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Abstract: Decision support systems based on machine learning models should be able to help users
identify opportunities and threats. Popular model-agnostic explanation models can identify factors
that support various predictions, answering questions such as “What factors affect sales?” or “Why
did sales decline?”, but do not highlight what a person should or could do to get a more desirable
outcome. Counterfactual explanation approaches address intervention, and some even consider
feasibility, but none consider their suitability for real-time applications, such as question answering.
Here, we address this gap by introducing a novel model-agnostic method that provides specific,
feasible changes that would impact the outcomes of a complex Black Box AI model for a given instance
and assess its real-world utility by measuring its real-time performance and ability to find achievable
changes. The method uses the instance of concern to generate high-precision explanations and then
applies a secondary method to find achievable minimally-contrastive counterfactual explanations
(AMCC) while limiting the search to modifications that satisfy domain-specific constraints. Using
a widely recognized dataset, we evaluated the classification task to ascertain the frequency and
time required to identify successful counterfactuals. For a 90% accurate classifier, our algorithm
identified AMCC explanations in 47% of cases (38 of 81), with an average discovery time of 80 ms.
These findings verify the algorithm’s efficiency in swiftly producing AMCC explanations, suitable for
real-time systems. The AMCC method enhances the transparency of Black Box AI models, aiding
individuals in evaluating remedial strategies or assessing potential outcomes.
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1. Introduction

Explainable AI (XAI) can serve many different aims, including increasing users’ trust
in a Black Box model [1,2] or increasing users’ understanding of how the model would
behave on unseen examples [3]. One function that people would like XAI to achieve, but
has yet to be adequately accomplished, is to address questions about what they can do
to change the predicted outcome. This type of XAI would be useful for applications that
require changes in behavior such as counseling, advising, or coaching, e.g., for health,
education, or personal finance, where the perceived benefits of an action and the likelihood
of success contribute to both initiation and ongoing maintenance of behavior change [4–7].
We are particularly interested in applications where people establish so-called SMART
goals. SMART goals are specific, measurable, achievable, relevant, and time-bound [8,9].
Such goal setting would benefit from having a high-precision explanation, which is one
that includes the enabling specific value for a variable, not just its name. (See Table 1 for
some examples of high-precision explanations.) We also prefer explanations that could
be generated in real-time, as part of an ongoing interaction, as this type of interaction has
been shown to result in greater trust in decision support systems as compared to traditional
web-based graphical user interfaces [10].

Explanations specifying instances that result in a different outcome than a given one
are known as counterfactuals. Counterfactuals are the type of explanation that many people
find most natural and intuitive. Indeed, research across cognitive science, philosophy, and
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social science has found that people expect ‘why’ questions to be answered by explanations
that are contrastive, selective, and socially interactive [11]—that is, they want answers that
are solution-focused. The need for explanations that support the remediation of a poor
outcome has also been supported by recent user studies of XAI, which found that queries
to maximize a prediction were among the top ten types of questions that people would
ask of an AI model, along with more general ‘why’-type questions [12]. Wachter et al. [13]
proposed that counterfactual and contrastive explanations (CCE) would be an effective
approach to XAI and recent systematic reviews show growing interest in CCE among XAI
researchers [14].

Table 1. Examples of high-precision explanations generated for tabular data from [3].

Adult Income
If Predict

No capital gain or loss, never married ≤50 K
Country is US, married, work hours > 45 >50 K

Lending a Loan
If Predict

FICO score ≤ 649 Bad loan
649 ≤ FICO score ≤ 699 and $5400 ≤ loan amount ≤ $10, 000 Good loan

For intervention purposes, it is also important to consider the feasibility of achieving a
counterfactual [15], which means that the change would be possible through something
that a person could choose to do. Finding a set of such actions is a special case of counter-
factual explanation known as algorithmic recourse, which is also related to causal machine
learning [16,17]. Achievability requires that there be a domain-specific action that includes
the desired change as one of its effects, either directly, such as walking to change a physical
activity variable, or through a change to a state of knowledge. For example, a doctor
could order a diagnostic test to rule-in or rule-out the presence of a disease. Here, we
will presume that there is a knowledge model that provides this information, which dis-
tinguishes our approach from those that try to infer feasibility from a set of observations.
Because options for recourse are often quite limited, providing such a model would not be
difficult, but does raise some practical concerns. For example, when only a few changes are
achievable, it is not clear how often recourse is possible, how hard it will be to find suitable
recourse, or how often effective recourse can be found quickly enough for use in real-time
interaction. Research on human-computer interaction has shown that the ideal latency for
communicating recourse, as a form of keyboard-based or mobile interaction, should be no
more than 200 ms for desktop or no more than 500 ms for mobile [18,19].

We propose a two-step process for finding achievable counterfactuals satisfactory
for real-time interaction: first, find high-precision explanations of the current prediction
and then find achievable changes that the AI model predicts would result in the desired
outcome. If successful, this approach would allow a system to address both ‘why’ and
‘what can be done’ queries for the same scenario. From a technical standpoint, this process
provides explanations that are local, model-agnostic, high-precision, achievable minimally-
contrastive counterfactuals—concepts we shall define in detail below.

• Model-agnostic explanations address how a model performs under various condi-
tions or inputs rather than attempting to explain the inner workings of a model.
In practice, this means that the approach can be used for a variety of machine
learning models, including those that do not generate rules or otherwise support
interpretability [1].

• Local explanations provide justification for the behavior of a model for a particular
instance, rather than all possible instances. In tabular data, as we consider here, an
instance comprises a set of features, each associated with a value from a designated set
of possible values, and an outcome is a discrete class, which is a feature with a known
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set of possible values that has been designated as the ’target’. Local, model-agnostic
explanations can be found by perturbing the values of features of the given test case,
to identify changes that affect the target prediction [1,20].

• High-precision explanations are local explanations indicating both the features and
the value or range of values for the feature sufficient to support a prediction. An-
chors [3] are high-precision local explanations that include features that justify an
outcome independent of the values that the other features might have.

• Contrastive counterfactual explanations are local explanations that achieve a target
outcome T2 complementary to the original outcome T1, by changing the value of a
set of input features for an instance [21]. These features might be causally related
to the outcome, but one does not need to have explicit causal information to find
counterfactuals; one can achieve a good approximation using the trained AI model to
formulate a prediction, given a contrastive instance [22].

• Achievable contrastive counterfactual explanations are local explanations that
achieve a target outcome T2 complementary to the original outcome T1, using only fea-
tures whose values would be feasible for the subject of the decision system to change.
This information is specific to the domain and task. We assume that all features that
would be feasible to change, and any constraints on possible changes, are provided
to the system and that the system only perturbs values respecting these constraints.
(For a socially-interactive system, such as a conversational agent, the system should
also have access to non-technical descriptions of the actions for achieving the desired
value for a feature).

• Minimally-contrastive counterfactual explanations are local explanations that
achieve a target outcome T2 complementary to the original outcome T1, using only
minimal subsets of features, such that if MCCj is a minimally-contrastive explanation,
and MCCj ≡ {m1, m2, . . . , mj} then for any mi ∈ MCCj, MCCj \ {mi} would not be
sufficient to achieve T2. We shall take it as obvious that people would favor making
fewer changes, but preferences among changes involving different features depend
on individual preferences.

2. Related Work

The most closely-related work is that of Poyiadzi et al. [23] who provide an algorithm
for Feasible and Actionable Counterfactual Explanations (FACE). The FACE algorithm is
a variant of Dijkstra’s algorithm for finding shortest paths. The FACE approach creates a
graph of instances similar to a given test case. In the graph, nodes correspond to instances
and edges exist between pairs of instances that differ in the value of exactly one feature
if and only if it would be feasible and actionable for the anticipated user to make the
corresponding change to the value of a feature, as given by a pre-specified condition
function. FACE also allows one to provide a ’weight’ function to establish preferences over
different types of changes. This approach provides local model-agnostic counterfactuals,
but similarly to most approaches other than anchors, this method would only return a
single data point, rather than a high-precision explanation. In addition, the authors do not
reveal how long it might take to create or use the graph of instances for a specific dataset,
given a limited set of actionable features.

Making sure that individuals have a say in how their personal lives are affected by
machine learning is the main concern of “Actionable Recourse in Linear Classification” [24].
In this paper, the authors introduce the notion of ‘recourse’, referring to a person’s ability
to influence a model’s outcome by changing ‘actionable’ inputs. The authors suggest using
integer programming-based techniques that are optimized for redress in linear classification
issues as a means of achieving this goal, but do not consider real-time performance.

Another related work is that of Mothilal et al. [25], which provides an approach to
finding a diverse set of feasible counterfactual actions by generating a set of contrasting
feasible counterexamples. Their algorithm generates new contrasting examples while
assessing a diversity metric over the generated examples. Feasibility itself is determined
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by the approach first suggested by Wachter et al. [13], which is based on proximity, rather
than a domain model. Similarly, Karimi et al. [15] suggest an optimization approach to
find a minimal cost set of actions (in the form of structural interventions) that result in a
counterfactual instance yielding the favorable output; that is, it associates costs with actions
(edges) rather than features, acknowledging that not all modifications of a feature may
be equally acceptable. They do not provide an explicit algorithm or implementation, but
suggest using the Abduction-Action-Prediction steps proposed by Pearl [22]. Thus, it is not
clear under what conditions this approach might be suitable for real-time interaction.

3. Materials and Methods

The primary objective of this research is to provide a real-time, high-precision, model-
agnostic method for recourse. The approach is to modify and extend the functionality of
the local, model-agnostic explanation algorithm proposed in “Anchors: High-Precision
Model-Agnostic Explanations” and assess its suitability for use in an interactive system.
The key adaptation is to use it to find minimally-contrastive counterfactuals, using only
achievable modifiable factors that are also anchors.

We focus on two main research questions: (1) when the set of features is reduced
to include only plausibly actionable ones, how often can the anchor’s approach find at
least one explanation that would be an effective intervention using a dataset suitable for
algorithmic recourse? and (2) under these circumstances, how quickly can we find such
recourse? Secondarily, we also assess the impacts of varying the value of an internal
parameter of the anchor’s algorithm controlling how many alternatives it keeps under
consideration when trying to maximize coverage (beam size).

3.1. Algorithm for Generating Achievable Counterfactuals

In the pursuit of finding counterfactuals, our approach explores alternatives to the
original instances by modifying one feature at a time and then assessing the outcome using
the trained model. The primary objective of this methodology is to pinpoint a variant of a
given instance that prompts a shift in the classifier’s original suboptimal prediction to a
more optimal one, given the context of the domain and user preferences.

Our focus on achievable minimally-contrastive counterfactuals (AMCC) led us to
adopt Breadth-First Search (BFS), a graph search algorithm that explores all nodes at the
current depth level before proceeding to the next. We tailored BFS to suit our objective,
creating a variant termed “BFS-AMCC”, as detailed in Algorithm 1. As is common with
AI search algorithms, BFS-AMCC does not start with a prebuilt graph, rather it generates
nodes one at a time, for each of the allowed types of modifications. It can be used to find a
single successful counterfactual, using the least number of modifications, or multiple ones,
when allowed to continue searching until it either exhausts all possibilities or reaches a
preset stopping condition.

BFS-AMCC initiates its operation by populating a queue with the original instance.
During the algorithm’s core loop, an instance is dequeued for prediction. If the modified
instance’s prediction deviates from the original, it is deemed a successful modification
and the algorithm halts. If not, the algorithm proceeds to identify features for potential
modification. In the absence of any specifically provided indices, the algorithm treats all
categorical indices as modifiable.

BFS-AMCC also accommodates a set of ‘transition_rules‘ for the features. These are
optional and can be used to define valid transitions between feature states, ensuring that
the algorithm only considers achievable and realistic modifications to the instances. If a
‘transition_rule‘ is specified for a feature, the algorithm only considers the new feature
value if the transition rule returns true when applied to the current and new feature values.
These transition rules would be domain-specific, ideally derived from an ontology, but for
simple data can be specified directly.

In its iterative process, BFS-AMCC sifts through each index, creating a modified
instance for each valid feature value perturbation and queuing it. This iteration continues
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until a modified instance prompts a shift in the original prediction to the desired outcome,
or until the queue is exhausted.

Ultimately, BFS-AMCC returns the successfully modified instance—an achievable,
minimally-contrastive counterfactual that influences the classifier’s original prediction
towards a preferred outcome. If no successful modification is found, the algorithm returns
’None’. This methodology guarantees the discovery of a locally-minimal counterfactual,
offering advanced interpretability due to its minimal feature divergence from the origi-
nal instance.

Algorithm 1 BFS for achievable minimally-contrastive counterfactuals to change the pre-
dicted value

1: procedure BFS-AMCC(instance, classifier, original_prediction, categorical_names, spe-
cific_indices, ignore_indices, transition_rules)

2: queue← [(instance, [])] . Initialize the queue with the original instance
3: best_modi f ied_instance← None
4: while queue 6= ∅ do
5: current_instance, changed_indices← queue.pop()
6: current_prediction← classifier.predict(current_instance)
7: if current_prediction 6= original_prediction then
8: best_modi f ied_instance← current_instance
9: break

10: if speci f ic_indices 6= None then
11: indices_to_modi f y← speci f ic_indices
12: else
13: indices_to_modi f y← all indices in categorical_names
14: for index ∈ indices_to_modi f y do
15: if index 6∈ changed_indices then
16: for value ∈ categorical_names[index] do
17: if value 6= current_instance[index] then
18: if transition_rules 6= None and index in transition_rules then
19: if not transition_rules[index](current_instance[index], value) then
20: continue
21: modi f ied_instance← current_instance with index set to value
22: queue.append((modi f ied_instance, changed_indices + [index]))
23: return best_modi f ied_instance

3.2. Procedure for Evaluating Counterfactuals

Our empirical evaluation strategy, presented as Algorithm 2, is designed to assess the
performance of our approach to counterfactual generation—specifically, BFS-AMCC. The
main objectives are to calculate the proportion of successful counterfactual instances and to
measure the computational time required for each successful instance. These metrics are
stored in a Python dictionary for analysis.

To increase the efficiency and practicality of our approach, we introduce a 5 s time
limit for each instance using Python’s ‘signal‘ module. This time limit excludes extreme
outliers and maintains a reasonable balance between exhaustive search and computation
time. It is also very conservative, given the target for real-time interaction should be 200 to
500 ms [18,19]. In practice, this time limit is rarely ever reached, usually when there is no
possible recourse.

The algorithm initializes counters for successful and failed instances, along with a
timer to track the computation time for each instance.

The main loop of the evaluation algorithm processes each instance in the provided
‘suboptimal_instances’ list, which contains instances that might benefit from remediation.
For each such instance, the algorithm retrieves the true label and the classifier’s prediction.

If the classifier’s prediction matches the true value, the algorithm uses the ‘AnchorTab-
ularExplainer’ to identify high-precision features. These features are then used in the
BFS-AMCC process to guide the generation of modified instances.
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Next, the algorithm applies the BFS-AMCC function (Algorithm 1) to generate a
modified instance within the provided time limit. If a modified instance is found within
this limit, the algorithm updates the success counter, records the time taken, and logs the
changes. Otherwise, if a suitable counterfactual cannot be found within the time limit,
a ‘TimeoutError’ is raised, and the algorithm moves to the next instance, increasing the
failure counter.

Upon processing all instances in the ‘suboptimal_instances’ list, the algorithm returns
the ‘metrics’ dictionary. This dictionary provides a comprehensive summary of the per-
formance of our strategy, containing the number of successful and failed instances, total
computation time, and a detailed log of changes for each successful counterfactual instance.

Algorithm 2 Evaluation of Counterfactual Generation
1: procedure COUNTERFACTUAL_EVALUATION(ignore_indices, transition_rules, thresh_prob)
2: Input: DatasetLoader, ML_Model, predictor, explainer, metrics, suboptimal_instances, transi-

tion_rules
3: num_success, num_ f ailures, total_time← 0
4: for each instance ∈ suboptimal_instances do
5: Obtain original instance, label, and prediction
6: if original_instance_label == original_prediction == 1 then
7: Apply explainer on the original instance
8: Extract feature indices and specific indices
9: Set time limit to “s” seconds

10: Start timer
11: try:
12: modi f ied_instance← BFS-AMCC
13: except TimeoutError:
14: Print error and continue
15: finally:
16: Remove time limit
17: Stop timer and update total_time and metrics
18: if modi f ied_instance 6= None then
19: Update metrics with success case
20: Compute changes_for_instance and update metrics
21: else
22: Update metrics with failure case
23: return metrics

4. Experiments and Results

This section describes each of the steps in our evaluation along with their results. The
evaluation assesses the difficulty in finding an AMCC explanation, as both success rate
and time taken, for a representative data set. We also perform preliminary experiments
to create an optimal classifier and experiments where we vary a key parameter within the
Anchors algorithm, ‘beam size’. Lastly, we provide examples of the AMCC explanations
that would be provided for a sample of test cases, along with their computation time.

4.1. Dataset Selection and Preparation

We selected a widely-available tabular dataset, HMEQ, that appears to include several
actionable features. HMEQ is from the domain of lending, where the predicted outcomes
are {GOOD, BAD}, where a bad loan is one that resulted in a default or serious delay
in repayment, and a good loan is one that was repaid on time. This dataset is available
from Kaggle.

This dataset has a total of 5960 instances corresponding to individual home equity
loans, where the adverse outcome, f = 1 (BAD) occurs in about 20% of cases (n = 1189)
For each applicant, 12 input variables were recorded; we determined that seven of them
were actionable, as shown in Table 2, along with recourse actions for those variables. We
noted several cases where transitions would likely only be desirable or achievable in one
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direction and thus will treat MORTDUE, DELINQ, NINCQ, and DEBTINC, as feasible to
decrease, but not to increase.

Table 2. Actionable features in the HMEQ dataset including recourse actions.

Feature Description Example Recourse Actions

LOAN the amount of the loan request increase (or reduce) the loan request

MORTDUE the amount due on the existing mortgage pay down the existing mortgage

VALUE the current value of property have the property reappraised

DELINQ the number of delinquent credit lines pay off delinquent credit

NINQ the number of recent credit inquiries reduce credit applications

CLNO the total number of credit lines increase (or reduce) open credit lines

DEBTINC the client’s current debt-to-income ratio pay off some debt

Note that most of the features in HMEQ have continuous numeric values (e.g., sizes
of loans, years on the job, etc.). To improve the performance of the linear models we tested,
we first discretized the continuous variables into four broad categories using sklearn’s
KBinDiscretizer.

After preparing the data, we assessed the difficulty of the core classification task by
using the dataset to train two widely used classifiers and assessing them using standard
measures (Precision, Recall, and F1).

4.2. Assessment of Classifier Performance

For this part of the evaluation, we compared Random Forest and XGBoost classifiers.
Random Forest forms multiple decision trees during training, using randomly diversified
input variables and data instances to enhance the model’s generalizability. XGBoost
employs a sequential gradient-boosting approach, successively building models that fix the
errors of previous ones, reducing the model’s bias and improving its accuracy [26].

Implementation of these algorithms, as well as the process of generating different
feature combinations, was achieved using Python and the NumPy library for efficient
mathematical computations. We further harnessed Python’s native functionalities in the
post-processing stage to generate contrastive anchors, evaluate changes in predictions, and
prune redundant supersets.

4.3. Setup for Machine Learning Models

We initiated our empirical analysis with two machine learning models: Random Forest
and XGBoost. These models were evaluated using accuracy, precision, recall, and F1 score,
across train-validation-test splits of 80%-10%-10%, 70%-15%-15%, and 60%-20%-20%, as
presented in Table 3.

The F1 score of the XGBoost model remained relatively steady across all splits, with
a decline at a 70%-15%-15% split. In contrast, the Random Forest model improved its F1
score as the training data proportion increased, achieving the peak score of 0.75 with an
80%-10%-10% split.

Given the best F1 score was achieved by the Random Forest model, configured
with an 80%-10%-10% split, this model and split were used for subsequent counterfac-
tual evaluations.

Table 4 delineates the specific parameters used for the Random Forest and XGBoost
models in these experiments. The parameter values were selected empirically to optimize
the models’ performance on the training data, based on our preliminary experiments with
the dataset. For the Random Forest model, we used a ‘log_loss’ criterion and log2 max
features with 100 estimators and five jobs. Similarly, the XGBoost model was configured
with a ‘logloss’ evaluation metric and a specific setting for tree depth, subsample by the
tree, and the number of estimators.
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Table 3. Performance metrics of Random Forest and XGBoost under different data split ratios.

Model Data Split Ratio Accuracy Precision Recall F1 Score

Random Forest
80%-10%-10% 0.90 0.92 0.63 0.75
70%-15%-15% 0.90 0.92 0.58 0.71
60%-20%-20% 0.91 0.88 0.61 0.72

XGBoost
80%-10%-10% 0.90 0.90 0.61 0.73
70%-15%-15% 0.89 0.88 0.57 0.69
60%-20%-20% 0.91 0.85 0.62 0.72

Table 4. Parameters for Random Forest and XGBoost models.

Model Parameters

Random Forest n_estimators = 100, n_jobs = 5, criterion = ’log_loss’,
max_features = ’log2’

XGBoost eval_metric = ’logloss’, max_depth = 6, subsample = 0.8,
colsample_bytree = 0.8, n_estimators = 100

4.4. Evaluation of the BFS-AMCC Approach

After selecting the underlying AI model, the BFS-AMCC algorithm was systematically
applied to instances initially categorized as ‘BAD’ by the model. For this analysis, we
treated as immutable the indices 4, 5, 6, 7, and 9 (corresponding to REASON, JOB, YOJ,
DEROG, and CLAGE, respectively) and specified transition rules to prevent an increase in
four variables (DEBTINC, NINQ, DELINQ, and MORTDUE). This resulted in 81 instances
from the test set.

Our findings for the success rate of BFS-AMCC showed that, despite the constraints
limiting actionability, the algorithm successfully found viable modifications for 38 out of 81
instances, yielding a success rate of 47%. On the other hand, the algorithm failed to find a
feasible counterfactual for 43 instances within the set time limit. We excluded the top two
outliers from this count, which took an unusually long processing time of 2.75 s (which was
about ten times the average). These results, visualized in Figure 1, underscore the efficacy
of the BFS-AMCC algorithm in finding potent, achievable modifications, even under the
limitations imposed by immutable variables and transition rules.

Figure 1. Distribution of success (1) and failure (0) of modifications.
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To assess suitability for real-time use, we calculated the time taken for modifications
and created a histogram. Figure 2 shows the percentage distribution of the time taken for
each modification, showing that more than 90% of modifications were completed in 400 ms
or less, regardless of success.

Figure 2. Distribution of time taken (in seconds) for modification.

We also compared the time taken for successful and unsuccessful modifications and
constructed a box plot, as shown in Figure 3. The plot shows that for both successful
and unsuccessful modifications, the median times for obtaining an answer were well
below 200 ms, clearly achieving long-established acceptable latency for interactive tasks
on a variety of devices [18,19]. This comparison confirms the suitable efficiency of the
BFS-AMCC algorithm for use in real-time interactive systems.

Figure 3. Comparison of time taken for successful (1) vs. unsuccessful (0) modifications.

4.5. Evaluation of Impact of Beam Size

The use of the Anchors algorithm requires specifying ‘beam size’, which is the maxi-
mum number of candidates that it will store while searching, where candidates are ordered
by how well they cover the data. For the purposes of speed, a smaller beam might seem
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better, however, using too small a beam can lead to discarding successful candidates, in-
creasing the length of the search. Since determining which beam size to use depends on the
data and how many features are mutable, we tested a range of values for the beam, under
two conditions: restrict BFS-AMCC to use only actionable features and any transition rules
(Ignore indices are TRUE) or let BFS-AMCC use any anchor (Ignore indices are False).

Table 5 shows the performance of the BFS-AMCC algorithm under three different
beam sizes and conditions of ignored indices with transition rules (the typical use case)
versus full flexibility. The total time is the aggregate for the test set. (We consider the
average for an individual case below). Not surprisingly, the findings show that granting the
algorithm complete freedom in feature manipulation, by setting both ignored indices and
transition rules to FALSE, bolstered success rates across all examined beam sizes. However,
this unconstrained exploration came with a high computational overhead, evidenced by a
substantial increase in execution time. On the other hand, enforcing constraints via ignored
indices and transition rules (the TRUE condition) resulted in a lower success rate, but
yielded a significant reduction in computation time. These observations underscore the
importance of careful parameter tuning (for beam size) and placing realistic constraints on
feature perturbation in the optimization of BFS-AMCC. There is a delicate trade-off between
success rate, computational efficiency, and the extent of allowable feature manipulations
that will need to be assessed for each domain.

Table 5. Performance metrics for different beam sizes and ignore indices conditions.

Ignore Indices Beam Size Success Failure Total Time (s)

TRUE

3 35 46 13.99

5 37 44 10.87

10 38 43 11.39

FALSE

3 55 26 213.78

5 59 22 110.81

10 59 22 151.1

Table 6, shows the results when calculating the mean time for both successful and
unsuccessful modifications. The results indicate that the average time taken for a successful
modification is only 80 ms and much shorter compared to unsuccessful ones, 190 ms
on average.

Table 6. Mean time for successful and unsuccessful modifications.

Success Status Mean Time (s)

Successful 0.08

Unsuccessful 0.19

4.6. Examples of BFS-AMCC Modifications that Improve Predicted Outcomes

As a final assessment of the practical utility of the BFS-AMCC approach, we con-
sidered which recommendations might be provided, and how long it took to find these
explanations, for a sample of test cases. Figure 4 shows a collection of representative
instances reflecting variable modifications and their corresponding computational times.
All these changes in variable values were performed by the BFS-AMCC algorithm on
instances initially classified as ‘BAD’. Each row represents a unique instance with modified
variable(s) and the time taken. For example, the fourth row illustrates a change in the
‘DELINQ’ variable from 4.0 to 2.0, corresponding to a reduction of delinquent credit lines
from 11 to 15 to the range 4–7. Finding this result took 63 ms. As the figure shows, the
computational time typically remained under 500 ms, even when multiple variables were
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altered simultaneously. These findings exemplify the efficiency of the BFS-AMCC algorithm
in transforming data instances while minimizing computational burden.

Figure 4. Variable modifications and their respective durations.

5. Discussion

Overall, the findings indicate that one can use BFS-AMCC to provide high-precision
explanations that respect the information provided, including which features are actionable
and which transitions are achievable. Success rates for finding achievable minimally-
contrastive counterfactual explanations were comparable to finding unconstrained high-
precision predictions and were found much more quickly. Across all tested beam sizes,
the AMCC results took about one-tenth the time for an unconstrained search, and nearly
always less than 200 ms. The algorithm found AMCC explanations 47% of the time (38 of
81 test cases) and took on average just 80 ms to find a viable AMCC explanation. Thus, our
primary research questions were addressed.

Applying the algorithm to a real-world lending dataset and observing its success in
altering numerous ‘BAD’ instances show the practical relevance of BFS-AMCC. For exam-
ple, both decision-makers and loan applicants might benefit from help identifying requisite
changes for improved outcomes or discerning when no feasible recourse exists. These
insights could also support educational initiatives aimed at enhancing financial literacy.

As highlighted by the distribution of successful and unsuccessful modifications shown
in Figure 1, the BFS-AMCC algorithm effectively modifies a majority of instances, address-
ing our initial research question, about whether the method can find recourse. Furthermore,
these modifications are executed rapidly, typically within 200 ms, responding to our second
research query regarding the speed of recourse identification. By integrating a stringent
time constraint within the BFS-AMCC, the real-time efficiency of the algorithm can be
further enhanced.

Insights from Table 5 illustrate how the performance of the BFS-AMCC algorithm
is influenced by variations in beam size and ignore-indices conditions. It appears that
an equilibrium between computational resources and algorithm performance needs to
be maintained and evaluated empirically. With ignore indices set to TRUE, consistent
success rates across various beam sizes were observed, with smaller beam sizes offering
enhanced efficiency. Conversely, when ignore-indices were FALSE, a larger beam size
led to a minor success rate increase, but a significant rise in computational time. This
finding underscores the importance of judiciously choosing the beam size and setting
ignore indices, a conclusion further substantiated by the exclusion of top outliers under
ignore indices set to FALSE.

The contrast in time taken for successful versus unsuccessful modifications (Figure 3
and Table 6) elucidates another key aspect. Despite initially seeming paradoxical, the
faster completion of successful modifications can be explained by the breadth-first search
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nature of the BFS-AMCC algorithm, which finds achievable modifications early in the
traversal. In contrast, unsuccessful modifications necessitate a more exhaustive search
before concluding no successful modification exists. This suggests that in real-time use it is
safe to set a time-bound and respond with a negative outcome if it is reached.

Figure 4 showcases the efficiency of the BFS-AMCC algorithm in adjusting data
instances. The ability to modify multiple variables simultaneously while maintaining low
computational times exemplifies the optimized search and transformation capabilities
of the algorithm. This highlights the algorithm’s potential for scalability and suitability
in complex scenarios. Furthermore, the successful execution of transformations within
certain constraints, such as immutable variables, illustrates its adaptability and versatility,
broadening its potential application across diverse problem-solving domains.

Finally, the superior performance of the Random Forest classifier in our experiments
emphasizes the significance of model selection in such analyses. The classifier’s ability to
navigate high-dimensional feature spaces and intricate decision boundaries in the dataset
may account for its success. This study offers insights into the interaction between different
models and the BFS-AMCC procedure, providing a foundation for future research. For
example, for datasets with large numbers of features, one might want to consider automated
feature selection.

5.1. Limitations

Despite its merits, the BFS-AMCC methodology exhibits several limitations that war-
rant mention. The algorithm allows the inclusion of immutable features using the ‘ignore
indices’ parameter. However, discerning mutable features and their respective extents can
be challenging in real-world contexts, necessitating domain-specific expertise. Deciding an
appropriate time boundary, especially in scenarios with no evident feasible recourse, re-
mains an avenue for future exploration. Furthermore, systematic evaluations across various
parameter settings are crucial to ensure the robustness of machine learning models.

A meticulous analysis of the HMEQ dataset underscores that the notion of achievability
needs to be intrinsically tied to individual actions and transitions, crafted in line with
domain-specific constraints. For instance, it is logically plausible to reduce one’s mortgage
through advanced payments, but inversely, it is not feasible to augment it. When a model
suggests that such an increment leads to more favorable outcomes, it indirectly alludes
to the inherent advantages of initial affluence. In our methodology, this domain nuance
is managed by implementing specific transition rules, one of which is set to negate any
increments in the ‘MORTDUE’ variable. However, as portrayed in Figure 4, certain allowed
alterations might demand direct user interactions. An illustrative case is the change in
CLNO (2→ 3), which implies an increment in open credit lines from the bracket of 18–35
to 36–53. The viability of such adjustments largely pivots on individual situations and
potential intricacies between variables not considered in our analysis.

It is also worth noting that while specific modifications might accurately mirror the
dataset’s directives and could be apt for recommendations, their practicality could waver
based on the specific context of the individual. An example is the DELINQ transition
(4.0→ 2.0), which suggests trimming the number of delinquent credit lines from a max-
imum of 15 to fewer than seven. The feasibility of such advice is inherently tethered to
numerous factors, including debt magnitudes. An interactive approach would enable users
to counter such propositions, prompting the AMCC to subsequently treat aspects such as
DELINQ as immutable. This dynamic nature also allows for addressing specific queries,
such as the ‘what-about-X’ style, by making only the parameter X mutable. Future work
might explore adapting the AMCC approach to employ a beam search over the traditional
breadth-first, yielding a gamut of counterfactual candidates. These alternatives can then be
sequenced based on individual-centric utilities or likelihoods of success. This conceptual-
ization aligns with prior research in counterfactuals that emphasizes presenting users with
a diverse set of interpretative alternatives to ensure a holistic understanding.
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5.2. Comparative Analysis with Previous Studies

The proposed methodology attains the objective of identifying achievable minimal
counterfactuals without necessitating the computation of intricate metrics for optimization.
In alignment with Poyiadzi et al.’s FACE approach [23], the presented algorithm encom-
passes feasibility and actionability in a model-agnostic fashion. Contrarily, the AMCC
procedure, distinct from FACE, does not determine feasibility grounded on the density of
dataset examples and refrains from calculating similarity metrics. Both FACE and AMCC
deploy search mechanisms for counterfactual identification, with both breadth-first search
and Dijkstra’s algorithm targeting the shortest paths. While BFS employs a rudimentary
queue, Dijkstra’s algorithm leverages weighted edges paired with a priority queue. Note-
worthily, the proposed method does not mandatorily pre-construct a graph prior to search
initiation; it instead incrementally alters instances feature-wise, concomitantly and implic-
itly instantiating a new node, each epitomizing a minimal alteration of its predecessor.
Furthermore, the assessment herein incorporates pragmatic metrics, including the time
duration for counterfactual discovery, an aspect overlooked in previous research.

Mothilal et al. [25], paralleling Poyiadzi et al., conceptualize the derivation of minimal
achievable counterfactuals as an optimization task, thereby necessitating proximity and
diversity calculations. Their evaluative criteria span F1, Recall, and Precision, measured
across diverse datasets, albeit excluding time considerations. Encompassing all datasets
and methods under scrutiny, their technique registers an F1 in the range of 0.2 to 0.6, similar
to the observed mean success rate of 47% for AMCC in this study.

5.3. Future Research

Future research can explore in depth the influence of different predictive models on the
performance of the BFS-AMCC procedure, investigate its adaptability to data with varying
degrees of feature mutability, and assess potential alternative strategies for counterfactual
generation that might offer equal or superior efficacy. An intriguing avenue is the extraction
of domain-specific information required by the algorithm from more generalized repre-
sentations, such as knowledge graphs [27]. Such endeavors would further the application
of AMCC in the development of conversational agents designed to encourage sustained
behavioral modifications, including enhancements in time management or augmentation
of physical activity [28,29]. This direction aligns with the trajectory of our ongoing research.

Despite the inherent intricacies, the insights presented herein signify a pivotal pro-
gression in the comprehension and application of counterfactuals for enhancing the inter-
pretability of machine learning in both prediction and intervention, laying the groundwork
for subsequent advancements.

6. Conclusions

In this paper, the BFS-AMCC algorithm is presented as a robust method to identify
achievable minimally-contrastive counterfactuals compatible with any machine learning
framework catering to tabular data. The provision of such high-precision, model-agnostic
counterfactuals is essential for decision support systems powered by machine learning,
emphasizing the pivot from mere prediction to actionable intervention. In interactive
scenarios, when users confront a negative outcome, they seek elucidation on its causes
and viable avenues to a favorable result. Ideally, a system should respond with actionable
insights within a latency of 200 to 500 ms, a timeframe deemed acceptable by prior research
in human-computer interaction. Notably, this method forgoes the dependency on intricate
metrics to gauge feasibility. Instead, it leans on precise directives from domain experts to
delineate feasible actions, with the system enumerating alternatives within a predetermined
timeframe. Potential unforeseen causal discrepancies or conflicts are addressed via user
interaction, yielding a refined AMCC explanation. Therefore, this paradigm for explainable
AI is inherently transparent and decipherable to a wide spectrum of individuals. The
real-time efficacy of the AMCC strategy underlines its potential in powering conversational
interfaces aimed at guiding users toward enhanced results.
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Overall, the findings presented here confirm that our BFS-AMCC algorithm usually
generates at least one actionable explanation that permits meaningful intervention, all
within an acceptable time frame. This study, therefore, provides compelling evidence for
the efficacy of BFS-AMCC. Moreover, the BFS-AMCC approach meets key requirements for
real-world applications and end-user interpretability, underscoring its practical potential.
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