improvements. This would mean
an early stop mechanism could be implemented to stop the search process early on and
improve search times by an additional 35-80%.

r [====- Alcohol
————————————————————————— — — Games
10% rT T riesrezmraessraezsesezseressereseeresart om0 Wine
/ e —-= Chocolate

. Poker
] - T - = = T Titanic
; — Health
/ — - Susy

Log Improvement Over First Generation

0 5 10 15 20 25 30 35

Generations

Figure 4. Log chart of the improvement in validation (in percentage compared to the first generation)
of each generation. All datasets start at 0% improvement since we compare with the first generation.
Note that therefore this means the improvement already obtained from the first generation is not
represented in this graph so the validation score plateau does not seem large.

Mach. Learn. Knowl. Extr. 2023, 5

411

We wanted to highlight some extreme cases of sample reduction on a few tests. For our
large datasets, the Susy dataset had a reduction of training data by 90% (from 4M training
samples to 400k) while improving F1 by 0.35%. For our smaller datasets, the Chocolate
dataset was able to be reduced by 95% (from 1149 training samples to just 57 samples)
while improving RMSE by 4.94%. The Alcohol dataset was reduced to 190 samples and
still outperformed original by 6.71%. The Titanic dataset used 347 samples to outperform
original by 5.59%. If the goal were simply to reduce training data and maintain at most
equivalent performance, many of these datasets could be reduced even further with a
small drop in accuracy. For example, Susy with a 95% reduction can still achieve a loss of
accuracy of only 0.10% (using the same measure), while samples are reduced to 200k. In
an extreme case, Alcohol had a loss of only 1.76% at 95% reduction, which corresponds to
only 13 training samples. We include some network training and inference time results in
Table 5. Note that inference time can be subject to CPU processing noise due to the small
nature of the datasets, so we included in bold the result from the larger datasets which
show improved inference.

Table 5. Comparison of GA train times and inference times to original model performance. Note that
the test set does not change in size, but inference may vary in cases of small test set sizes. Test sets
larger than 500k samples are underlined.

Original Original Train Train Model Inference

Train (s) Infer. (s) Reduc. Improvement Reduc. Improvement
Alcohol 2.892s 0.016 s 25% 2.83% 90% —2.11%
Games 23.463 s 0.168 s 50% 50.16% 90% 11.17%
Wine 3.636 s 0.022 s 25% 30.36% 90% 16.92%
Chocolate 4.206s 0.021s 95% 51.94% 90% 3.08%
Poker 4.764 s 2.209 s 50% 27.05% 90% 7.27%
Titanic 2.780 s 0.015s 25% 20.35% 90% —0.96%
Health 4418s 0.208 s 50% 50.89% 90% —1.82%
Susy 37.000 s 0.721s 90% 90.18% 90% 4.88%

In addition to our comparison to original (which has no dataset reduction and no
weight reduction), the results in each table are compared to the original network trained
with dataset reduction (equivalently reduced train dataset to the respective GA result),
and random pruning (equivalent 90% prune rate) tested both with and without dataset
reduction. For original trained on dataset reduction, we found it mostly made performance
significantly worse, and in some cases untrainable if the reduction was too high. This is
expected since generally reducing training data for neural networks tends to lead to worse
performance and a reduced ability to generalize. We also found that random pruning (on
the full dataset) is not enough to find lottery ticket weights and that our GA algorithm
generally improves over random pruning. And finally, combining the two using random
pruning and dataset reduction made performance even worse, likely compounding the
overall negative effects of both. Thus, our results suggest that in order to use dataset
reduction, or in other words apply the idea of lottery samples, the network must also be
pruned to its lottery weights, meaning the two approaches to find lottery samples and
lottery weights must work together to find an optimized subnetwork. We believe this needs
to be the case because the lottery ticket weights allow the network to learn on the reduced
dataset with increased generalizability allowing us to avoid overfitting the networks. The
lottery weights are directly tied to the lottery samples which would imply a different
selection of training samples would be tied to a different subset of optimal lottery weights.

Finally, we compare with the current leading approach on tabular datasets [1] for
tabular datasets in Table 6. The first two columns are from the previous work using the
best of iterative pruning or oneshot pruning algorithm. The algorithms prune starting
from a model as large as [1600, 800] neurons in size (size of each linear tabular layer). The
standard iterative approach (approach 1) prunes by 50% at each step until it reaches a final

Mach. Learn. Knowl. Extr. 2023, 5

412

size of [1, 1] and use the best performing size reduction. The adaptive iterative approach
(approach 2) first looks for an optimal original network size (which can vary weights), then
prunes iteratively on this better network. The oneshot approach will prune directly to a
size of [1, 1] which has only succeeded in the case of Alcohol. The second column is our GA
working with a fixed prune rate of 90%. In this case we start with a model of size [200, 100]
and prune down to 30 neurons total. The comparison shown is the improvement over the
original starting network of the respective model that was pruned, so this score is based on
the starting network used.

Table 6. This table compares the previous approach (lottery) with the current approach GA. The
improvement scores are with respect to the original network performance of the originally pruned
model. The size of the final pruned network is in number of neurons. Best accuracy improvement
over original and smallest model is highlighted in bold and underlined.

Lottery Lottery Size GA GA Size GA Data

Improvement (Variable) Improvement (Fixed) Reduction
Alcohol 1.11% 2 6.71% 30 50%
Games 13.60% 150 34.13% 30 25%
Wine —1.11% 38 —1.55% 30 50%
Chocolate —3.68% 2 4.94% 30 25%
Poker 4.78% 600 0.37% 30 25%
Titanic 0.94% 20 5.59% 30 95%
Health 0.20% 300 0.28% 30 90%
Susy 0.04% 300 0.35% 30 50%

We do not compare best accuracy in this case because this depends on the original
model (which can change with varying sizes, better initialization of lottery weights, and/or
training strategy) and the goal of the paper is to create an algorithm to improve the
search method to find lottery tickets. In some datasets for the previous approach, the best
model could only be found with hundreds of neurons while we can still achieve similar
improvements on small networks. We show that our approach generally finds lottery
tickets and improves over the original starting network in most datasets, and show the
benefit of a fixed prune rate to achieve a fixed final size of the network. We also want to
highlight that our GA approach never trains the original network while still being able
to compete with and outperform the current leading approach that requires training and
retraining of the subnetwork several times over on an iterative scheme. In addition, we
only use a fraction of the training dataset in the GA approach.

5. Conclusions and Future Work

In conclusion, we designed a genetic algorithm capable of searching for lottery tickets
using a fraction of the training dataset without ever training the original network. The
algorithm can target a fixed prune rate and search for lottery tickets by training networks
a fraction of the size of the original network. We were able to find networks 90% smaller
than original while improving up to 30% in accuracy in some cases. We demonstrated that
the search algorithm does not require all data and in some cases we were able to search for
lottery tickets with as little as 5% of the training data. For example, the Alcohol dataset can
achieve nearly equivalent performance to original with a 95% training reduction (using
a total of 13 training samples). We also showed this can be applied to a dataset of 4M
samples, reducing it to just 200k samples and having equivalent performance (—0.10%).
We compared with our previous work [1] and found in general we were able to find a
higher quality of lottery weights with the ability to fix the prune rate. All results presented
were compared to random pruning and dataset reduction to show the improvement of
each component of our algorithm. We found our approach improves over random pruning
and showed adding dataset reduction to random pruning in addition to just training the
original network has worse effects on training overall (sometimes untrainable). This leads

Mach. Learn. Knowl. Extr. 2023, 5

413

to our conclusion that we can find lottery samples in the dataset if we apply it in conjunction
to associated lottery tickets in order to train a smaller network with a fraction of the data.

Current limitations of our approach are the selection of lottery samples. Currently we
simply randomly reduce the training data by a fraction (keeping the same reduced dataset
across all tests) which is not an optimized search process. This means we are searching for
lottery tickets to match the already reduced dataset, thus optimizing through lottery tickets
rather than improving the training dataset directly. To improve this work, we can apply
lottery ticket search algorithms (such as our GA approach) to the sample reduction process
in order to select lottery samples while applying lottery pruning techniques (on the weights)
to fit the dataset properly. This would also allow for the variable dataset size reduction to
become fixed like we have shown with our GA prune rate. Other limitations include the
ability to search efficiently since we are limited by the number of smaller models we can
search, however this is also a limitation of prior approaches which also need to test larger
models. While the approach is not limited by parameters of the original model, in order to
search the whole space the approach requires many smaller models to cover all parameters,
however the goal is to find an equivalent model rather than search the whole space.

Future work will focus on improving the search mechanism for both lottery ticket
search and sample selection. We will also focus on applying this approach to much
larger models in the language model space which will allow us to test the approach on
relatively extremely large models for lottery ticket search while using very large dataset for
sample selection.

In summary, we proposed an extension to the lottery ticket hypothesis to include
lottery samples and applied it to our proposed genetic algorithm for improved lottery ticket
search. The reduction of samples improves search time with the potential to also allow for a
larger population and improve lottery ticket search quality in turn, or simply find a smaller
network faster. In our previous work [1] we asked if it were possible to prune a network
without ever training it to begin with, and with our proposed work we demonstrated that
we do not need to train the original network, nor use the whole training dataset, in order to
produce a quality pruned network with similar accuracy.

Author Contributions: Conceptualization, R.B. and R.G.; methodology, R.B. and R.G.; software,
R.B,; validation, R.B.; formal analysis, R.B.; investigation, R.B.; resources, R.G.; data curation, R.B.;
writing—original draft preparation, R.B.; writing—review and editing, R.B. and R.G.; visualization,
R.B.; supervision, R.G.; project administration, R.G.; funding acquisition, R.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Ontario Graduate Scholarship (OGS) and Natural Sciences
and Engineering Research Council of Canada (NSERC) grant number 08.1620.00000.814006.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ATC Anatomical Therapeutic Chemical
CNN Convolutional Neural Network
GA Genetic Algorithm

GAN Generative Adversarial Networks
GB Gradient Boosting

KNN K-Nearest Neighbors

RF Random Forest

Appendix A. Dataset Details

This section of the appendix describes each of the datasets in detail. Nearly all of this
work is already published in our previous paper [1] that worked with the same datasets.

Mach. Learn. Knowl. Extr. 2023, 5

414

We provide a copy with minor edits of this information for easy access as it is relevant
information that would otherwise clutter the paper.

The goal in dataset selection is to test many varieties of tabular data. Some datasets
are of poor quality using poor features and duplicate/missing data, or small in size with
a few hundred samples. Other datasets are large with good quality data, while some
use simulated data augmentation to generate millions of samples. Some datasets have
a predefined test set, others do not have a defined prediction goal. Each dataset has a
variety of tabular features, some containing just continuous features, others containing only
categorical features, and many mixed with both. The datasets are described in more detail
in this section, and we present the number of samples, number of features, evaluation
metrics, and train-validation-test splits used in our experiments in Table Al.

Table A1. Details of each dataset including number and type of features, and train-validation-test
split. Cat refers to Categorical, Cont refers to Continuous in regards to the feature type present in
the datasets.

Dataset # Samples % Split

Name Cat: Cont Train Valid Test Train Valid Test
Alcohol 17:10 253 63 79 0.64 0.16 0.20
Games 4:4 10,623 2655 3320 0.64 0.16 0.20
Wine 0:11 1024 255 320 0.64 0.16 0.20
Chocolate 6:1 1149 287 359 0.64 0.16 0.20
Poker 10: 0 20,008 5002 1,000,000 0.02 0.005 0.975
Titanic 6:2 463 154 155 0.60 0.20 0.20
Health 5:5 59,724 14,932 18,664 0.64 0.16 0.20
Susy 0:18 4,000,000 500,000 500,000 0.80 0.10 0.10

The first dataset is the Alcohol dataset [27]. It is our smallest dataset and contains the
most diverse mix of continuous and categorical features. The dataset contains information
on students such as school, gender, age, information like hobbies and goals, their family
and related information such as work, education, size, etc. As quoted from this recent
dataset survey [32], “This dataset has also been uploaded on Kaggle where 305 publicly
available kernels perform exploratory data analysis. Unfortunately, there is not defined any
task with specific validation metric such that there is no leaderboard publicly available”,
so we used the workday alcohol consumption of the student as the final goal. The model
aims to predict the students” workday alcohol consumption which is a target range of 1 to
5 where 1 is very low and 5 is very high consumption.

The Video Games Sales dataset (referenced as Games) (https:/ /github.com/GregorUT/
vgchartzScrape, https://www.kaggle.com/gregorut/videogamesales, accessed on
26 September 2022). The dataset also does not have a clear final goal or leaderboard
information. There are features of videos games such as rank, publisher, year and Genre
and sales information. We have information on sales for North America, Europe, Japan,
other countries and global sales. Predicting global sales means we would have to omit
information about sales in other countries as it would be just a simple sum of those sales,
so we decided to predict North American sales given information on the video game and
sales information in other countries not including global sales.

The Wine Quality dataset (referecened as Wine) [28] aims to predict a quality score
between 0 and 10 of the wine given its features. The features are continuous values
representing different acidity rates, sugar levels, density, pH and more.

The Chocolate Ratings dataset (referenced as Chocolate) (https://www.kaggle.com/
rtatman/chocolate-bar-ratings, accessed on 26 September 2022) was created to generate
expert opinions on chocolate. We must predict the expert ratings which are values between
1 and 5 where 1 is bad taste and 5 is the best taste. The features include the company,
location, type of beans, percentage of cocoa, and origin information.

https://github.com/GregorUT/vgchartzScrape
https://github.com/GregorUT/vgchartzScrape
https://www.kaggle.com/gregorut/videogamesales
https://www.kaggle.com/rtatman/chocolate-bar-ratings
https://www.kaggle.com/rtatman/chocolate-bar-ratings

Mach. Learn. Knowl. Extr. 2023, 5

415

The Poker Hand dataset (referenced as Poker) [29] is an extremely large selection of
poker hands. Each sample is a set of 5 cards indicating the card numbers as 5 features and
their suits as 5 more features. The final goal of this dataset is to predict the poker hand such
as 0 for nothing, 1 for one pair, 2 for two pairs, 3 for three of a kind, 4 for a straight, 5 for a
flush, 6 for a full house, 7 for four of a kind, 8 for straight flush, and 9 for a royal flush. We
used this as a regression problem where higher (9) the better hand and lower (0) the worse
the hand.

The Titanic dataset (https://www.kaggle.com/c/titanic/data, accessed on 26 Septem-
ber 2022) uses information on passengers of the Titanic to predict whether they survived.
The features include gender, cabin, location of embarkment, ticket class (1st, 2nd, 3rd),
number of siblings or spouses, number of parents or children, age and fare. The goal
is to predict the survival of the individual (yes or no) using F1 as a metric. There is a
predefined test set without labels which must be submitted through Kaggle to be evaluated,
but our results reflect a train/validation/test split from the labelled train set only. We
also take our best available model for this dataset and run it through Kaggle to get a test
score for their test set in the experiments section. Note that a new dataset Titanic Extended
(https:/ /www.kaggle.com/pavlofesenko/titanic-extended, accessed on 26 September 2022)
was introduced with many more features while minimizing the number of empty features
derived from the literature allowing others to achieve 100% accuracy, so we opted to use
the more difficult prior version for testing without knowledge of the extended features and
containing missing information.

The Health Insurance dataset (referenced as Health) (https://www.kaggle.com/
anmolkumar/health-insurance-cross-sell-prediction, accessed on 26 September 2022) aims
to predict vehicle insurance sales to customers of health insurance. We are given infor-
mation on the policy holder such as a unique ID (omitted in training), gender, age, has a
driving license, region, types of vehicle information like age and damage, and information
on their premiums. The goal is whether the customer will accept the vehicle insurance
which is a binary prediction using F1 as a metric.

The Susy dataset [30] is our largest dataset containing 4 million training samples, 500k
validation and 500k test samples. The test set was predefined for this dataset as the last 500k
samples in the list. The dataset contains simulation data of a particle collider with the goal
to find rare particles. There are eight kinematic features of the collision and 10 functions
of those features with the final goal distinguishing signal from background using F1 as
a metric.

Appendix B. Weight Measures

In this section of the appendix we list some equations used to measure the weights of
nodes for pruning. The first generalized equation uses the norm to measure the quality of
anode:

(A1)

where W represents the node, N is an integer representing the norm used to measure the
node, and K is the number of weights in the node.

Some norms are typical such as N = 1 which is the sum of weights (absolute value),
or Euclidean N = 2 giving more focus on larger weights by squaring them. These can
be useful to test nodes for information content where larger values could indicate more
informative nodes but is only useful if the network (and as a result the node) has not overfit,
in which case larger weights are simply over compensating for other overfit weights
while they finetune to memorize the dataset. This issue is largely relieved by training
the model properly with a validation set prior to measurements. We tried N = inf which
represents the highest weight in the node, in this case with a sharper look at information
content only focusing on one element. We also tried N = 0 which is not a norm but can
be useful to measure density in nodes as it measures the number of non-zero weights in

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/pavlofesenko/titanic-extended
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction
https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

Mach. Learn. Knowl. Extr. 2023, 5 416

the node. This type of measurement could be improved with future work to have a range
of values near zero considered zero-weight and improve the number of weights detected
as uninformative.

We used other metrics in our measurements for node quality such as the mean of
anode:

K
p=() Wo)/K (A2)

K
o= | (Wi —m)?/K (A3)
k=1

References

1. Bluteau, R;; Gras, R,; Innes, Z.; Paulin, M. Lottery Ticket Structured Node Pruning for Tabular Datasets. Mach. Learn. Knowl. Extr.
2022, 4,954-967. [CrossRef]

2. Tandjung, M.D.; Wu,].C.M.; Wang, J.C.; Li, YH. An Implementation of FastAI Tabular Learner Model for Parkinson’s Disease
Identification. In Proceedings of the 2021 9th International Conference on Orange Technology (ICOT), Tainan, Taiwan, 16-17
December 2021; pp. 1-5.

3. Nanni, L.; Lumini, A.; Brahnam, S. Neural networks for anatomical therapeutic chemical (ATC) classification. Appl. Comput.
Inform. 2022. [CrossRef]

4. Nasios, I; Vogklis, K. Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical
time series. Int. J. Forecast. 2022, 38, 1448-1459. [CrossRef]

5. Zhang, Y,; Cutts, R; Xu, J. Implementing Machine Learning With Highway Datasets; Technical Report; State Highway Administration.
Office of Policy & Research: Baltimore, MD, USA, 2021.

6. Frankle,].; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks (2018). arXiv 2019, arXiv:1803.03635.

7. Morcos, A.S.; Yu, H.; Paganini, M.; Tian, Y. One ticket to win them all: Generalizing lottery ticket initializations across datasets
and optimizers. arXiv 2019, arXiv:1906.02773.

8. Girish, S.; Maiya, S.R.; Gupta, K.; Chen, H.; Davis, L.S.; Shrivastava, A. The lottery ticket hypothesis for object recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021;
pp. 762-771.

9. Chen, T; Frankle, J.; Chang, S.; Liu, S.; Zhang, Y.; Wang, Z.; Carbin, M. The lottery ticket hypothesis for pre-trained bert networks.
arXiv 2020, arXiv:2007.12223.

10. McCarley, J.S.; Chakravarti, R.; Sil, A. Structured Pruning of a BERT-based Question Answering Model. arXiv 2019,
arXiv:1910.06360.

11. Prasanna, S.; Rogers, A.; Rumshisky, A. When bert plays the lottery, all tickets are winning. arXiv 2020, arXiv:2005.00561.

12. Mujahid, M.; Lee, E.; Rustam, F; Washington, P.B.; Ullah, S.; Reshi, A.A.; Ashraf, I. Sentiment analysis and topic modeling on
tweets about online education during COVID-19. Appl. Sci. 2021, 11, 8438. [CrossRef]

13. Rustam, E; Ashraf, I; Jurcut, A.D.; Bashir, A.K,; Zikria, Y.B. Malware detection using image representation of malware data and
transfer learning. J. Parallel Distrib. Comput. 2023, 172, 32-50. [CrossRef]

14. Chaganti, R,; Rustam, F.; Daghriri, T.; Diez, I.d.1.T.; Mazén,].L.V.; Rodriguez, C.L.; Ashraf, I. Building Heating and Cooling Load
Prediction Using Ensemble Machine Learning Model. Sensors 2022, 22, 7692. [CrossRef] [PubMed]

15. George, A.; Ravindran, A.; Mendieta, M.; Tabkhi, H. Mez: An adaptive messaging system for latency-sensitive multi-camera
machine vision at the iot edge. IEEE Access 2021, 9, 21457-21473. [CrossRef]

16. George, A.; Ravindran, A. Scalable approximate computing techniques for latency and bandwidth constrained IoT edge. In
Proceedings of the Science and Technologies for Smart Cities: 6th EAI International Conference, SmartCity360°, Virtual Event,
2—4 December 2020; pp. 274-292.

17. Padhi, I; Schiff, Y.; Melnyk, I; Rigotti, M.; Mroueh, Y.; Dognin, P; Ross,].; Nair, R.; Altman, E. Tabular transformers for modeling
multivariate time series. In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Toronto, ON, Canada, 6-12 June 2021; pp. 3565-3569.

18. Huang, X.; Khetan, A.; Cvitkovic, M.; Karnin, Z. Lottery Ticket node prunning for tabular datasets. arXiv 2020, arXiv:2012.06678.

19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit,]J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017;
pp- 5998-6008.

20. Wang, Z,; Li, F; Shi, G.; Xie, X.; Wang, F. Network pruning using sparse learning and genetic algorithm. Neurocomputing 2020,
404, 247-256. [CrossRef]

21. Mantzaris, D.; Anastassopoulos, G.; Adamopoulos, A. Genetic algorithm pruning of probabilistic neural networks in medical

disease estimation. Neural Netw. 2011, 24, 831-835. [CrossRef] [PubMed]

http://doi.org/10.3390/make4040048
http://dx.doi.org/10.1108/ACI-11-2021-0301
http://dx.doi.org/10.1016/j.ijforecast.2022.01.001
http://dx.doi.org/10.3390/app11188438
http://dx.doi.org/10.1016/j.jpdc.2022.10.001
http://dx.doi.org/10.3390/s22197692
http://www.ncbi.nlm.nih.gov/pubmed/36236791
http://dx.doi.org/10.1109/ACCESS.2021.3055775
http://dx.doi.org/10.1016/j.neucom.2020.03.082
http://dx.doi.org/10.1016/j.neunet.2011.06.003
http://www.ncbi.nlm.nih.gov/pubmed/21723704

Mach. Learn. Knowl. Extr. 2023, 5 417

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Yang, C.; An, Z,; Li, C,; Diao, B.; Xu, Y. Multi-objective pruning for cnns using genetic algorithm. In Proceedings of the
International Conference on Artificial Neural Networks, Munich, Germany, 17 September 2019; pp. 299-305.

Hancock, PJ. Pruning neural nets by genetic algorithm. In Artificial Neural Networks; Elsevier: Amsterdam, The Netherlands,
1992; pp. 991-994.

Ougiaroglou, S.; Evangelidis, G. Efficient dataset size reduction by finding homogeneous clusters. In Proceedings of the Fifth
Balkan Conference in Informatics, Novi Sad, Serbia, 1620 September 2012; pp. 168-173.

Nuha, FU. Training dataset reduction on generative adversarial network. Procedia Comput. Sci. 2018, 144, 133-139. [CrossRef]
Chandrasekaran, J.; Feng, H.; Lei, Y.; Kacker, R.; Kuhn, D.R. Effectiveness of dataset reduction in testing machine learning
algorithms. In Proceedings of the 2020 IEEE International Conference On Artificial Intelligence Testing (AlTest), Oxford, UK, 3—-6
August 2020; pp. 133-140.

Cortez, P; Silva, AM.G. Using data mining to predict secondary school student performance. In Proceedings of the 5th Annual
Future Business Technology Conference, Porto, Portugal, 9-11 April 2008.

Cortez, P; Cerdeira, A.; Almeida, F; Matos, T.; Reis,]. Modeling wine preferences by data mining from physicochemical
properties. Decis. Support Syst. 2009, 47, 547-553. [CrossRef]

Cattral, R.; Oppacher, F.; Deugo, D. Evolutionary data mining with automatic rule generalization. Recent Adv. Comput. Comput.
Commun. 2002, 1, 296-300.

Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 2014,
5,1-9. [CrossRef]

Howard, J.; Gugger, S. Fastai: A Layered API for Deep Learning, Information (2020). Information 2020, 11, 108. [CrossRef]
Mihaescu, M.C.; Popescu, P.S. Review on publicly available datasets for educational data mining. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2021, 11, €1403. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2018.10.513
http://dx.doi.org/10.1016/j.dss.2009.05.016
http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.3390/info11020108
http://dx.doi.org/10.1002/widm.1403

	Introduction
	Previous Works
	Materials and Methods
	Datasets
	Methodology Overview
	Genetic Lottery Node Selection
	Lottery Sample Selection

	Experimentations, Results, and Discussion
	Conclusions and Future Work
	Appendix A
	Appendix B
	References

