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Abstract: The scores of distance-based outlier detection methods are difficult to interpret, and it
is challenging to determine a suitable cut-off threshold between normal and outlier data points
without additional context. We describe a generic transformation of distance-based outlier scores into
interpretable, probabilistic estimates. The transformation is ranking-stable and increases the contrast
between normal and outlier data points. Determining distance relationships between data points
is necessary to identify the nearest-neighbor relationships in the data, yet most of the computed
distances are typically discarded. We show that the distances to other data points can be used to model
distance probability distributions and, subsequently, use the distributions to turn distance-based
outlier scores into outlier probabilities. Over a variety of tabular and image benchmark datasets, we
show that the probabilistic transformation does not impact outlier ranking (ROC AUC) or detection
performance (AP, F1), and increases the contrast between normal and outlier score distributions
(statistical distance). The experimental findings indicate that it is possible to transform distance-based
outlier scores into interpretable probabilities with increased contrast between normal and outlier
samples. Our work generalizes to a wide range of distance-based outlier detection methods, and,
because existing distance computations are used, it adds no significant computational overhead.

Keywords: anomaly detection; outlier detection; novelty detection; outlier scores; anomaly scores;
score normalization; score distribution; score contrast; distance distribution; outlier probabilities

1. Introduction

We propose a generic method to transform the scores of distance-based outlier detection
methods into interpretable, probabilistic estimates. An outlier is often described as “an
observation (or subset of observations) which appears to be inconsistent with the remainder
of that set of data” [1]. The definition of an inconsistent observation depends on the application
and algorithm used. Ruff et al. [2] define an inconsistent observation as “an observation that
deviates considerably from some concept of normality”, but an inconsistent observation can
also be defined as an object that stems from a different distribution from the model describing
the data, as in the classical definition of Hawkins [3]: “An outlier is an observation which
deviates so much from the other observations as to arouse suspicions that it was generated by
a different mechanism”. An outlier is also referred to as an anomaly or novelty, sometimes
interchangeably. Therefore, outlier detection is also referred to as anomaly detection or novelty
detection. Because the methods used to detect outliers, anomalies, and novelties are mostly
the same, we make no distinction between these terms and refer to inconsistent instances
as outliers. Outlier detection is a broad research field that includes probabilistic approaches
such as classical density estimation, clustering approaches to determine outliers, one-class
classification methods, reconstruction-based methods, or generative approaches; for a detailed
overview, refer to one of the extensive reviews [2,4–8]. In a distance-based setting, we can
define outliers as objects located far away from the remaining objects.
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Notation

a A scalar (integer or real)

a A vector

A A matrix

a A scalar random variable

A A set

A A space

A A distribution

R The set of real numbers

X A dataset

{0, 1, . . . , n} The set of all integers between 0 and n

f (x) : A→ B A function of x with domain A and range B

Specifically, given a metric space (M, d) with metric d, each object x ∈ M receives a
real-valued outlier score s := q(x) via a function q :M→ R, where the function depends
on the distances to the other objects in the dataset. To determine if an observation is
considered an outlier, it is necessary to establish a threshold value by converting outlier
scores into binary labels of normal and outlier data points. A major challenge in distance-
based outlier detection is the interpretation of the resulting scores. The scores provided
by distance-based methods differ widely in their scale, range, and meaning. Even when
considering only a single outlier detection method, the same outlier score can describe
different degrees of outlierness depending on the kind of data. These challenges make the
interpretation and comparison of outlier scores difficult. Distance-based outlier detection
scores are typically derived from neighborhood representation given a distance matrix.
We propose that the information contained in the distance matrix can be used to derive
a probabilistic normalization set that can be used to transform outlier scores into outlier
probabilities. Based on a large number of benchmark datasets, we test our approach in
terms of detection performance and interpretability and show that it is possible to achieve
interpretable, probabilistic outlier scores with no detriment to the resulting detection per-
formance. The rest of this paper is organized as follows: Section 2 provides an overview of
distance-based outlier detection methods. In Section 3, we show outlier score normalization
schemes and their application to distance-based methods. In Section 4, we describe our
proposed probabilistic normalization scheme, and in Section 5, we describe the results of
applying our scheme on benchmark datasets. Finally, in Section 6, we derive conclusions
and provide opportunities for future research.

2. Distance-Based Outlier Detection

In this section, we introduce and review common distance-based outlier detection
methods and formalize them as a scoring function q :M→ R on a metric space (M, d),
such that an outlier detection method assigns a real-valued outlier score to an observation.
We further differentiate between the closed-world and open-world outlier detection setting,
an often disregarded yet highly relevant aspect of distance-based outlier detection. The
following outlier detection methods are formulated in a closed-world setting, such that the
observations in a dataset X are assigned an outlier score. Often, however, it is necessary to
assign an outlier score to unseen data, such that a model of normality is determined based
on a dataset X, and the outlier score is determined on unseen observations in a dataset
Xtest. At the end of this section, we provide a simple approach to transfer said closed-world
outlier detection methods into an open-world setting.
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2.1. Nearest Neighbors

Knorr et al. [9–11] first formalized a distanced-based notion of outliers in which an ob-
ject x ∈ X is said to be a DB-outlier in a dataset of n objects if |{x′ ∈ X | d(x, x′) > δ}| ≥ αn,
where α, δ ∈ R are parameters to be specified by the user and 0 ≤ α ≤ 1. In this
specification, a fraction α of all objects have a distance from x that is larger than δ.
Chandola et al. [7] point out that this method can be viewed as global density estima-
tion for each instance since it involves counting the number of neighbors in a hypersphere
of radius δ. However, a major drawback of this definition is that it is difficult to determine
a distance threshold δ and the results do not determine a ranking of scores.

Ramaswamy et al. [12] build upon the ideas presented for DB-outliers. To determine
the outlier score of an instance, they propose the use of the distance to its kth nearest
neighbor as a score; thus, we refer to the method as kthNN. Compared to DB-outliers, the
main benefit of this approach is that it does not require the user to specify a distance δ. The
kthNN outlier score of an observation x is defined as

qkthNN(x) := d(k)(x,X) (1)

where x ∈ X and d(k)(x,X) are the distance between x and its kth nearest neighbor in X.
Angiulli and Pizzuti [13] adapt the kthNN approach to use the average distance to the

k-nearest neighbors of a point x instead of the kth distance, which can also be interpreted as
the maximum distance. We refer to this method as kNN and define it as follows:

qkNN(x) :=
1
k

k

∑
i=1

d(i)(x,X) (2)

where x ∈ X and d(i)(x,X) are the distance between x and its ith nearest neighbor in X.
We propose a generalization of kthNN and kNN as specific instances of weighting

schemes for distance-based outlier detection. Weighting schemes are commonly used in k-
nearest neighbor classification, where the schemes traditionally emphasize close neighbors
and disregard neighbors farther away [14]. However, as evident in kthNN-based outlier
detection, where only the farthest neighbor is considered, we propose emphasizing the
neighbors farther away. A further difference between weighted classification and weighted
outlier detection is the predicted result, which corresponds to class votes or outlier scores.
To keep the resulting outlier scores in the same range, we propose sum-normalizing the
weights such that the resulting weight vectors sum to one. The resulting outlier scores can
subsequently be interpreted as a (smoothened) distance. We adapt some of the weighting
measures investigated in Geler et al. [14] to the outlier detection task and describe kthNN as
max-weighted and kNN as mean-weighted outlier detection. The distance and rank schemes
are adapted from Dudani’s weighted nearest-neighbor classification [15], the exponential
scheme from Zavrel [16], and the linear scheme from Macleod et al. [17]. In all cases, we
reverse the schemes such that the farthest neighbor receives the largest weight. We define
the schemes for a vector of k-nearest neighbor distances d as follows

wmax(d) = [0, 0, . . . , 1] (3)

wmean(d) =
[

1
k

,
1
k

, . . . ,
1
k

]
(4)

wdistance(d, s) = [ds
1, ds

2, . . . , ds
n] (5)

wexponential(d, a, b) = [exp(adb
1), exp(adb

2), . . . , exp(adb
n)] (6)

wlinear(d) = [scale(d1, d), scale(d2, d), . . . , scale(dn, d)] (7)

wrank(d) = [1, 2, . . . , k] (8)

where wmax is 1 only if di = max(d); s, a, and b are real-valued hyperparameters of the
respective weighting schemes; and the linear scaling function is defined as
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scale(x, d) =
x−min(d)

max(d)−min(d)
. (9)

We show how the weights influence the determination of an outlier score based
on a three-nearest-neighbors example in Figure 1. Since the weighting schemes are not
the primary focus of our work, we use fixed hyperparameters s = a = b = 1; thus,
wdistance(d) = [d1, d2, . . . , dn] and wexponential(d) = [exp(d1), exp(d2), . . . , exp(dn)] for the
purpose of our work.

Because outlier scores are assumed to be positive values derived from distances, sum-
normalization is possible by dividing each element in the weight vector by its sum as
defined in Equation (10). Sum-normalization ensures that the weight vector sums to one
and the weighted outlier score can be interpreted as a weighted distance. We further use
the proposed weighting scheme to define a generic weighted k-nearest neighbor approach
(kNNW), which serves as a basis for our tabular outlier detection experiments in Section 5.
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Figure 1. The weights obtained from different weighting schemes for three nearest neighbors with
distances exp([0.5, 1.0, 1.5]).

qkNNW(x) :=
d ·w

∑k
i=1 wi

(10)

where d is the vector of k-nearest neighbor distances, w is the k-dimensional weight vector,
and · denotes the dot product between the distance and weight vectors.

More recently, authors proposed various sampling schemes to improve the efficiency
of the described techniques. Wu and Jermaine [18] propose an iterative sampling scheme to
approximate the result of the kthNN detector described in Equation (1), which we designate
as the kth iteratively sampled nearest neighbor (kthISNN).

qkthISNN(x) := d(k)(x, Sx(X)) (11)

where Sx(X) is a randomly sampled subset of X excluding x, and d(k) is the distance to the
kth nearest neighbor in Sx(X). The subsampling is determined individually for each point
x′ processed with qkthISNN(x′); therefore, it is referred to as iterative sampling.

Sugiyama and Borgwardt [19] show that a simplification of kthISNN leads to better
detection performance over 16 different datasets. The authors propose removing the
iterative aspect of kthISNN and, instead, sample only once for all data points and identify
the first nearest neighbor, which we describe as the sampled nearest neighbor (SNN).

qSNN(x) := min
x′∈S(X)

d(x, x′) (12)

where S(X) is an independent random subset of the data that is determined once and the
score is defined as the minimum distance to points in S(X). In other words, for a point x,
this method uses the distance to its closest point x′ in a fixed sample S(X) as a score.
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Pang et al. [20] extend the SNN approach by repeatedly sampling random subsets of
the data, which we term repeatedly sampled nearest neighbor (RSNN).

qRSNN(x) :=
1
r

r

∑
i=1

min
x′∈Si(X)

d(x, x′) (13)

where r is the number of random subsets to the sample and Si(X) is the i-th random sam-
ple. This method essentially represents an ensemble of nearest-neighbor outlier detection
models and, consequently, improves upon SNN, which the authors empirically show using
11 datasets. It can be argued that k-nearest neighbor ensembles such as a combination of
kthNN or kNN detectors with data subsampling are a generalization of RSNN, which are
well-known techniques to improve neighbor-based outlier detection [21–23].

In addition to data sampling techniques, other authors use randomized sampling to
determine feature subspaces as initially motivated by Aggarwal and Yu [24]. Kriegel et al. [25]
define a set of reference points based on the concept of shared nearest neighbors. The reference
points characterize a subspace hyperplane, and the outlier scores are determined by the
Euclidean distance of a point x to the subspace hyperplane, weighted by an indicator function
that determines the relevance of a dimension. Agrawal [26] proposes a very similar distance-
based subspacing approach. Zhang et al. [27] also use a shared nearest-neighbor reference set to
determine subspaces, using an angle-based approach to compute the outlier scores. Trittenbach
and Böhm [28] propose a method to determine subspaces that considers the relationship
between subspaces. Keller et al. [29] propose determining high-contrast subspaces for outlier
detection as a form of data pre-processing. Cabero et al. [30] also determine the subspaces as a
data pre-processing step based on archetypal analysis followed by a kthNN approach. Some
authors combine distance-based outlier detection with dimensionality reduction techniques
such as principal component analysis [31] for high-dimensional data. In image-based outlier
detection, authors use neural networks to evaluate the neighborhood search in latent spaces
describing entire images [32], image sub-features [33], or image patch features [34]. Another
option to model distance-based outliers is to use reverse nearest neighbor or natural neighbor
relationships. For example, outlier detection using indegree number (ODIN) [35] models the
nearest-neighbor relationships as a directed graph and defines the outlier score as the indegree
number in the graph such that a low indegree number defines an outlier. Radovanović
et al. [36] analyze the concept of hubness, which appears in reverse nearest-neighbor outlier
detection, and propose an outlier detection method based on anti-hubs; points that do not
occur in the nearest neighbors of any other points. Natural neighbors approaches discard
the k-nearest neighbor parameter and instead perform a search over λ rounds to identify an
appropriate number of neighbors such that a shared neighbor relationship is found [37,38]. A
further extension is described by extended nearest-neighbor approaches, which combine the
nearest neighbors with reverse nearest neighbors and shared nearest neighbors [39,40].

2.2. Local Outlier Factor

In contrast to the previously described techniques, which are referred to as global
outlier detection techniques, the local outlier factor (LOF) [41] model introduces the concept
of local outliers. Schubert et al. [42] formalize distance-based outlier detection models
such that an outlier score is determined based on some context set, typically the k-nearest
neighbors of a point x. To compare the resulting outlier scores, another set of points is used,
which is referred to as the reference set. Global methods compare the resulting score from the
context set to all other points in the the dataset X; thus, the reference set is defined as the
entire dataset X. Because the score comparison to all other points is considered global, those
methods ignore differences in the local densities of the data. Local methods use a different
reference set to compare the scores to, typically, the k-nearest neighbors as in the context set.
Local methods convert the distance information from the local neighborhood into some
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form of density; therefore, the methods are sometimes also referred to as density-based.
LOF can be defined as a scoring function

qLOF(x) := p(x)−1

∣∣∣N(k)(x)
∣∣∣−1

∑
x′∈N(k)(x)

p(x′)

 (14)

where N(k)(x) is the set of k-nearest neighbors of x and p is the local reachability density
of x defined as p(x) := |N(k)(x)|−1 ∑x′∈N(k)(x) max{d(k)(x′,X), d(x, x′)}. Note that N(k)(x)

includes all objects inside the kth distance, which can, in the case of a “tie”, be more than k
objects. The local reachability density can be seen as an average inverse distance of a point
x normalized such that the distance cannot be smaller than the kth distance. According to
the authors, the local reachability density stabilizes and prevents statistical fluctuations,
a fact later analyzed in more detail by Schubert et al. [43]. The local outlier factor then
compares p(x), the density of the context set, to the average reachability density of the
points in the reference set. If the average reachability density in the reference set is higher
than the point density obtained from the context set, then the score of the local outlier factor
is above one and considered less normal.

Schubert et al. [42] further propose a simplified version of the local outlier factor
where p is the inverse kth distance p(x) := d(k)(x,X)−1, which represents a simpler density
estimate compared to the local reachability density in LOF. To better illustrate the general
concept of local outlier detection, the simplified local outlier factor (SLOF) can be stated as
follows:

qSLOF(x) :=

mean
x′∈N(k)(x)

(d(k)(x′,X)−1)

d(k)(x,X)−1
. (15)

The authors show that many local outlier models can be considered variations of SLOF.
For example, the local distance-based outlier factor (LDOF) proposed by Zhang et al. [44]
is a variation of the simplified LOF model using an average distance as in kNN instead of
the kth distance as in kthNN. Influence Outlierness (INFLO) [45] is another variation of the
simplified LOF, which diverges by using a different context set that includes reverse nearest
neighbors. Another method that can be seen as an extension of the simplified LOF is Local
Outlier Probabilities (LoOP) [46], which adds a probabilistic normalization to SLOF. Many
more local outlier detection methods have been described in the literature comprising entire
literature reviews [47]. Schubert et al. [43] note that local outlier detection methods can be
differentiated using their order of locality, and Goodge et al. [48] show that the methods
can be generalized as message-passing algorithms on a nearest-neighbors graph.

2.3. Closed-World and Open-World

Distance-based outlier detection methods are typically defined in a closed-world
settings; however, there is an important difference between the closed-world and open-
world specifications such that, for two equal points x ∈ X, x′ ∈ Xtest and x = x′, the kth

nearest neighbor in X is different. In the closed-world or transductive setting, the search
for the k-nearest neighbors does not include the searched-for point x; in other words, the
nearest-neighbors graph does not include self-loops. In the open-world setting, it is not
known if x′ is contained in the reference set X, and therefore all points in X are included
in the k-nearest neighbors search. All of the referenced methods are described in a closed-
world setting and do not state how to perform inductive outlier detection, yet commonly
used toolkits for outlier detection focus on the open-world setting [49,50]. We propose
transferring the closed-world setting to the open world such that k + 1 neighbors are used
for X, ignoring the first neighbor, and k neighbors for Xtest. In Section 4, we describe our
method in the transductive, closed-world, and inductive, open-world settings.
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3. Outlier Score Normalization

As mentioned in the introduction, the outlier scores resulting from distance-based
approaches differ widely in their meaning and are challenging to interpret. In some cases,
even within a dataset, the scores for two different observations can denote different de-
grees of outlierness, depending on disparate local data distributions, a core motivation
for local outlier detection methods. Some distance-based methods provide probability
estimates, for example [46,51–53], but these probabilistic interpretations are a core part
of the underlying algorithms and cannot easily be transferred to other algorithmic ap-
proaches. Latecki et al. [54] developed an outlier detection model based on local kernel
density estimates. Schubert et al. [43] more generally analyze the connection of density-
based outlier detection algorithms, such as the local distance-based methods, to kernel
density estimation. The authors show that distance-based density estimation is closely
related to kernel density estimation and claim that local outlier detection methods use
heuristics to determine, perhaps coincidentally, something similar to a statistical kernel for
density estimation.

Instead of algorithm-specific probabilistic interpretations, some authors propose outlier
score normalization schemes independent of the underlying algorithm. A simple way of
bringing outlier scores to a common scale is to apply a linear transformation as defined in
Equation (9), such that the minimum score is mapped to 0 and the maximum score is mapped
to 1. However, such a min–max scaling approach does not yield a useful probabilistic inter-
pretation. Gao and Tan [55] propose two approaches to model outlier scores as probabilities.
In the first approach, they assume that the posterior probabilities follow a logistic sigmoid
function. In the second approach, they assume that the outlier scores follow a mixture of
exponential and Gaussian distributions. In both cases, the authors propose the use of an
expectation–maximization approach to learn the parameters. Kriegel et al. [56] propose the
use of the cumulative distribution function of a Gaussian or Gamma distribution to normalize
the scores. Additionally, the authors show the usefulness of post-processing techniques to
ensure a useful expected value for normal data and to increase the contrast between normal
and outlier data points. Bouguessa [57] model outlier scores as a beta mixture distribution
to directly identify outlier points from the mixture component with the highest score values.
Schubert et al. [58] note that a rank-based normalization can be useful if little knowledge is
available about the actual scores and score distributions.

3.1. Interpretability, Explanation, and Trustworthiness

The interpretability of outlier predictions should not be confused with the explanation
of outlier detection models or the trustworthiness of predictions; therefore, for the ongoing
discussion, we differentiate the terms as follows and describe them in detail following our
differentiation.

• Interpretability: the ability to judge the relevance of a prediction.
• Explanation: the ability to explain the reasoning behind a prediction.
• Trustworthiness: the ability to describe the confidence behind a prediction.

Explanation is sometimes also referred to as interpretation, but this kind of interpre-
tation is separate from interpretability. Explanation algorithms reveal how models make
decisions, but interpretability refers to the degree to which an intrinsic property of an
inference result is understandable to human beings [59]. There is a growing interest in
methods for deriving explanations of outliers, that is, “to give the users of some outlier
detection method further aid in understanding and evaluating the result with respect to
their domain” [60]. Explanations highlight why a specific outlier detection model reaches
a particular prediction. A common approach to explain outlier predictions is to compare
normal data points and outliers in attribute subspaces in which the given outliers show
separability from the normal data [61–63]. Other authors derive explanations from statisti-
cal models of the normal and outlier data using minimum-distance estimation [64]. The
explanation of learning methods and outlier detection methods is discussed extensively
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in a research field known as Explainable Artificial Intelligence, or XAI [65]. Explanations
can uncover the hidden weaknesses of a model, also known as “Clever Hanses” [66]. The
Clever Hans Effect occurs when the learned model produces correct predictions based on
the “wrong” features, which appears to be a widespread problem in outlier detection [67].
Another critical aspect of outlier detection predictions is trustworthiness. Trustworthiness
describes an understanding of when a prediction should or should not be trusted [68–70].
To achieve better trustworthiness in outlier detection predictions, ref. [71] propose the use
of a Bayesian approach to add probabilistic uncertainty estimates to outlier scores, enabling
the detector to assign a confidence score to each prediction, which captures its uncertainty
in that prediction.

4. Probabilistic Outlier Scores

In this section, we derive a generic scheme to transform distance-based outlier detec-
tion scores into interpretable outlier scores based on distance probabilities. In the generic
score normalization approaches mentioned in Section 3.1, only the actual scores are used
for normalization. Conversely, the algorithm-specific normalization schemes are generally
not easily transferable to other algorithms. A common theme across a vast majority of
distance-based outlier detection methods is the determination of nearest-neighbor rela-
tionships between data points. Determining exact nearest-neighbor relationships typically
utilizes the computation of all distance relationships between data points, resulting in a
distance matrix M. Additionally, it has been shown that brute-force distance computation
is preferable to index methods except for low-dimensional similarity search problems [72].
We note that approximate nearest-neighbor approaches are also used for distance-based
outlier detection strategies [73], but this represents a small minority of methods and is not
the focus of our study. In the closed-world setting, the distance matrix corresponds to a
square matrix of Rn×n values for n points in the dataset. In the open-world setting, the
distance matrix between n reference points Rn×n has to be differentiated from the distance
matrix of m query points to n reference points Rm×n. For a point xi and a point xj, a value in
the distance matrix at index (i, j) corresponds to the distance d(xi, xj). Most distance-based
approaches use the k-nearest neighbors as a context set to determine the outlier score [42],
and any probabilistic estimate of those scores would be based on the limited information
present in the context set. In contrast to previous approaches, we assume that the additional
information contained in the distance matrix is useful for normalization. More concretely,
we hypothesize that the additional information can be used to transform outlier scores
into interpretable probabilistic estimates. Based on a distance matrix of reference points,
we define the concept of a normalization set. A normalization set describes a subset of
the distance matrix used for the probabilistic score normalization. In the simplest case,
the entire distance matrix is used as a baseline normalization set as shown in Figure 2;
hence, the normalization set is defined as the distances contained in the distance matrix M
between all reference points excluding self-loops in the matrix diagonal. Additionally, if
the distance measure is symmetric, the normalization set from the distance matrix can be
reduced to its upper or lower triangular set of values.

We propose using the normalization set to determine a distance probability distribu-
tion. For example, in the parametric case, we estimate the parameters of a distribution
P based on the distances in the normalization set. The distribution of distances has been
investigated in the context of feature similarity [74], hubness reduction [75], local intrinsic
dimensionality [76], or compact sets [77]. Pekalska and Duin [78] show, based on the central
limit theorem, that distances are approximately normally distributed for independent and
identically distributed feature vectors. In general, however, distance distributions seem to
differ depending on the characteristics of the input data and we assume that the underlying
distance distribution is unknown. Regarding the estimation of distance distributions for
outlier detection, we note that the robustness of an estimator should be considered such
that an estimator’s breakdown value [79] lies above a possible outlier contamination [80].
Under the assumption that the distances in the normalization set follow an unknown
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continuous probability distribution, we define a random variable r ∼ P that describes
the normalization set. Given a probability density function p on r, any distance d(x, x′)
can be interpreted as the distance density between x and x′ denoted as p(d(x, x′)) or, in
short, p(x, x′). The cumulative distance distribution f (x, x′) := P(r ≤ d(x, x′)) describes the
probability of a distance in the normalization set being smaller than or equal to d(x, x′). A
query point with a distance-based outlier score can be directly interpreted using its distance
distribution, where a probability of 99% means that the distance is in the top 1% of distances
observed in the normalization set. To estimate an unknown distance distribution, we can
use a parametric or non-parametric approach. In the parametric case, we estimate a contin-
uous probability distribution that is expected to fit the data. In the non-parametric case,
we can directly use the empirical distribution function or use some other non-parametric
estimation method such as robust kernel density estimation [81].

Query Point
Reference Point

Figure 2. Visualization of the reference points as a normalization set, where the dotted red lines
indicate the connection of the query point to its nearest neighbors in the reference set, and the gray
lines indicate the distance relationships between the reference points.

In summary, we hypothesize that it is possible to transform distances to interpretable
distance distributions without adverse effects on detection performance. Because a cu-
mulative distribution function is monotonically non-decreasing, the ranking should be
stable after the transformation, but due to the limited precision of the computations, it is
not guaranteed that the transformation is ranking-stable. To evaluate the impact of our
transformation on ranking stability, we use the Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC). A perfect ranking results in an ROC AUC value of 1, whereas
an inverted perfect ranking would result in a value of 0. A value of 1/2 can be interpreted
as random guessing [82]. Besides ranking stability, we investigate changes to detection
performance using average precision (AP) and the popular F1-score, a harmonic mean
of precision and recall. Additionally, we evaluate the contrast between normal and out-
lier scores before and after the transformation using statistical distances. The basis for
our experiments are tabular outlier detection benchmark datasets [82,83], and a common
image-based benchmark dataset for outlier detection [84,85].

5. Results

To evaluate the probabilistic transformation on tabular data, we used the proposed
weighted k-nearest neighbor approach (kNNW). The datasets used stem from the DAMI [82]
library and the UTSD single-concept benchmark [83]. For both dataset collections, we only
used the datasets with five percent of outliers, each consisting of ten randomly sampled
variants, resulting in the dataset list shown in Table 1. For DAMI, we used the normalized
and deduplicated variants, and for UTSD, we pre-processed the data points with min–max
scaling. We used two-fold, stratified cross-validation to determine an ROC AUC and AP
estimate of the resulting distance-based and probabilistic estimates. We used Euclidean
distance for all evaluations and fixed the hyperparameters for the weighting schemes
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as s = a = b = 1, as shown in Figure 1. For the number of neighbors k of our tested
kNNW method, we picked the best parameter from all possible values of k ∈ [1, 2, . . . , 100].
In our first analysis, we investigate the impact of score normalization using different
probability distributions. We examine a normal, exponential, and empirical distribution
and compare it to the base case where no distribution is used for normalization. To
visualize the results of our tabular ranking evaluation, we use box and whisker plots
that show the interquartile range (IQR) in a colored area with corresponding whiskers
depicting 1.5 IQR and points outside the whiskers drawn individually. In Figure 3, we
show that the ROC AUC result after the transformation matches the original result and the
transformation is indeed ranking-stable. To analyze the impact on detection performance,
we evaluate the mean average precision over all datasets as shown in Table 2. There are
no significant differences between distance and probabilistic scores regarding detection
performance for the tested weighting schemes. In our second analysis, we compare the
performance of different weighting schemes over all described datasets. We find that, over
all datasets, there is no significant difference in outlier ranking or predictive performance
between the different weighting schemes. There can be more considerable weighting
scheme differences for individual datasets; however, those are dataset-specific and must
be investigated case by case, as shown in Figure 4. We also note that weighting scheme
hyperparameter optimization might yield additional improvements, which we did not
address in our analysis.

Table 1. The datasets used to evaluate the weighted k-nearest neighbors approach (kNNW), where N
denotes the number of samples, O the number of outliers, and d the dimensionality.

Dataset N O d Source Refs.

Annthyroid 6942 347 21 ELKI [86]
Arrhythmia 256 12 259 ELKI [86]
Cardiotocography 1734 86 21 ELKI [86]
CinCECGTorso 373 18 1639 UTSD [87]
Crop 1052 52 46 UTSD [88]
Earthquakes 387 19 512 UTSD [89]
ECG5000 3072 153 140 UTSD [87]
ECGFiveDays 465 23 136 UTSD [89]
ElectricDevices 4500 225 96 UTSD [89]
FaceAll 344 17 131 UTSD [89]
FordA 2660 133 500 UTSD [89]
FordB 2380 119 500 UTSD [89]
FreezerRegularTrain 1578 78 301 UTSD [90]
HandOutlines 921 46 2709 UTSD [91]
HeartDisease 157 7 13 ELKI [86]
Hepatitis 70 3 19 ELKI [86]
InternetAds 1682 84 1555 ELKI [86]
ItalyPowerDemand 575 28 24 UTSD [92]
MedicalImages 625 31 99 UTSD [89]
MixedShapesRegularTrain 793 39 1024 UTSD [93]
MoteStrain 721 36 84 UTSD [94]
PageBlocks 5139 256 10 ELKI [86]
Parkinson 50 2 22 ELKI [86]
PhalangesOutlinesCorrect 1787 89 80 UTSD [91]
Pima 526 26 8 ELKI [86]
SemgHandGenderCh2 568 28 1500 UTSD [95]
SonyAIBORobotSurface2 635 31 65 UTSD [96]
SpamBase 2661 133 57 ELKI [86]
Stamps 325 16 9 ELKI [97]
StarLightCurves 5607 280 1024 UTSD [98]
Strawberry 369 18 235 UTSD [89]
TwoLeadECG 611 30 82 UTSD [87]
UWaveGestureLibraryAll 589 29 945 UTSD [99]
Wafer 6738 336 152 UTSD [100]
Yoga 1863 93 426 UTSD [89]
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Figure 3. ROC AUC results of different probability distributions for each dataset over all weighting
schemes, where “none” denotes the original scores without normalization.

Table 2. Mean average precision and corresponding standard deviation over all tabular datasets for
kNNW using different weighting schemes (distance, exponential, max, mean, rank, reverse) and
different probabilistic transformations (empiric, exponential, none, normal).

Empiric Exponential None Normal

kNNW (distance) 0.388 ± 0.274 0.385 ± 0.273 0.387 ± 0.273 0.387 ± 0.273
kNNW (exponential) 0.387 ± 0.273 0.384 ± 0.272 0.389 ± 0.273 0.386 ± 0.272
kNNW (max) 0.389 ± 0.275 0.389 ± 0.275 0.389 ± 0.275 0.389 ± 0.275
kNNW (mean) 0.384 ± 0.273 0.382 ± 0.271 0.384 ± 0.272 0.385 ± 0.273
kNNW (rank) 0.389 ± 0.274 0.387 ± 0.273 0.388 ± 0.273 0.388 ± 0.273
kNNW (reverse) 0.387 ± 0.273 0.383 ± 0.272 0.385 ± 0.272 0.386 ± 0.273
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Figure 4. ROC AUC results of the different weighting schemes for each dataset over all examined
distributions.
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From an interpretability perspective, there are datasets where using the entire distance
matrix as a normalization set results in useful probabilistic estimates, for example, the Crop
dataset shown in Figure 5. However, using the entire distance matrix for normalization
often leads to low probabilistic estimates for normal and outlier data points. The reason
is that the resulting weighted neighbor distance is consistently low compared to all other
distances in the dataset, even for outliers. In this case, a different normalization set has to
be extracted from the distance matrix; for example, the m-neighborhood consisting of the
distances to the m-closest reference points. It is possible to analyze multiple normalization
sets for the outlier score predictions to provide more context for interpretation, a process
we term probabilistic neighborhood analysis. For example, predictions can be interpreted using
neighborhood probabilities from m ∈ [1, 2, . . . , 1024], resulting in different score distribu-
tions and different cut-off thresholds. The cut-off decision relies on the characteristics of the
score distribution and is determined using statistical measures such as the median absolute
deviation, domain knowledge or, when labels are available, performance metrics for binary
classification [101,102]. To give an example for the TwoLeadECG dataset, in Figures 6 and 7,
we compare the initial probabilistic estimates using the entire distance matrix to a smaller,
local normalization set identified using a probabilistic neighborhood analysis as shown in
Figure 8. Using statistical measures of contrast, we derive a contrast-optimal neighborhood
size of m = 90 or m = 99 depending on the statistical distance used, with a cut-off thresh-
old of approximately 95%, as shown in Figure 8. The probabilistic neighborhood analysis
clearly demonstrates the increased contrast using a smaller normalization set and addition-
ally depicts the optimal cut-off threshold for different neighborhood sizes. Nonetheless, we
note that an optimal cut-off threshold is difficult to determine in an unsupervised setting.
To identify an optimal cut-off threshold, it is necessary to evaluate it against a performance
metric such as the F1-score requiring normal and outlier labeled data, which are often
unavailable. Using a probabilistic neighborhood analysis simplifies the identification of a
suitable cut-off value, even when labels are unavailable. Thus, in addition to the improved
interpretability, choosing an appropriate normalization set allows for a flexible definition of
a cut-off threshold to transform outlier scores into class labels. Furthermore, it is possible to
increase the contrast between normal and outlier data points using the right normalization
set. Using statistical distances as a measure of contrast between normal and outlier scores,
we can identify an optimal normalization set as shown in Figure 8.
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Figure 5. Transformation of distance-based scores to an exponential cumulative distance distribution
for the first variant of the Crop dataset using the entire distance matrix as a normalization set.

For image-based datasets, we extend the PatchCore methodology [34] to Probabilistic-
PatchCore, by transforming the distance-based patches using our probabilistic normalization
approach with an empirical distribution. We evaluate the model on the datasets provided
by MVTecAD, as shown in Table 3. A major difference between tabular k-nearest neighbors
outlier detection and image outlier detection is that the image models may result in pixel-
wise and image-wise outlier scores. In the pixel-wise case, each pixel of an observation is
scored and in the image-wise case a single score is obtained for the entire image.
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Figure 6. Exponential distance distribution using the entire distance matrix as a normalization set
for the first variant of the TwoLeadECG dataset results in low contrast and a difficult-to-determine
cut-off threshold.
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Figure 7. Exponential distance distribution using the 99-element neighborhood as a normaliza-
tion set for the first variant of the TwoLeadECG dataset yielding a suitable cut-off threshold and
increased contrast.
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Figure 8. Each blue line refers to the probabilistic outlier score of the first TwoLeadECG dataset vari-
ant. The green and red lines show the statistical distance between the normal score distribution and
the outlier score distribution, with the dashed vertical lines depicting the corresponding maximum
contrast value. The orange dashed line shows the F1-score’s optimal cut-off.

The PatchCore model is similar to kthNN, but uses a core-set sampled memory bank
of patch-wise feature vectors that are generated using a pre-trained neural network. For
PatchCore, the pixel-wise scores are determined through interpolation of the patch-wise
scores; thus, it is not necessary to estimate a distance distribution per pixel, but one distri-
bution per patch. Like the authors, we used the second and third layer of a WideResNet50
trained on ImageNet [103] to determine 28× 28 patches. Additionally, we used a single
neighbor corresponding to the patch-wise kthNN approach with a core-set sampling ra-
tio of 10%. To transform the pixel-wise scores into probabilistic estimates, we estimated
patch-wise distributions and transformed the scores for each patch to probabilistic esti-
mates accordingly. To determine an appropriate normalization set for each image-based
dataset, we identified the optimal set in an m-neighborhood of m ∈ [1, 2, . . . , 1024] with
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the largest contrast. We established the contrast between normal and outlier samples as
the Earthmover distance between the image-level score distributions. We demonstrate
that there are no significant ranking or detection differences between PatchCore and Prob-
abilisticPatchCore in Table 4 and provide a more detailed analysis of the results online
(https://davnn.github.io/probabilistic-distance/, accessed on 1 June 2023). In Figure 9,
we highlight the challenge of interpretability based on a normal data sample; without
additional context, it is not clear how to interpret the resulting distance-based scores. In ad-
dition to the improved interpretability, we find that the probabilistic normalization greatly
increases the contrast between normal and outlier data points in the image detection tasks,
as visible in Figure 10.

Table 3. MVTecAD [85] image datasets for the evaluation of ProbabilisticPatchCore.

Dataset Train (Normal) Test (Normal) Test (Outlier) Masks Groups Shape

Carpet 280 28 89 97 5 1024× 1024
Grid 264 21 57 170 5 1024× 1024
Leather 245 32 92 99 5 1024× 1024
Tile 230 33 84 86 5 840× 840
Wood 247 19 60 168 5 1024× 1024
Bottle 209 20 63 68 3 900× 900
Cable 224 58 92 151 8 1024× 1024
Capsule 219 23 109 114 5 1000× 1000
Hazelnut 391 40 70 136 4 1024× 1024
Metal Nut 220 22 93 132 4 700× 700
Pill 267 26 141 245 7 800× 800
Screw 320 41 119 135 5 1024× 1024
Toothbrush 60 12 30 66 1 1024× 1024
Transistor 213 60 40 44 4 1024× 1024
Zipper 240 32 119 177 7 1024× 1024

Table 4. Mean image-level and pixel-level ROC AUC scores and image-level F1 scores over all image
datasets in MVTecAD to compare PatchCore and ProbabilisticPatchCore regarding ranking stability
and detection performance.

F1 (Image) ROC AUC (Image) ROC AUC (Pixel)

PatchCore 0.978 ± 0.012 0.987 ± 0.017 0.976 ± 0.017
ProbabilisticPatchCore 0.971 ± 0.021 0.982 ± 0.023 0.976 ± 0.016
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Figure 9. Patch-wise scores of a normal sample of the Bottle dataset showing interpretability differences.

https://davnn.github.io/probabilistic-distance/
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Figure 10. Patch-wise scores of an outlier sample of the Bottle dataset exhibiting increased contrast.

6. Conclusions

We show that it is possible to transform distance-based outlier scores into interpretable
probabilistic estimates with increased contrast. Determining the “real” outliers from outlier
scores is one of the main challenges in real-world outlier detection scenarios such as
network intrusion detection, fraud detection, medical diagnostics, proficiency testing, or
industrial quality control. Our probabilistic normalization markedly simplifies the process
to convert outlier scores into meaningful decisions by providing an interpretable result with
a clear separation between normal and outlier data points. To demonstrate the viability
of our approach, we derive and test a generalized, weighted k-nearest neighbors outlier
detection model (kNNW) on several tabular datasets and a probabilistic patch-wise model
(ProbabilisticPatchCore) on image datasets. We show that the resulting probabilistic scores
increase the contrast between normal and outlier data points and can easily be added
to existing distance-based outlier detection methods. In comparison to previous score
normalization techniques, which use solely the information contained in the outlier scores
to derive a normalization, we make use of the distances to other data points as an additional
source of information for normalization. Another interesting aspect of our analysis is
showing that the probabilistic transformation increases the contrast between normal and
outlier points, which should be further explored in more detail. The increased contrast
simplifies downstream tasks since it becomes easier to differentiate normal from outlier data
points, a fundamental motivation for our transformation and an essential characteristic
of outliers, as pointed out by Hawkins [3]: “a sample containing outliers would show
up such characteristics as large gaps between ‘outlying’ and ‘inlying’ observations and
the deviation between outliers and the group of inliers, as measured on some suitably
standardized scale”. We hypothesize that there might be an optimal normalization set that
maximally increases the contrast between normal and outlier points and future research is
necessary to define measures of contrast and methods to identify an optimal normalization
set for a given contrast measure. Because distance-based outlier detection techniques rely
on distance computations for nearest-neighbor search, our approach can be applied to a
wide range of detection techniques. In our experiments, we used the common Euclidean
distance metric, but other, possibly non-metric, distance measures are also used for outlier
detection, and should also be investigated using our probabilistic score transformation. We
investigated only the most apparent normalization sets, but there may be various other
useful normalization sets hidden in the distances between points. Another limitation of
our examination is the usage of real-world datasets, which limits the theoretical analysis of
our approach, such as the normalization behavior under specific dataset distributions. Our
proposed normalization approach should be investigated more thoroughly in a theoretical
setting to identify the limits of our approach and potentially prove some of the properties
observed in our evaluation. Another limitation of our investigation is the use of non-
robust estimation techniques, and the influence of estimator robustness should be explored
in future research. Our proposed generalization of weighted nearest-neighbor outlier
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detection should be analyzed in more detail to thoroughly compare weighting strategies and
weighting hyperparameters. A large body of research investigates sampling and subspacing
techniques for distance-based outlier detection and future researchers should evaluate the
usefulness of probabilistic intepretations for such models. Another important area of
outlier detection research is how to combine different detection models into ensembles
that improve upon the individual models, which typically necessitate score normalization
and, therefore, could benefit from probabilistic normalization. We further highlight the
importance of a distinction between the open-world and closed-world settings for distance-
based outlier detection and propose such a distinction for future distance-based methods.
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36. Radovanović, M.; Nanopoulos, A.; Ivanović, M. Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection.
IEEE Trans. Knowl. Data Eng. 2015, 27, 1369–1382. [CrossRef]

37. Zhu, Q.; Feng, J.; Huang, J. Natural Neighbor: A Self-Adaptive Neighborhood Method without Parameter K. Pattern Recognit.
Lett. 2016, 80, 30–36. [CrossRef]

38. Wahid, A.; Annavarapu, C.S.R. NaNOD: A Natural Neighbour-Based Outlier Detection Algorithm. Neural Comput. Appl. 2021,
33, 2107–2123. [CrossRef]

39. Tang, B.; He, H. ENN: Extended Nearest Neighbor Method for Pattern Recognition [Research Frontier]. IEEE Comput. Intell. Mag.
2015, 10, 52–60. [CrossRef]

40. Tang, B.; He, H. A Local Density-Based Approach for Outlier Detection. Neurocomputing 2017, 241, 171–180. [CrossRef]
41. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data: 2000, Dallas, TX, USA, 15–18 May 2000; Dunham, M., Naughton, J.F.,
Chen, W., Koudas, N., Eds.; Association for Computing Machinery: New York, NY, USA, 2000; pp. 93–104. [CrossRef]

42. Schubert, E.; Zimek, A.; Kriegel, H.P. Local Outlier Detection Reconsidered: A Generalized View on Locality with Applications to
Spatial, Video, and Network Outlier Detection. Data Min. Knowl. Discov. 2014, 28, 190–237. [CrossRef]

43. Schubert, E.; Zimek, A.; Kriegel, H.P. Generalized Outlier Detection with Flexible Kernel Density Estimates. In Proceedings of
the 2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014; Zaki, M., Obradovic, Z., Tan,
P.N., Banerjee, A., Kamath, C., Parthasarathy, S., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA,
2014; pp. 542–550. [CrossRef]

http://dx.doi.org/10.1109/ICDMW.2015.62
http://dx.doi.org/10.1145/2487575.2487676
http://dx.doi.org/10.1145/2830544.2830549
http://dx.doi.org/10.1016/j.procs.2022.01.297
http://dx.doi.org/10.1145/ 376284.375668
http://dx.doi.org/10.1007/978-3-642-01307-2_86
http://dx.doi.org/10.1007/978-3-642-03547-0_15
http://dx.doi.org/10.1016/j.ress.2015.05.025
http://dx.doi.org/10.1007/s41060-018-0137-7
http://dx.doi.org/10.1109/ICDE.2012.88
http://dx.doi.org/10.1016/j.knosys.2021.106830
http://dx.doi.org/10.1109/ICDSP.2015.7251924
http://dx.doi.org/10.1109/CVPR52688.2022.01392
http://dx.doi.org/10.1109/ICPR.2004.1334558
http://dx.doi.org/10.1109/TKDE.2014.2365790
http://dx.doi.org/10.1016/j.patrec.2016.05.007
http://dx.doi.org/10.1007/s00521-020-05068-2
http://dx.doi.org/10.1109/MCI.2015.2437512
http://dx.doi.org/10.1016/j.neucom.2017.02.039
http://dx.doi.org/10.1145/342009.335388
http://dx.doi.org/10.1007/s10618-012-0300-z
http://dx.doi.org/10.1137/1.9781611973440.63


Mach. Learn. Knowl. Extr. 2023, 5 800

44. Zhang, K.; Hutter, M.; Jin, H. A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data. In
Advances in Knowledge Discovery and Data Mining, Proceedings of the 13th Pacific-Asia Conference, PAKDD 2009, Bangkok, Thailand,
27–30 April 2009; Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
Lecture Notes in Computer Science, 0302-9743; Volume 5476, pp. 813–822.

45. Jin, W.; Tung, A.K.H.; Han, J.; Wang, W. Ranking Outliers Using Symmetric Neighborhood Relationship. In Proceedings of the
Advances in Knowledge Discovery and Data Mining; Ng, W.K., Kitsuregawa, M., Li, J., Chang, K., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; Lecture Notes in Computer Science; pp. 577–593. ._68. [CrossRef]

46. Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. LoOP: Local Outlier Probabilities. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; Cheung, D.W.L., Song, I.Y., Chu, W.W.,
Hu, X., Lin, J.J., Eds.; Association for Computing Machinery: New York, NY, USA, 2009; pp. 1649–1652. [CrossRef]

47. Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data
Streams. Big Data Cogn. Comput. 2021, 5, 1. [CrossRef]

48. Goodge, A.; Hooi, B.; Ng, S.K.; Ng, W.S. LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2022.

49. Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. J. Mach. Learn. Res. 2019, 20, 1–7.
50. Muhr, D.; Affenzeller, M.; Blaom, A.D. OutlierDetection.Jl: A Modular Outlier Detection Ecosystem for the Julia Programming

Language. arXiv 2022, arXiv:2211.04550.
51. Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. Outlier Detection in Arbitrarily Oriented Subspaces. In Proceedings of the 2012

IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 379–388. [CrossRef]
52. Janssens, J.; Huszár, F.; Postma, E. Stochastic Outlier Selection; Technical Report TiCC TR 2012–001; Tilburg University: Tilburg,

The Netherlands, 2012.
53. van Stein, B.; van Leeuwen, M.; Bäck, T. Local Subspace-Based Outlier Detection Using Global Neighbourhoods. In Proceedings

of the 2016 IEEE International Conference on Big Data, Washington, WA, USA, 5–8 December 2016; pp. 1136–1142. [CrossRef]
54. Latecki, L.J.; Lazarevic, A.; Pokrajac, D. Outlier Detection with Kernel Density Functions. In Proceedings of the Machine Learning

and Data Mining in Pattern Recognition, Leipzig, Germany, 18–20 July 2007; Perner, P., Ed.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 61–75. ._6. [CrossRef]

55. Gao, J.; Tan, P.N. Converting Output Scores from Outlier Detection Algorithms into Probability Estimates. In Proceedings of the
Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 212–221. [CrossRef]

56. Kriegel, H.P.; Kroger, P.; Schubert, E.; Zimek, A. Interpreting and Unifying Outlier Scores. In Proceedings of the 2011 SIAM
International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; Liu, B., Liu, H., Clifton, C., Washio, T., Kamath, C.,
Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2011; pp. 13–24. [CrossRef]

57. Bouguessa, M. Modeling Outlier Score Distributions. In Proceedings of the Advanced Data Mining and Applications; Lecture Notes in
Computer Science; Zhou, S., Zhang, S., Karypis, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 713–725. [CrossRef]

58. Schubert, E.; Wojdanowski, R.; Zimek, A.; Kriegel, H.P. On Evaluation of Outlier Rankings and Outlier Scores. In Proceedings of
the 2012 SIAM International Conference on Data Mining, Anaheim, CA, USA, 26–28 April 2012; Ghosh, J., Liu, H., Davidson, I.,
Domeniconi, C., Kamath, C., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2012; pp. 1047–1058.
[CrossRef]

59. Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.; Dou, D. Interpretable Deep Learning: Interpretation, Interpretability,
Trustworthiness, and Beyond. Knowl. Inf. Syst. 2022, 64, 3197–3234. [CrossRef]

60. Zimek, A.; Filzmoser, P. There and Back Again: Outlier Detection between Statistical Reasoning and Data Mining Algorithms.
WIREs Data Min. Knowl. Discov. 2018, 8, e1280. [CrossRef]

61. Micenková, B.; Ng, R.T.; Dang, X.H.; Assent, I. Explaining Outliers by Subspace Separability. In Proceedings of the 2013 IEEE
International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 518–527. [CrossRef]

62. Vinh, N.X.; Chan, J.; Romano, S.; Bailey, J.; Leckie, C.; Ramamohanarao, K.; Pei, J. Discovering Outlying Aspects in Large Datasets.
Data Min. Knowl. Discov. 2016, 30, 1520–1555. [CrossRef]

63. Macha, M.; Akoglu, L. Explaining Anomalies in Groups with Characterizing Subspace Rules. Data Min. Knowl. Discov. 2018,
32, 1444–1480. [CrossRef]

64. Angiulli, F.; Fassetti, F.; Palopoli, L. Discovering Characterizations of the Behavior of Anomalous Subpopulations. IEEE Trans.
Knowl. Data Eng. 2013, 25, 1280–1292. [CrossRef]

65. Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.R. (Eds.) Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11700.
[CrossRef]

66. Lapuschkin, S.; Wäldchen, S.; Binder, A.; Montavon, G.; Samek, W.; Müller, K.R. Unmasking Clever Hans Predictors and
Assessing What Machines Really Learn. Nat. Commun. 2019, 10, 1096. [CrossRef]

67. Kauffmann, J.; Ruff, L.; Montavon, G.; Müller, K.R. The Clever Hans Effect in Anomaly Detection. arXiv 2020. arXiv:2006.10609.
68. Lee, J.D.; See, K.A. Trust in Automation: Designing for Appropriate Reliance. Hum. Factors 2004, 46, 50–80. [CrossRef]
69. Jiang, H.; Kim, B.; Guan, M.; Gupta, M. To Trust or Not to Trust a Classifier. In Proceedings of the Advances in Neural Information

Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31.

http://dx.doi.org/10.1007/11731139_68
http://dx.doi.org/10.1145/1645953.1646195
http://dx.doi.org/10.3390/bdcc5010001
http://dx.doi.org/10.1109/ICDM.2012.21
http://dx.doi.org/10.1109/BigData.2016.7840717
http://dx.doi.org/10.1007/978-3-540-73499-4_6
http://dx.doi.org/10.1109/ICDM.2006.43
http://dx.doi.org/10.1137/1.9781611972818.2
http://dx.doi.org/10.1007/978-3-642-35527-1_59
http://dx.doi.org/10.1137/1.9781611972825.90
http://dx.doi.org/10.1007/s10115-022-01756-8
http://dx.doi.org/10.1002/widm.1280
http://dx.doi.org/10.1109/ICDM.2013.132
http://dx.doi.org/10.1007/s10618-016-0453-2
http://dx.doi.org/10.1007/s10618-018-0585-7
http://dx.doi.org/10.1109/TKDE.2012.58
http://dx.doi.org/10.1007/978-3-030-28954-6
http://dx.doi.org/10.1038/s41467-019-08987-4
http://dx.doi.org/10.1518/hfes.46.1.50.30392


Mach. Learn. Knowl. Extr. 2023, 5 801

70. Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.; Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; Snoek, J. Can You Trust Your
Model’ s Uncertainty? Evaluating Predictive Uncertainty under Dataset Shift. In Proceedings of the Advances in Neural Information
Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

71. Perini, L.; Vercruyssen, V.; Davis, J. Quantifying the Confidence of Anomaly Detectors in Their Example-Wise Predictions. In
Proceedings of the Machine Learning and Knowledge Discovery in Databases; Lecture Notes in Computer Science; Hutter, F., Kersting,
K., Lijffijt, J., Valera, I., Eds.; Springer: Cham, Switzerland, 2021; pp. 227–243. ._14. [CrossRef]

72. Muhr, D.; Affenzeller, M. Hybrid (CPU/GPU) Exact Nearest Neighbors Search in High-Dimensional Spaces. In Proceedings of the
Artificial Intelligence Applications and Innovations; IFIP Advances in Information and Communication Technology; Maglogiannis, I.,
Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 112–123. ._10. [CrossRef]

73. Kirner, E.; Schubert, E.; Zimek, A. Good and Bad Neighborhood Approximations for Outlier Detection Ensembles. Lect. Notes
Comput. Sci. 2017, 10609, 173–187. ._12. [CrossRef]

74. Burghouts, G.; Smeulders, A.; Geusebroek, J.M. The Distribution Family of Similarity Distances. In Proceedings of the Advances in
Neural Information Processing Systems; Curran Associates, Inc., Red Hook, NY, USA: 2007; Volume 20.

75. Schnitzer, D.; Flexer, A.; Schedl, M.; Widmer, G. Local and Global Scaling Reduce Hubs in Space. J. Mach. Learn. Res. 2012,
13, 2871–2902.

76. Houle, M.E. Dimensionality, Discriminability, Density and Distance Distributions. In Proceedings of the 2013 IEEE 13th
International Conference on Data Mining Workshops, Dallas, TX, USA, 7–10 December 2013; pp. 468–473. [CrossRef]

77. Lellouche, S.; Souris, M. Distribution of Distances between Elements in a Compact Set. Stats 2020, 3, 1–15. [CrossRef]
78. Pekalska, E.; Duin, R. Classifiers for Dissimilarity-Based Pattern Recognition. In Proceedings of the 15th International Conference

on Pattern Recognition; ICPR-2000, Barcelona, Spain, 3–8 September 2000; Volume 2, pp. 12–16. [CrossRef]
79. Hubert, M.; Debruyne, M. Breakdown Value. Wires Comput. Stat. 2009, 1, 296–302. [CrossRef]
80. Rousseeuw, P.J.; Hubert, M. Robust Statistics for Outlier Detection. Wires Data Min. Knowl. Discov. 2011, 1, 73–79. [CrossRef]
81. Kim, J.; Scott, C.D. Robust Kernel Density Estimation. J. Mach. Learn. Res. 2012, 13, 2529–2565.
82. Campos, G.O.; Zimek, A.; Sander, J.; Campello, R.J.G.B.; Micenková, B.; Schubert, E.; Assent, I.; Houle, M.E. On the Evaluation

of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study. Data Min. Knowl. Discov. 2016, 30, 891–927.
[CrossRef]

83. Muhr, D.; Affenzeller, M. Outlier/Anomaly Detection of Univariate Time Series: A Dataset Collection and Benchmark. In
Proceedings of the Big Data Analytics and Knowledge Discovery; Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I., Eds.; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2022; pp. 163–169. [CrossRef]

84. Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A Comprehensive Real-World Dataset for Unsupervised Anomaly
Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; pp. 9584–9592. [CrossRef]

85. Bergmann, P.; Batzner, K.; Fauser, M.; Sattlegger, D.; Steger, C. The MVTec Anomaly Detection Dataset: A Comprehensive
Real-World Dataset for Unsupervised Anomaly Detection. Int. J. Comput. Vis. 2021, 129, 1038–1059. [CrossRef]

86. Dua, D.; Graff, C. The UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on
1 June 2023).

87. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic
Signals. Circulation 2000, 101, e215. [CrossRef]

88. Tan, C.W.; Webb, G.I.; Petitjean, F. Indexing and Classifying Gigabytes of Time Series under Time Warping. In Proceedings of the
2017 SIAM International Conference on Data Mining (SDM), Houston, TX, USA, 27–29 April 2017; Society for Industrial and
Applied Mathematics: Philadelphia, PA, USA, 2017; pp. 282–290. [CrossRef]

89. Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR Time Series
Archive. IEEE/CAA J. Autom. Sin. 2019, 6, 1293–1305. [CrossRef]

90. Murray, D.; Liao, J.; Stankovic, L.; Stankovic, V.; Hauxwell-Baldwin, R.; Wilson, C.; Coleman, M.; Kane, T.; Firth, S. A Data
Management Platform for Personalised Real-Time Energy Feedback. In Proceedings of the 8th International Conference on
Energy Efficiency in Domestic Appliances and Lighting, Lucerne, Switzerland, 26–28 August 2015.

91. Davis, L.M. Predictive Modelling of Bone Ageing. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2013.
92. Keogh, E.; Wei, L.; Xi, X.; Lonardi, S.; Shieh, J.; Sirowy, S. Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization

into GUI Operating Systems. In Proceedings of the Sixth International Conference on Data Mining (ICDM’06), Hong Kong,
China, 18–22 December 2006; pp. 912–916. [CrossRef]

93. Wang, X.; Ye, L.; Keogh, E.J.; Shelton, C.R. Annotating Historical Archives of Images. Int. J. Digit. Libr. Syst. (IJDLS) 2010, 1, 59–80.
[CrossRef]

94. Sun, J.; Papadimitriou, S.; Faloutsos, C. Online Latent Variable Detection in Sensor Networks. In Proceedings of the 21st
International Conference on Data Engineering, Tokyo, Japan, 5–8 April 2005; pp. 1126–1127. [CrossRef]

95. Sapsanis, C.; Georgoulas, G.; Tzes, A.; Lymberopoulos, D. Improving EMG Based Classification of Basic Hand Movements Using
EMD. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Osaka, Japan, 3–7 July 2013; pp. 5754–5757. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-67664-3_14
http://dx.doi.org/10.1007/978-3-031-08337-2_10
http://dx.doi.org/10.1007/978-3-319-68474-1_12
http://dx.doi.org/10.1109/ICDMW. 2013.139
http://dx.doi.org/10.3390/stats3010001
http://dx.doi.org/10.1109/ICPR.2000.906008
http://dx.doi.org/10.1002/wics.34
http://dx.doi.org/10.1002/widm.2
http://dx.doi.org/10.1007/s10618-015-0444-8
http://dx.doi.org/10.1007/978-3-031-12670-3_14
http://dx.doi.org/10.1109/CVPR.2019.00982
http://dx.doi.org/10.1007/s11263-020-01400-4
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1137/1.9781611974973.32
http://dx.doi.org/10.1109/JAS.2019.1911747
http://dx.doi.org/10.1109/ICDM.2006.90
http://dx.doi.org/10.4018/jdls.2010040104
http://dx.doi.org/10.1109/ICDE.2005.100
http://dx.doi.org/10.1109/EMBC.2013.6610858


Mach. Learn. Knowl. Extr. 2023, 5 802

96. Mueen, A.; Keogh, E.; Young, N. Logical-Shapelets: An Expressive Primitive for Time Series Classification. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August
2011; pp. 1154–1162. [CrossRef]

97. Micenková, B.; van Beusekom, J.; Shafait, F. Stamp Verification for Automated Document Authentication. In Computational
Forensics, Proceedings of the 5th International Workshop, IWCF 2012, Tsukuba, Japan, 11 November 2012 and 6th International Workshop,
IWCF 2014, Stockholm, Sweden, 24 August 2014; Revised Selected Papers/Utpal Garain, Faisal Shafait; Lecture Notes in Computer
Science, 0302-9743; Garain, U., Shafait, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 8915, pp. 117–129. ._11. [CrossRef]

98. Rebbapragada, U.; Protopapas, P.; Brodley, C.E.; Alcock, C. Finding Anomalous Periodic Time Series: An Application to Catalogs
of Periodic Variable Stars. Mach. Learn. 2009, 74, 281–313. [CrossRef]

99. Liu, J.; Zhong, L.; Wickramasuriya, J.; Vasudevan, V. uWave: Accelerometer-based Personalized Gesture Recognition and Its
Applications. Pervasive Mob. Comput. 2009, 5, 657–675. [CrossRef]

100. Olszewski, R.T. Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data. Ph.D. Thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2001.

101. Yang, J.; Rahardja, S.; Fränti, P. Outlier Detection: How to Threshold Outlier Scores? In Proceedings of the International
Conference on Artificial Intelligence, Information Processing and Cloud Computing-AIIPCC ’19, Sanya, China, 19–21 December
2019; pp. 1–6. [CrossRef]

102. Perini, L.; Bürkner, P.C.; Klami, A. Estimating the Contamination Factor’s Distribution in Unsupervised Anomaly Detection. In
Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023.

103. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2020408.2020587
http://dx.doi.org/10.1007/978-3-319-20125-2_11
http://dx.doi.org/10.1007/s10994-008-5093-3
http://dx.doi.org/10.1016/j.pmcj.2009.07.007
http://dx.doi.org/10.1145/3371425.3371427
http://dx.doi.org/10.1109/CVPR.2009.5206848

	Introduction
	Distance-Based Outlier Detection
	Nearest Neighbors
	Local Outlier Factor
	Closed-World and Open-World

	Outlier Score Normalization
	Interpretability, Explanation, and Trustworthiness

	Probabilistic Outlier Scores
	Results
	Conclusions
	References

