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Abstract: The proliferation of novel attacks and growing amounts of data has caused practitioners
in the field of network intrusion detection to constantly work towards keeping up with this evolving
adversarial landscape. Researchers have been seeking to harness deep learning techniques in efforts
to detect zero-day attacks and allow network intrusion detection systems to more efficiently alert
network operators. The technique outlined in this work uses a one-class training process to shape
autoencoder feature residuals for the effective detection of network attacks. Compared to an original
set of input features, we show that autoencoder feature residuals are a suitable replacement, and often
perform at least as well as the original feature set. This quality allows autoencoder feature residuals
to prevent the need for extensive feature engineering without reducing classification performance.
Additionally, it is found that without generating new data compared to an original feature set, using
autoencoder feature residuals often improves classifier performance. Practical side effects from
using autoencoder feature residuals emerge by analyzing the potential data compression benefits
they provide.
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1. Introduction

The reliance on computer networks in our daily lives has grown in both magnitude
and complexity in recent years [1]. The comparative growth in network attacks has
brought network security to the forefront for many organizations [2]. To prevent the
drastic consequences of network attacks, a network intrusion detection system (NIDS)
alerts network operators when an attack is present. Researchers have recently focused their
efforts to take advantage of deep learning techniques as a way to detect complex network
attacks and improve the protection provided by a NIDS [2–5].

This article is an extended version of our paper published in the Proceedings of
the 21st IEEE International Conference on Machine Learning and Applications (ICMLA),
2022 [6]. Here, we develop the use of autoencoder feature residuals to generate features
for various neural network architectures including this extension of the technique to use
sequential network data with recurrent neural network classifiers. Previously introduced
work showed that this technique is effective for network intrusion detection when paired
with traditional classifiers such as random forest and k-nearest neighbors [7]. What was
not treated in that work, however, was the application of the technique in conjunction with
neural network architectures, such as feedforward and recurrent neural networks, which
are used in state-of-the-art research today. Here, we extend the literature by exploring the
application of autoencoder feature residuals to several neural network architectures and
assess their performance. In particular, we analyze performance using autoencoder feature
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residuals in combination with feedforward neural networks and various architectures of
recurrent neural networks.

The process for generating and using autoencoder feature residuals can be summarized
by a series of four steps, which are displayed in Figure 1. Taking only benign network
flow samples, an autoencoder is trained. This trained autoencoder can then be provided
with benign and attack network samples to construct a number of novel feature sets using
autoencoder feature residuals. These feature sets then train a neural network such that it can
effectively classify a given network sample as attack or benign. With both trained models
in hand, we can then perform inference on novel samples. We show that autoencoder
feature residuals perform as well as an original set of input features and have the potential
to increase performance under certain conditions. Unlike most other works that use
autoencoders for network intrusion detection, we do not rely on summary metrics such as
mean-squared error when utilizing autoencoder reconstruction error [3,4,8]. By exploring
this process, we have found that there is value in using the individual residuals of each
feature. In addition, we show that using autoencoder feature residuals has benefits in terms
of data compression, even in the cases where classification performance is not improved.

Benign
Samples

One-class Pre-training of Autoencoder

Trained
Autoencoder

Benign
and Attack

Samples

Create Feature Set

New
Feature

Set

Train
Neural

Network
Classifier

Trained
Neural

Network
Classifier

Perform Inference

Figure 1. Figure from [6]. An overview of the process used to generate and perform classification
with autoencoder feature residuals. Taking only benign network flow samples, an autoencoder is
trained. This trained autoencoder can then be provided with benign and attack network samples to
construct a number of novel feature sets using autoencoder feature residuals. These feature sets then
train a neural network such that it can effectively classify a given network sample as attack or benign.
With both trained models in hand, we can then perform inference on novel samples.

When using information theory as a guide, it is surprising that our technique performs
as well as an original feature set. By strictly removing data from our original feature set,
our comparable performance shows that the mutual information between features and
labels used during training is preserved [9].
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The main contributions of our work are as follows:

• We introduce the first application of using autoencoder feature residuals as input to a
feedforward neural network classifier for network intrusion problems;

• We introduce the first application of using autoencoder feature residuals as input to
recurrent neural network classifiers for network intrusion problems;

• We provide an analysis of the application of our technique across five benchmark
datasets consisting of seven network intrusion scenarios, and two different encodings
of the data;

• Using f1-score and p-values from the Kolmogorov–Smirnov test, we show that using
autoencoder feature residuals, either in place of an original feature set or in com-
bination with it, does no harm to classifier performance and has the potential to
improve it;

• We identify the potential data compression benefits when using autoencoder
feature residuals;

• We make our implemented code and data publicly available (https://github.com/
WickedElm/feature_residuals_with_pretraining, accessed on 12 June 2023) for use by
other researchers.

The remainder of this article is structured as follows. In Section 1, we discuss recent
related works in network intrusion detection. Section 2 provides the reader with necessary
background information associated with the work and outlines our methodology. Our
results and their associated discussion are presented in Section 3. Finally, we conclude the
article in Section 4.

Related Work

This work is rooted within several areas of research, including anomaly detection
and deep learning, as well as their application to network intrusion detection. A key
assumption of the work relies on the one-class pretraining step producing an autoencoder,
which has difficulty reconstructing network attacks compared to benign network samples.
This assumption is made by similar techniques, in that the residuals for attack samples will
have more data in them; however, they often use an aggregate summary error metric in
combination with a threshold [10]. Other techniques that utilize autoencoders in this space
make use of the bottleneck layer for feature reduction/selection [10].

One recent work that utilizes this assumption introduces a method where the authors
train an autoencoder to detect distributed denial-of-service attacks [11]. In their work, the
authors focus on the industrial cyberphysical environment by using lightweight features as
input to an autoencoder. Using only benign network flows during training, they are able to
detect attack network flows using the autoencoder’s reconstruction mean-squared error
compared to a threshold. Similarly, another recent work uses this same concept as part of a
larger two-stage system to detect network attacks [12]. In the first stage of the system, the
authors use a light gradient-boosting model to perform initial detection of network attacks.
An autoencoder is used in the second stage to confirm that any network flows identified
as benign also have a reconstruction mean-squared error that is below a threshold as a
second check.

AIDA is a full NIDS introduced to detect network attacks [3]. The AIDA system uses
a single autoencoder residual for each sample to augment their classifier input features.
Similarly, a related work produces three additional features using a stacked sparse autoen-
coder [13]. First, a bottleneck layer of a single node is utilized as a feature. The authors
then use two forms of the reconstruction error from the autoencoder, euclidean distance
and cosine similarity, as the other two additional features. While these works share a
similarity in concept to our work, we propose using the residual of each reconstructed feature
as opposed to a summary metric.

Two systems are outlined that include an ensemble of autoencoders to detect network
attacks in an unsupervised manner [4,8]. While these systems differ in their specific imple-
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mentations, both use the root-mean-squared errors from reconstructions in the ensemble as
their primary metric for detecting network attacks.

An emerging technique involves the use of triplet networks being formed by providing
them with autoencoder reconstructions [14]. In one-class training, the two autoencoders are
trained on benign and attack network data separately. The reconstructions of novel samples
are provided to the triplet network to determine if it is attack or benign during inference.
Another application of triplet networks involving the use of autoencoders augments this
idea by providing the triplet network with the output of the encoder’s bottleneck layer [5].

Through an analysis of the effects of autoencoder bottleneck size on performance, one
recent work uses a z-score threshold on the autoencoder reconstruction error [10]. Trained
only on benign network data, it is shown that such a summary metric can be used for
detecting network attacks.

It is common to see feedforward networks used to classify network attacks [15,16].
While some works use only a single feedforward layer as part of a larger model [17],
others use a larger feedforward network as their main classifier [18]. A recent work that
presents the IGRF-RFE feature selection method utilizes a multilayer perceptron to perform
classification of netflow data using features derived from an ensemble feature selection
and reduction method [19]. Increasing in popularity are works that use recurrent neural
networks (RNNs) as part of their proposed methods [15,16]. In one interesting work, the
HCRNNIDS method is introduced, which uses a combination of convolutional networks
and a recurrent neural network together [20]. The convolutional network is intended to
focus on local features in network flow data, while the recurrent network then focuses on
using temporal features.

Another work making use of recurrent neural networks takes an ensemble consisting
of an RNN, gated recurrent unit (GRU), and long short-term memory (LSTM) model in
order to perform feature extraction on network flow data [21]. The various extracted
features from the ensemble are then combined to be used with a downstream classifier. A
similar method makes use of an autoencoder by extracting the bottleneck layer as features
for input to a downstream RNN classifier [22].

Rather than using two separate models, other works combine model architectures, as
was carried out for the DDoSNet model [23]. For this suggested NIDS, an autoencoder
was constructed using recurrent layers. The bottleneck layer was then used to successfully
classify distributed denial of service attacks using network flow data.

Among the few works that use autoencoder feature residuals, one that stands out
details the DeepAID framework [24]. This proposed framework takes autoencoder feature
residuals with the purpose of adding interpretability to deep learning-based anomaly de-
tection systems. Unlike our work, however, DeepAID does not perform anomaly detection,
and rather focuses on analyzing previously detected anomalies. Similar interpretability
comes for free with our technique, as the feature residuals of attack samples with high
magnitude identify the particular features that deviate the most from benign data.

Another work incorporates autoencoder feature residuals into a larger system focused
on transfer learning [25]. The authors train an autoencoder on each device on a network
and then use a global classifier to detect attacks from network data. The input to the
global classifier are normalized autoencoder feature residuals. While the focus of that
work is on their entire NIDS, we differentiate our work by explicitly exploring the use
of autoencoder feature residuals and capturing their performance across multiple feature
encodings in order to show their general applicability with several architectures of neural
network classifiers.

One of the main drawbacks for the related works discussed here is that by using an
aggregate residual for detecting network attacks, it is possible for valuable information to
be lost. This can be demonstrated with the synthetic example shown in Figure 2, where
we have two clearly different network samples, one being benign and the other an attack.
Previously discussed techniques that use mean-squared error [3,4,8,11] or some other
aggregate metric [13] are destined to incorrectly classify one of these samples. When using
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our technique, however, we are still able to differentiate samples such as these by providing
the structure of the samples to a downstream classifier, since the residual for each feature
is preserved.

Benign Sample Attack Sample

Sb Sa

Figure 2. In this synthetic motivating example, we show the disadvantages that can arise when using
aggregate loss metrics for detecting anomalies. On the left-hand side, we show the autoencoder
feature residuals for a benign network flow sample, while the right-hand side shows the autoencoder
feature residuals for an attack. The error for both samples is equal; however, it is distributed differently
among the features. An aggregate metric such as mean-squared error would calculate the anomaly
score the same for both samples, resulting in the benign sample being flagged as a false-positive.
Providing the autoencoder feature residuals to a downstream classifier provides the classifier with
the opportunity to differentiate the two samples.

Broad overviews of network intrusion detection techniques can be found in a number
of recent surveys of the area. Several, such as [2,15], cover both anomaly detection and
deep learning techniques for network intrusion detection.

2. Materials and Methods

In this section, we review the information needed to generate autoencoder feature
residuals. Autoencoder feature residuals are defined, and we walk through the methodol-
ogy used to evaluate their performance compared to using an original feature set.

2.1. Autoencoders

Autoencoders are a well-known form of neural network with properties that lend
themselves to a number of useful applications such as data generation, feature selection
and reduction, denoising, and anomaly detection [26]. The uniqueness of the autoencoder
comes from its structure, consisting of an encoder, a bottleneck layer, and a decoder, as
shown in Figure 3. In its goal of reconstructing the provided input, the autoencoder
structure forces data through the bottleneck layer, consisting of fewer nodes than the input
layer [27]. This property of the structure prompts the encoder to learn the most important
latent features needed to provide the decoder for reconstruction of the input [27].

We define L as the autoencoder reconstruction using Equation (1):

L = D(E(X)) (1)

La = D(E(Xa)) (2)

Lb = D(E(Xb)) (3)

where X is the original input, E is the encoder, and D is the decoder. Specific to our work, we
also refer to subscripted versions of X and L, where Xa and La pertain to only attack network
data and Xb and Lb pertain to only benign network data, yielding Equations (2) and (3).
While training an autoencoder, the goal is to minimize the difference between the original
input and the autoencoder reconstruction using the equation `(X − L), where ` is a loss
function such as mean-squared error. As indicated in Section 1, we assume using only
benign samples in our autoencoder training causes attack samples to be more difficult to
reconstruct. Stated using our notation, we assume that Lb will contain more data than La
when performing inference on novel samples.
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Bottleneck

Encoder Decoder

Figure 3. Sample architecture of the main components of an autoencoder. Depicted in blue are the
input features and their respective reconstructions. Depicted in pink are hidden nodes. Depicted in
red is the bottleneck layer.

2.2. Autoencoder Feature Residuals

Autoencoder feature residuals are the difference between the original input pro-
vided to an autoencoder and its reconstruction when considered for each feature individu-
ally [7]. We use S to denote the autoencoder feature residuals and define them as seen in
Equation (4):

S = X− L (4)

Sa = Xa − La (5)

Sb = Xb − Lb (6)

where X is the original input and L is the autoencoder reconstruction as defined previously
in Equation (1). We maintain the subscript notation used for X and L for use with S, where
Sa considers only attack network data and Sb considers only benign network data, yielding
Equations (5) and (6). When we consider S in our work, it is important to note that we do
not use a summary metric for each sample, as commonly used in similar research [3,4,8,10].
We keep the dimensionality of S the same as X, such that each feature for a given sample
has a residual. This is reflected in Figure 4, which shows the relationship between X, L, and
S using a benign and attack sample containing five features. In line with our assumption
that pretraining with only Xb results in Lb being larger than La, we would expect Sb to
contain less data than Sa, as they are directly tied to the reconstruction performance.

A different way of considering S is such that it holds the difficult to reconstruct
portions of X, while L would contain portions more easily reconstructed. In this line of
thinking, we have Equations (7)–(9), which emphasize this point by making it clear that L
and S are parts of X that have been separated.

X = L + S (7)

Xa = La + Sa (8)

Xb = Lb + Sb (9)
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When considering this technique, we are able to identify a set of theoretical conditions
that would allow one to have optimal features for a downstream classifier:

• Perfect reconstruction of benign samples;
• No ability to reconstruct attack samples;
• The autoencoder feature residuals for benign samples are all zero;
• The autoencoder feature residuals for attack samples are equal to the input.

Benign Sample Attack Sample
Xb

Lb

Sb

Xa

La

Sa

Figure 4. Figure from [6]. Here we visualize our notation by showing a benign and attack sample
consisting of five features. Representing the value of each feature with color bars, one can see that Sb
is expected to be sparse and contain less data than Sa. Along with this property, Lb would contain
more data than La.

These conditions are also shown in Figure 5 and expressed through Equations (10)–(13).
While we attempt to attain this outcome with our technique, we note that it is unlikely to
occur using real-world network data.

Lb = Xb (10)

La = 0 (11)

Sb = 0 (12)

Sa = Xa (13)

Benign Sample Pure Attack Sample
Xb

Lb

Sb

Xa

La

Sa

Figure 5. Figure from [6]. Depicted in this figure is a visualization of the conditions that lead to
optimal features to provide to downstream classifiers. Notably, Lb = Xb, Sb = 0, La = 0, and
Sa = Xa, leading to the ability to use either L or S as optimal features for binary classification of
network samples.

2.3. Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward neural network where a sample is
provided to the model at an input layer. As depicted in Figure 6, the input layer consists of
a node for each input feature of X. The data are then passed through the connections of the
previous layer to some number of hidden layers with an activation function applied after
each hidden layer. The hidden layers of an MLP generally perform an affine transformation
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defined as h = g(WTX + c), where X is the input, W are associated weights we seek to
learn, c is a vector of learned biases, and g is our selected activation function [26]. We apply
some loss function, such as binary cross entropy, to the output, and perform a gradient
descent-based procedure to learn the weights W that minimize this loss function.

x1

x2

x3

h2

h1

h3

h4

h5

y1

Figure 6. Sample architecture of the main components of a multilayer perceptron. Depicted in blue
are the input features. Depicted in pink are nodes of a hidden layer. This network has a single output
y1, denoted in yellow.

2.4. Recurrent Neural Networks

One of the limitations of MLPs is that each sample is processed through the network
individually, such that information from previous samples are lost. RNNs were created
as a way to provide some memory to a neural network such that they can better perform
inference on datasets with sequential dependencies [28]. Depicted in Figure 7 in both a
rolled and unrolled fashion, one can see that these networks consider samples at some time
t. The input to the RNN at a time t consists of the state of the network from time t− 1 and
the current input Xt [28]. This is visualized in Figure 7 with the specific calculation used in
this work provided in Equation (14) [28]

ht = tanh(XtUT + b + ht−1VT + c) (14)

where Xt is the input at timestep t; U and b are the weights and bias associated with the
input; ht−1 is the hidden state of the previous time step with V and c being the respective
weights and bias for the previous hidden state. The output can then be calculated using
Equation (15) [26]:

yt = htWT + d (15)

where ht is defined by Equation (14), with W and d being the weights and bias associated
with the output.

Similar to MLPs, RNNs utilize a loss function and a gradient descent based backprop-
agation optimization, backpropagation through time (BPTT), to perform learning of the
network parameters. There are several variants to RNNs, such that they can provide an
output at each time step or a single output after a sequence has been processed, as used in
this work.
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Figure 7. Sample architecture of the main components of a recurrent neural network. Depicted in
blue are the input features. Depicted in pink are recurrent hidden nodes. The network’s output from
each hidden node is denoted as y in yellow.

2.5. Long Short-Term Memory Networks

Long short-term memory (LSTM) networks were created to overcome issues encoun-
tered when training RNNs such as vanishing and exploding gradients [29]. In addition,
they have shown the ability to successfully perform inference on tasks that require long-
lasting memory [26]. The main differences between the RNN depicted in Figure 7 and
LSTMs include cells with self-loops and a series of gates that control the flow of memory
through the network [29]. These gates, which are controlled by learned parameters of
the network, include the input gate, forget gate, and output gate. For each cell, the input
gate controls whether a given feature will be accumulated within the cell. The state unit
of a cell contains the self-loop, which is controlled by the forget gate. The output gate
determines a given cell’s output. Each of these gates are generally neurons with learned
parameters and a sigmoid activation function. The relevant LSTM calculations are shown
in Equations (16)–(21) [30].

it = sigmoid(Wiixt + bii + Whiht−1 + bhi) (16)

ft = sigmoid(Wi f xt + bi f + Wh f ht−1 + bh f ) (17)

gt = tanh(Wigxt + big + Whght−1 + bhg) (18)

ot = sigmoid(Wioxt + bio + Whoht−1 + bho) (19)

ct = ft � ct−1 + it � gt (20)

ht = ot � tanh(ct) (21)

In these equations, it, ft, ot are the input, forget, and output gates, respectively; gt
is the cell activation; ct is the cell state at time t; ht is the hidden state at time t; ht−1 is
the hidden state of the previous time step; and ct−1 is the cell state at the previous time
step. Additionally, � is the Hadamard product, with W and b representing the various
weight and bias vectors of the network. It should be noted that we do not use the LSTM
calculations that make use of projections as outlined in the proposed LSTM architecture
of [30]. While this makes the LSTM simpler in structure, it does not impact our main goal
of comparing its performance between different sets of input features.

2.6. Performance Metrics

In this section, we define the key metrics used to evaluate the performance of using
autoencoder feature residuals as input to downstream classifiers. As we are generally
assessing comparative performance between X and autoencoder feature residuals, we
make use of the mean f1-score from multiple experiment executions.
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2.6.1. f1-Score

We use the f1-score as the performance metric to assess how well classifiers are able to
distinguish between benign and attack network data. The f1-score, defined in Equation (22),
is the harmonic mean of the precision and recall performance metrics [26].

f1-score =
2 ∗ precision ∗ recall

precision + recall
(22)

2.6.2. Kolmogorov–Smirnov Test

To add additional statistical measures between our mean f1-scores, we perform a
two-sample Kolmogorov–Smirnov test (KS test). The two-sample KS test takes two samples
and provides a statistic defined by Equation (23):

D = sup
u
|Fm(u)− Gn(u)| (23)

where Fm is the empirical distribution function of one sample containing m data points
and Gn is the empirical distribution function of a sample containing n data points [31]. We
have u as the union of both samples used for comparison, where the statistic returned is
the supremum of the absolute value of the differences between the two distributions across
u [31]. In our case, we have Fm be the empirical distribution function for results using X as
input features and Gn be our method’s results. In this work, m = n, as we take ten runs
of each experiment for comparison. The KS test statistic is used to determine if the two
input samples are from the same distribution [31]. When the associated p-values for this
statistic are less than or equal to 0.05, we can reject the null hypothesis that the two samples
come from the same distribution. In Section 3, we include these p-values along with our
final reported performance measures when comparing our methodology to only using X
as input to a classifier.

2.7. General Experiment Set Up

We used a common experiment setup throughout our work while varying the dataset,
feature set, and classifier used for the given experiment. This process is depicted in Figure 1,
where we initially train an autoencoder using only benign network flow data for 500 epochs.
The following steps use this trained autoencoder to produce one of the feature sets depicted
in Figure 8 and then train a downstream classifer. All experiments were executed ten times
using up to 500,000 samples.

X

L

S

XS

LS

XLS

Figure 8. Figure from [6]. The feature sets generated using an autoencoder trained on only benign
network flow data in our experiments. X, depicted in cyan, contains five features and represents the
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original input features. L, depicted in orange, contains five features and represents the autoencoder
reconstruction. S, depicted in green, contains five features and represents the autoencoder feature
residuals. Each of our experiments uses one of these feature sets to train a downstream classifier.

2.8. Model Details

We used the same general autoencoder and classifier structures across all datasets and
data encodings that were explored. We found it necessary to change the number of nodes
in each layer of the models to account for differences in each data encoding. It was noticed
that in general, the autoencoder reconstruction loss was higher when accounting for the
sparse encoding, which has only 35 features. We believe this is due to differences in the
data encodings, as explained in Section 2.9, as opposed to the adjustments made to the
autoencoder structure.

2.8.1. Autoencoder Model

The autoencoder model was determined using previous studies [7], which had the
goal of performing well across a broad range of network intrusion datasets as opposed to
being optimized for each dataset. With a bottleneck layer size of 12, and 6 layers used to
construct the encoder and decoder, we found that the ReLU activation function worked
well. We note that no activation function was used for the final output layer. Additionally,
we trained using the Adadelta optimizer set with a learning rate of 1.0 to minimize the loss
based on the mean-squared error (MSE) loss function. In addition, we utilized a batch size
of 128 for training the autoencoders, as with smaller batch sizes, training would experience
collapsing gradients on certain datasets. Table 1 shows the details of the autoencoders used.

Table 1. Table from [6]. The details of the two main autoencoder structures used in our research.
We note only slight variations in the number of nodes per layer to account for data encoding
differences, while keeping the size of the bottleneck layer 12 for both structures. The autoencoders
use the Adadelta optimization function with a learning rate of 1.0 and mean squared error for the
loss function.

NFV2 AE Sparse Encoding AE

Input Dimension 39 35
Encoder Layer 1 34 31

lActivation ReLU ReLU
Encoder Layer 2 29 27

Activation ReLU ReLU
Encoder Layer 3 24 23

Activation ReLU ReLU
Encoder Layer 4 19 19

Activation ReLU ReLU
Encoder Layer 5 14 15

Activation ReLU ReLU
Encoder Layer 6 12 12

Activation ReLU ReLU
Decoder Layer 1 14 15

Activation ReLU ReLU
Decoder Layer 2 19 19

Activation ReLU ReLU
Decoder Layer 3 24 23

Activation ReLU ReLU
Decoder Layer 4 29 27

Activation ReLU ReLU
Decoder Layer 5 34 31

Activation ReLU ReLU
Decoder Layer 6 39 35
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2.8.2. Multilayer Perceptron Model

We based our MLP classifier on the work presented in [32], which provides a perfor-
mance baseline across the datasets explored. We use four layers in the MLP, such that each
hidden layer contains 10 output nodes, with the final layer providing a single output. The
ReLU activation function was used for each layer except for the final layer, where a sigmoid
function was applied. Binary cross entropy was used for the loss function, along with the
Adam optimizer configured with a learning rate of 0.001. Table 2 shows the details of the
MLP classifiers.

Table 2. Table from [6]. The details of the MLP classifiers used in our research. We note only slight
variations in the number of nodes in the input layer to account for data-encoding differences, while
keeping the size of the remaining layers constant at 10 (aside from the final output). The classifiers
use the Adam optimization function with a learning rate of 0.001 and binary cross entropy for the
loss function.

Input Dimension Output Dimension Activation

Input Layer Multiple of 39 or 35 10 ReLU
Layer 1 10 10 ReLU
Layer 2 10 10 ReLU
Layer 3 10 1 Sigmoid

2.8.3. Recurrent Models

Both the RNN and LSTM models used in this work were unidirectional. The model
architecture for our recurrent models was found through ablation studies that assessed
appropriate sequence lengths, recurrent layers, and hidden state sizes to use. For this work,
we used a constant sequence length of 25, two recurrent layers with a hidden state size of
24, and a final fully connected layer. Each recurrent layer used the tanh activation function,
and a final sigmoid activation was performed on the output of the fully connected layer.
We used the default initialization strategy provided by PyTorch (https://pytorch.org/,
accessed on 12 June 2023) for the initialization of hidden and cell states in our recurrent
models. Binary cross entropy was used for the loss function, along with the Adam optimizer
configured with a learning rate of 0.001. The loss was based on the classifier performance
predicting the final netflow sample in a given sequence as being attack or benign. The
details of the recurrent models are provided in Table 3.

Table 3. Architecture of the RNN classifiers used. The input layer takes in a multiple of 35 features,
as these models use the sparse encoding of our datasets. The two recurrent layers each have a hidden
state size of 24, with the final fully connected layer providing the final output. We use tanh for all
recurrent layers and apply a sigmoid activation function to the final fully connected layer. The Adam
optimizer with a learning rate of 0.001 is used along with the binary cross entropy loss function. Note
that this architecture was used for both the RNN and LSTM models used for classification.

Input Dimension Hidden
Dimension

Output
Dimension Activation

RNN/LSTM Layer 1 Multiple of 35 24 24 tanh
RNN/LSTM Layer 2 24 24 24 tanh

Fully Connected Layer 24 - 1 Sigmoid

2.9. Datasets

Here, we provide an overview of the datasets chosen to evaluate the performance
of autoencoder feature residuals. The datasets used are publicly available benchmark
datasets that are commonly used for the assessment of NID techniques. In particular,
we utilize benchmark datasets with up-to-date attacks and which cover various network
environments such as a university network as well as several Internet of Things (IoT)

https://pytorch.org/
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settings. By choosing multiple NID datasets, we are able to assess how well our technique
is able to generalize across different network architectures.

2.9.1. Netflow V2 Datasets

To evaluate the performance of autoencoder feature residuals in conjunction with a
MLP, we used the four datasets produced in [33], which we refer to collectively as NFV2.
These datasets were built using well-known public datasets, are easily accessible, and
all use a standard feature set based on NetFlow v9 [34]. The researchers of [33] took the
source packet captures from UNSW-NB15 [35], BoT-IoT [36], ToN-IoT [37], and CSE-CIC-
IDS2018 [38] and transformed them into a set of 43 features, making comparisons across the
datasets efficient. We refer the reader to [33] for specific details regarding these datasets.

2.9.2. Sparse Encoding Derived from Nfv2 Datasets

In addition, we took the NFV2 datasets and restructured their features using the
method outlined in previous work [7] to compare our performance across different encod-
ings of the same data. The notable differences between this encoding compared to NFV2
are that it is dominated by one-hot encodings and contains fewer statistical features. The
numerical features that are included are based on those we can calculate using byte and
packet counts. The details of this encoding are provided in Table 4. We found that the
consolidation of multiple protocol values into a single feature of our one-hot encodings
resulted in the generation of additional duplicate rows compared to the original dataset.
Based on this finding, we dropped duplicates in the dataset only after the final encoding of
features was complete, to ensure no contamination of our validation and test data splits.

Table 4. Table from [6]. The features of the sparse data encoding derived from NFV2.

Feature (Type) Description

communication_type (OHE) L4_[SRC|DST]_PORT
protocol (OHE) PROTOCOL

destination_bytes_per_second (Float) Natural log
destination_packets (Float) Natural log

destination_packets_per_second (Float) Natural log
duration (Float) Duration in seconds

packets_per_second (Float) Natural log
source_bytes_per_second (Float) Natural log

source_packets (Float) Natural log
source_packets_per_second (Float) Natural log

total_bytes (Float) Natural log
total_bytes_per_second (Float) Natural log
total_destination_bytes (Float) Natural log

total_packets (Float) Natural log
total_source_bytes (Float) Natural log

label (Binary) 1 = attack

2.9.3. Datasets Used with Recurrent Classifiers

Due to the fact that the NFV2 datasets do not contain the start time of each flow,
we are unable to use it for analyzing the performance of autoencoder feature residuals
with recurrent methods. For this reason, we performed our sparse encoding described
in Section 2.9.2 on the originally provided netflow data in the UNSW-NB15 [39], ToN-
IoT [37], and CTU-13 [40] datasets. The CTU-13 dataset focuses on 13 botnet scenarios,
from which we focus our analysis on scenarios 6, 9, and 13. These scenarios were chosen
for their suitability to find appropriate training, validation, and test splits that account for
the temporal nature of recurrent methods. In general, these scenarios have sufficiently
continuous periods of attack throughout their duration, such that we could easily sample
sequences of data suitable to use for training and assessing the performance of supervised
recurrent models.
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2.9.4. General Data Preprocessing Steps

The general preprocessing steps performed on all datasets consisted of the follow-
ing operations:

• Removing all IP address and port features from the original dataset;
• Dropping rows containing missing values;
• Dropping rows containing invalid negative values;
• Applying min–max normalization on numerical features.

3. Results and Discussion

In this section, we provide the details of our experiments using autoencoder fea-
ture residuals and present our empirical results. Incorporated into the presentation of
results, we provide a discussion and analysis regarding how these results support the
usage of autoencoder feature residuals in place of an original feature set for network
intrusion detection.

3.1. Experiments with Feedforward Networks

The preprocessing steps outlined in Section 2.9.4 are augmented with a specialized
sampling methodology for our experiments with feedforward networks. For these exper-
iments, we present a single netflow sample to the multilayer perceptron to classify. We
found it was sufficient to train the multilayer perceptron classifier for 100 epochs. Stratified
random splits of the data consisting of 70/15/15% proportions for training, validation,
and testing, respectively, were used to assess performance. Final reported performance
measurements are based on the mean results of ten experiments using our holdout test set.
We note that dropping the IP address and port features from the NFV2 datasets resulted in
additional duplicate rows being present, which we dropped. This caused a slight reduction
in our baseline f1-scores (generally a difference of less than 0.1) using the original features
of the NFV2 datasets compared to the figures reported in [32].

3.1.1. Substituting X with S

We first assess our performance from the purview of using S as a replacement for
X when using an MLP as the classifier. In Table 5, and visualized in Figure 9, one can
observe the mean f1-scores from ten experiment executions for using X and S as input
features to a classifier using the NFV2 family of datasets. It is evident that the performance
of S as a replacement for X yields comparable results with supporting p-values for the
NF-UNSW-NB15-V2, NF-BoT-IoT-V2 and NF-CSE-CIC-IDS2018-V2 datasets. In the cases
where a drop in f1-score was observed, we note that it was in magnitudes that would be
considered practically irrelevant. One primary example of this is for the NF-ToN-IoT-V2
dataset, where S performed with an f1-score of only 0.003 less than X. To demonstrate how
this behavior can arise, one can observe Figure 10, which shows 100 samples of our data.
Here, the reconstruction of benign data is done well; however, we would ideally like to see
less data in the reconstructions of attack samples. In cases such as this, large autoencoder
feature residuals in the benign samples combined with too few in the attack samples can
cause a performance reduction. Despite these areas for improvement, our performance
remains comparable to using the original feature set.

The overall takeaway from these results is that one could use S as a drop-in replace-
ment for X while maintaining classifier performance. This supports an overall finding that
using autoencoder feature residuals, despite strictly removing data from X, is able to retain
the most important feature characteristics needed to detect network attacks. In addition, in
Section 3.3, we show that using S has additional benefits compared to using X in terms of
potential data compression.
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Table 5. Table from [6]. Mean f1-score test results based on ten experiment executions using our
feature sets. The p-values are derived from the Kolmogoriv–Smirnov test defined in Section 2.6.2. The
color coding associates our results with exceeding, meeting, or degrading performance compared to
X using green, blue, and orange, respectively. From this table, it can be observed that using S alone
or in combinations with X and L generally performs at least as well as using X alone in terms of
classification performance, making these combinations of features generally safe to use in place of
only using X.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2
f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value

X 0.909 0.989 0.973 0.924
S 0.904 0.052 0.989 0.418 0.970 0.012 0.924 0.787

XS 0.912 0.052 0.990 0.052 0.975 0.001 0.924 0.168
LS 0.912 0.018 0.990 0.075 0.975 0.011 0.925 0.052

XLS 0.912 0.052 0.990 0.168 0.975 0.003 0.924 0.418
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Figure 9. A visualization of our results for using autoencoder feature residuals in conjunction with
MLP classifiers in terms of mean f1-scores. The top row visualizes the results from Table 5 and the
bottom row visualizes the results from Table 6. The red line in each plot represents the baseline values
of X for each dataset. From these plots, one can see that using feature sets that include autoencoder
feature residuals meets or exceeds the baseline performance of X.

3.1.2. Supporting X with S

Additionally at our disposal when using autoencoder feature residuals is forming
feature sets using S in combination with X and L. We see in Table 5, and visualized
in Figure 9, that combining S with X and L produces results at least as good as using
solely X, and in several cases the results are improved. For example, we see statistically
significant improvements in performance for many of the combinations that include S on the
NF-UNSW-NB15-V2 and NF-ToN-IoT-V2 datasets. We do note that these improvements
are likely not substantial enough to deem one feature combination to be preferred over the
others from a practical perspective.

3.1.3. Improving Performance on Sparse Datasets

In this set of experiments, we took the data from the NFV2 datasets and encoded
it as was carried out in [7] to compare performance across different encodings of the
same data. We note that the baseline performance of X here is significantly worse on the
UNSW-NB15 dataset compared to the original NFV2 dataset, while the other baseline
results are comparable. Notably, Table 6 and the bottom row of Figure 9 show that using
S or feature combinations including S provides a substantial increase in f1-score, with
this encoding applied to the UNSW-NB15 data. Overall, the results reported show our
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technique strictly meeting or exceeding the performance of X for this sparse encoding of
the NFV2 datasets.
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Figure 10. Figure from [6]. One hundred samples from the NF-CSE-CIC-IDS2018-V2 dataset broken
out into X, L, and S. Our corresponding classification performance for this dataset showed that S
and X performed comparably. We see positive qualities in this data, such as the observation that
the autoencoder struggles more to reconstruct network attacks. On the other hand, there remain
several prominent autoencoder feature residuals visible in Sb in the bottom left-hand side of the plot.
These autoencoder feature residuals in Sb have the potential to degrade the performance of using S
in place of X for classification, leaving room for improvement such that S has the potential to exceed
the performance of X.

We observe the impact of our technique through a comparison of the original scores
for the CSE-CIC-IDS2018-V2 datasets reported in [33] to our much simpler encoding,
which contains less insight into network activity. In the original work, an f1-score of 0.97
was obtained using the dense features consisting of 39 Netflow v9 statistics. During our
experiments, we obtained a baseline score of only 0.958 when using X, but were able to
boost that score to 0.974 when using S. While this only meets the score of the original work,
we note that it is doing so by taking an inferior encoding and then making the data more
easily accessible to the downstream classifier. Table 7 compares the f1-scores using our
feature sets to the originally reported metrics for the NFV2 datasets [33]. In Figure 11, one
can observe 100 samples of the sparse encoding applied to the NF-CSE-CIC-IDS2018-V2 test
data, where the autoencoder does extremely well at reconstructing benign network flows
compared to attack network flows. The sparsity observed in Sb in the bottom left-hand
side of the plot compared to the large autoencoder feature residuals in Sa in the bottom
right-hand side of the plot both contribute to the improvement seen over using X for
classification. While it remains unclear if using autoencoder feature residuals is specifically
effective on sparse encodings, this analysis shows that its impact may vary depending on
how a dataset is encoded.
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Table 6. Table from [6]. Mean f1-score test results based on ten experiment executions using our
features sets using an inferior sparse encoding. The p-values are derived from the Kolmogorov–
Smirnov test defined in Section 2.6.2. The color coding associates our results with exceeding, meeting,
or degrading performance compared to X using green, blue, and orange, respectively. It can be seen
that using S and feature combinations including S often outperform using X. In other cases, these
combinations generally perform at least as well as just using X.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2
f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value

X 0.780 0.994 0.950 0.958
S 0.814 0.012 0.993 0.994 0.953 0.168 0.974 0.000

XS 0.820 0.003 0.995 0.787 0.954 0.012 0.972 0.000
LS 0.825 0.000 0.995 0.418 0.954 0.012 0.973 0.000

XLS 0.819 0.000 0.995 0.787 0.953 0.052 0.969 0.000
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Figure 11. Figure from [6]. One hundred samples from the NF-CSE-CIC-IDS2018-V2 dataset using the
inferior sparse encoding broken out into X, L, and S. Our corresponding classification performance
for this dataset showed that S improved the performance compared to X. This improvement allowed
using an inferior encoding of the data to meet the original performance marks noted on the original
dataset from [33]. We note the positive qualities of the data, such as seeing that Sb, on the bottom left
side of the plot, is sparse, with significantly fewer autoencoder feature residuals than Sa.

Table 7. A comparison of our mean f1-scores using our feature sets as input to an MLP to the
baseline f1-scores for the NFV2 datasets reported in [33]. We see that in general, our feature sets reach
comparable performance to the original scores, making the feature sets viable alternatives to using an
original set of features.

Dataset f1-Score from [33] Our f1-Score Our Features

NF-UNSW-NB15-V2 0.97 0.91 XS, LS, or XLS
NF-BoT-IoT-V2 1.00 1.00 Sparse encoding; S, XS, LS, or XLS
NF-ToN-IoT-V2 1.00 0.98 XS, LS, or XLS

NF-CSE-CIC-IDS2018-V2 0.97 0.97 Sparse encoding; S, XS, LS, XLS
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3.2. Experiments with Recurrent Networks

We used a slightly different methodology to preprocess the data used to analyze
recurrent classifiers compared to the methodology outlined in Section 3.1. After performing
the general data-preprocessing steps outlined in Section 2.9.4, we then took contiguous
splits of the datasets such that the training data were strictly prior to the validation data
and test data. Similarly, the test data split was strictly after the validation split. This was
carried out to ensure that our training data did not contain any information from future
periods of the scenario that would be used for assessment of the model. Additionally,
splits in proportion to 50/25/25% (training/validation/test) were used in order to avoid
introducing optimistic results due to any time bias between the training and test data.

For these experiments, we found it necessary to train each classifier for 500 epochs. A
single sample presented to the recurrent neural networks on which we make a classification
consists of 25 consecutive netflow samples ordered by flow start time. The features used
for each netflow sample consisted of our feature sets created using autoencoder feature
residuals. For each input sequence, we predicted if the final sample in the sequence was
attack or benign. This can be seen visualized in Figure 12, where we show a portion of a
recurrent model taking in a sequence of netflow samples, where each sample is represented
by X, L, and S. When using our feature sets as input to RNNs, the calculation of the hidden
state is performed using Equation (24):

ht = tanh(XLStUT + b + ht−1VT + c) (24)

where the input is now XLS to indicate some combination of X, L, and S concatenated
together. Similarly, the equations presented in Section 2.5 for an LSTM model are adjusted,
as noted in Equations (25)–(30).

it = sigmoid(WiiXLSt + bii + Whiht−1 + bhi) (25)

ft = sigmoid(Wi f XLSt + bi f + Wh f ht−1 + bh f ) (26)

gt = tanh(WigXLSt + big + Whght−1 + bhg) (27)

ot = sigmoid(WioXLSt + bio + Whoht−1 + bho) (28)

ct = ft � ct−1 + it � gt (29)

ht = ot � tanh(ct) (30)

Final reported performance measurements are based on the mean results of ten experi-
ments using our holdout test set.

ht−1...

yt−1

Xt−1, Lt−1, St−1

ht

yt

Xt, Lt, St

Benign

Attack

Figure 12. Here, we show the general structure for how the features generated using our technique
are used with recurrent models. After samples are processed through our autoencoder to create X, L,
and S, combinations of these feature sets are used to represent a single network flow. In this example,
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we represent a network flow using all three feature sets, referred to as XLS. A sequence of these
samples are provided to the recurrent model. The hidden state of the final unit in the recurrent layers
is then provided to a fully connected layer, which produces our final prediction of the sequence being
an attack or benign sequence. In our experiments, we consider a sequence of network flows to be an
attack or benign sequence based on the label of the final netflow sample in the sequence.

Results Using Recurrent Classifiers

When using recurrent architectures for our classifier, one can see from Tables 8 and 9,
and visualized in Figure 13, that we achieve similar behavior as reported for feedforward
networks when using autoencoder feature residuals as input. In general, using either S
on its own, or in combination with other features, we are able to maintain or improve
classification performance. While many of these gains are modest, we note several practical
improvements in f1-score compared to using X, such as using XS as input to an LSTM
classifier on CTU-13 Scenario 13. In this case, the base f1-score of 0.582 was improved
to 0.671. We note a drop in performance on the ToN-IoT dataset when using feature sets
that include S without the support of X. However, when S was paired with X in a feature
set, our technique achieved a significant performance improvement compared to only
using X on that same dataset. Additionally, we see performance improvements using
autoencoder feature residuals as input to both RNN and LSTM architectures across all the
CTU-13 dataset scenarios, demonstrating that this technique may be well-equipped for the
detection of botnet attacks.

We note two common conditions encountered when training recurrent models for
network intrusion detection. First, it is common to experience some amount of overfitting to
training data when working with recurrent models on datasets with a high class imbalance.
Additionally, as one moves further out in time for a network intrusion detection scenario, it
becomes more likely that the data characteristics change compared to training data [41,42].
As we were focusing these experiments on obtaining a general idea for the performance of
autoencoder feature residuals on recurrent networks, we put forth little effort to mitigate
these two factors. We note this to show that the general model performance improvements
reported in Tables 8 and 9 over using X demonstrates that using autoencoder feature
residuals provides some benefit in mitigating these factors, while requiring little model
tuning compared to other methods.

While the focus of this work is on using S, we do recognize that one could also use
L or XL as feature combinations in place of X. We found that in general, XL performed
comparable to X; however, L generally performed worse than X when using an MLP, RNN,
or LSTM classifier. We believe this is in line with our previously reported findings [7],
in that the usage of L, or combinations with L, tend to hold some volatility in results
dependent on the differences in benign training samples compared to the test data used.

Table 8. Mean f1-score test results based on ten experiment executions using S in combination with
X and L as input to an RNN classifier using the alternative sparse encoding. p-values using the
Kolmogorov–Smirnov test are provided, where values greater than 0.05 indicate the f1-scores were
likely drawn from the same distribution. Values in blue indicate an f1-score and p-value that support
comparable performance compared to X. Values in green indicate an f1-score and p-value that
support improved performance compared to X. Values in orange indicate an f1-score and p-value
that support degraded performance compared to X.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13
f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value

X 0.980 0.923 0.826 0.818 0.731
S 0.979 0.168 0.889 0.012 0.872 0.000 0.828 0.168 0.742 0.418

XS 0.980 0.994 0.934 0.168 0.834 0.168 0.833 0.002 0.801 0.002
LS 0.980 0.787 0.935 0.002 0.834 0.052 0.837 0.000 0.808 0.002

XLS 0.981 0.052 0.927 0.012 0.842 0.052 0.838 0.000 0.792 0.012
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Table 9. Mean f1-score test results based on ten experiment executions using S in combination with
X and L as input to an LSTM classifier using the alternative sparse encoding. p-values using the
Kolmogorov–Smirnov test are provided, where values greater than 0.05 indicate the f1-scores were
likely drawn from the same distribution. Values in blue indicate an f1-score and p-value that support
comparable performance compared to X. Values in green indicate an f1-score and p-value that
support improved performance compared to X. Values in orange indicate an f1-score and p-value
that support degraded performance compared to X.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13
f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value f1-Score p-Value

X 0.976 0.926 0.809 0.778 0.582
S 0.975 0.052 0.832 0.000 0.816 0.168 0.796 0.002 0.639 0.012

XS 0.976 0.418 0.952 0.012 0.828 0.168 0.797 0.000 0.671 0.002
LS 0.976 0.787 0.919 0.012 0.822 0.418 0.797 0.000 0.664 0.002

XLS 0.977 0.052 0.951 0.002 0.835 0.012 0.798 0.000 0.654 0.012
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Figure 13. A visualization of our results for using autoencoder feature residuals in conjunction with
recurrent classifiers in terms of mean f1-scores. The top row visualizes the results from Table 8 using
an RNN and the bottom row visualizes the results from Table 9 using an LSTM. The red line in each
plot represents the baseline values of X for each dataset. From these plots, one can see that using
feature sets that include autoencoder feature residuals meets or exceeds using the original features.

3.3. Data Compression Benefits of S

As noted throughout our results discussion, our technique often only performs as
well as X when using S in its place. In these situations, one would want to seek alternative
advantages to using S that are not strictly related to classifier performance. One such
case that can be considered is the use of S as a way to compress the amount of data that
needs to be collected from network resources. Below, we list several assumptions used for
consideration of this scenario:

• Both S and X require the same amount of base storage;
• Values in S that are zero are uninteresting because they were perfectly reconstructed;
• There are equal amounts of metadata to indicate what was collected for both X and S.

Taking 500 benign samples of X and S, we report the mean compression ratios in
Table 10. Our initial analysis of compression found that no values in S were strictly zero,
resulting in poor compression rates. To mitigate this, we empirically determined that any
values greater than −0.001 and less than 0.01 could be considered zero without impact to
classification performance, and were treated as such for this analysis.

Looking at the compression ratios of the thresholded S, we see that it generally outper-
formed the compression possible on X based on our assumptions. A higher compression
rate was found for X on the NF-BoT-IoT-V2 dataset compared to that of the thresholded
S, which is likely due to suboptimal thresholding options for that particular dataset. The
finding of a more robust thresholding technique on S for compression purposes, and the
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exploration of regularizing the autoencoder to induce feature residuals of zero, is left for
future work. While this was a simplistic view of a compression scenario, it shows that S has
potential benefits over X beyond classification performance gains that could be explored
further in future research.

Table 10. Table from [6]. The compression ratios found using 500 samples of benign data from our
datasets. This analysis used the assumptions outlined in Section 3.3. After applying a threshold
on values close to zero in S, a higher compression ratio was observed compared to attempts to
compress X under the same set of assumptions. In parentheses, we show the mean f1-scores from
these experiments, which were comparable to those reported in Table 5 for S.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

X (No Zeros) 1.857 2.254 2.313 2.326
S (No Zeros) 0.000 0.000 0.000 0.000

Thresholded S (No Zeros) 3.168 (0.903) 2.074 (0.989) 3.331 (0.964) 5.075 (0.924)

4. Conclusions

In this work, we explored the application of using autoencoder feature residuals
when paired with several architectures of neural networks. Through empirical analysis,
it was shown that feature sets using autoencoder feature residuals are suitable drop-in
replacements for an original feature set. In general, these feature sets either meet the
performance of the original features or, oftentimes, increase classifier performance. We
note that our technique strictly removes data from an original feature set, making it an
interesting achievement, even when we only match the performance of these features.

In the context of feedforward neural networks, we showed that using feature sets
that include autoencoder feature residuals generally increases performance. This was
demonstrated using four datasets consisting of various cybersecurity scenarios and across
two separate encodings of the data. We then extended our experiments to account for the
sequential aspect of network data by using our feature sets as input to RNN and LSTM
classifiers. In these experiments, we showed that autoencoder feature residuals can be used
successfully across a number of neural network architectures, and are particularly effective
for the detection of botnet attacks.

Rounding out the benefits of autoencoder feature residuals, we showed that using
autoencoder feature residuals rather than their corresponding original feature set has the
advantage of allowing network data to be compressed, which reduces the amount of
resources needed for its collection.
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Abbreviations
The following abbreviations are used in this manuscript:

GRU gated recurrent unit
IoT Internet of Things
KS test Kolmogorov–Smirnov test
LSTM long short-term memory
MLP multilayer perceptron
MSE mean-squared error
NID network intrusion detection
NIDS network intrusion detection system
RNN recurrent neural network
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