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Abstract: Thyroid disease is among the most prevalent endocrinopathies worldwide. As the thyroid
gland controls human metabolism, thyroid illness is a matter of concern for human health. To save
time and reduce error rates, an automatic, reliable, and accurate thyroid identification machine-
learning (ML) system is essential. The proposed model aims to address existing work limitations
such as the lack of detailed feature analysis, visualization, improvement in prediction accuracy, and
reliability. Here, a public thyroid illness dataset containing 29 clinical features from the University
of California, Irvine ML repository was used. The clinical features helped us to build an ML model
that can predict thyroid illness by analyzing early symptoms and replacing the manual analysis
of these attributes. Feature analysis and visualization facilitate an understanding of the role of
features in thyroid prediction tasks. In addition, the overfitting problem was eliminated by 5-fold
cross-validation and data balancing using the synthetic minority oversampling technique (SMOTE).
Ensemble learning ensures prediction model reliability owing to the involvement of multiple classi-
fiers in the prediction decisions. The proposed model achieved 99.5% accuracy, 99.39% sensitivity,
and 99.59% specificity with the boosting method which is applicable to real-time computer-aided
diagnosis (CAD) systems to ease diagnosis and promote early treatment.
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1. Introduction

Thyroid hormones are primarily responsible for the regulation of human metabolism,
neuronal growth, and large increases in reproductive activity. When the thyroid gland
is unable to produce regular hormone levels, normal body functionality is disrupted.
This is known as thyroid disease. Thyroid disorders in medical science can result in
thyroiditis and thyroid cancer. The primary thyroid conditions are hyperthyroidism and
hypothyroidism [1]. The proportion of people with thyroid dysfunction is rising globally,
accounting for between 30 and 40% of patients seen in endocrine clinics [2]. An estimated
20 million Americans have thyroid illness, of which approximately 60% are unaware [3].

It might be challenging to distinguish thyroid disease from other illnesses owing to
the conditions it produces. Diagnosis of thyroid illness is a difficult and time-consuming
process. The traditional procedure for diagnosing thyroid illness involves clinical examina-
tion, as well as many blood tests. However, the main issue is being able to make a precise
diagnosis of the condition in its early stages [4]. Blood tests are recommended if doctors
suspect thyroid dysfunction because they can offer crucial details regarding various thyroid
hormones, including thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxin
(T4), and thyroid-stimulating immunoglobulin (TSI) [5].

Thyroid disease should never be underestimated, as it can lead to severe complications
such as thyroid storm (extreme hyperthyroidism) and myxedema (life-threatening end-
stage untreated hypothyroidism) [6]. Therefore, managing the progression of an illness
and even avoiding death greatly depend on early disease identification, diagnosis, and
therapy. Despite numerous tests being conducted, medical diagnosis is sometimes regarded
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as a difficult task [7]. Data mining uses a semi-automated process to identify patterns and
relationships in large databases [8]. The classification of thyroid dysfunction can be resolved
using data-mining methods. The use of machine-learning (ML) and DM techniques has
become more widespread among academics and researchers.

It has become increasingly clear in recent years that the complexity of life and changes
in food preferences have contributed to the sharp increase in medical issues. In addition,
the cost of medical therapy is thought to be higher, particularly for compliance that requires
surgical intervention. Data science, technology, and intelligent systems can be used to
enhance medical diagnosis [9]. The strategic prediction of thyroid disease is crucial for pro-
viding appropriate care, reducing medical expenses, and preventing avoidable fatalities. By
understanding each patient’s complete medical history over time and analyzing the patterns
of biological indicators and other parameters, it is possible to predict individual responses
to therapy and modify treatments accordingly. Thus, it is essential to enhance medical pro-
cedures and leverage cutting-edge technologies for the early identification and prevention
of thyroid problems. With advancements in data processing and computation technologies,
ML approaches have been increasingly employed for accurate thyroid diagnosis.

A general outline of the workflow that combines data mining and ML is shown
in Figure 1. The dataset chosen for the model training consisted of 29 clinical features.
Because the data are gathered in real time, data preparation must be performed to obtain
appropriate ML classifier inputs. Data preprocessing involves data encoding, cleaning,
resampling, and normalization. To address any imbalances in the dataset and mitigate
bias, a synthetic minority oversampling technique (SMOTE) algorithm can be employed
to balance the data, which generates minority class synthetic samples by using K-nearest
neighbors. In addition, to ensure that the models can be generalized to new data and are not
unduly specialized in the training data, overfitting can be checked using cross-validation.
Among the various thyroid diseases that include thyroiditis, goiter, thyroid cancer, etc., the
present study focused on hypothyroid diagnosis. However, the same framework can also
be employed for other diseases by training the model with the appropriate database. The
primary contributions of this study are as follows.
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1. The development of a simple, automatic, precise, and reliable ML thyroid prediction
model can be incorporated into computer-aided diagnosis (CAD) systems.

2. Correlation analysis, heatmap generation, and other visualizations of various clinical
features were implemented to understand their role in thyroid risk prediction.

3. Involvement of 29 features that can predict and classify the thyroid by analyzing early
symptoms. In addition, it replaces the tedious manual analyses of these parameters.
The SMOTE algorithm was implemented to achieve data balancing and to ensure that
the results were not biased.

4. Ensemble learning ensures the reliability of the prediction model owing to the use of
several classifiers, instead of a single ML algorithm.

A detailed survey of various existing studies that address thyroid prediction is pre-
sented in Section 2. Section 3 provides additional information on the materials and tech-
niques used in this study. Section 4 provides a detailed methodology. The corresponding
experiments and results are discussed in Sections 5 and 6 provides the conclusions of
the work.
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2. Related Works

A thorough analysis of the different prediction methodologies presented in recent
studies for diagnosing thyroid illness is provided in this section by categorizing them as
conventional ML- and DL-based approaches.

Traditional ML approaches: The authors created a thyroid prediction model [10] that
uses a kernel-based classification approach with “multi-kernel SVM”. To enhance the
effectiveness of the classification process, optimal feature selection was performed using
enhanced gray wolf optimization (GWO) [11], which is a population-based meta-heuristic
technique that mimics the natural leadership structure and hunting strategy of gray wolves.
With respect to GWO, the three fittest candidate solutions—alpha, beta, and delta—lead the
population to favorable regions of the search space. By adaptively searching for the feature
space, we determined the optimal feature combination. This approach achieved 97.49%
accuracy, 99.05% sensitivity, and 94.5% specificity. However, this technique requires lengthy
computations; hence, the authors suggest the need for new and powerful procedures that
will improve the performance and allow for the diagnosis of thyroid disease.

In [12], the authors followed an empirical method by comparing the performance of
random forest (RF), artificial neural networks (ANN), decision tree (DT), and K-nearest
neighbor (KNN) on the dataset to enhance disease prediction based on the dataset’s speci-
fied parameters. The dataset was also altered to allow for a precise classification prediction.
The dataset was modified to enable an accurate classification prediction, and categorization
was performed on the sampled and unsampled datasets to improve comparability. After
modifying the dataset, the RF algorithm achieved an accuracy of 94.8% and a specificity
of 91%.

Using ML techniques, such as gradient-boosting machine (GBM), deep neural network
(DNN), logistic regression (LR), SVM, and RF, Garcia et al. [13] identified molecules that are
highly likely to initiate thyroid hormone homeostasis. In the initial phases of thyroid illness,
the early prediction of these compounds is helpful for additional testing. The ToxCast
database provides information on molecular events. The best predictive performance was
observed for the thyroid hormone receptor (TR) and thyroid peroxidase (TPO), with F1
values of 0.81 and 0.83.

Another study [14] investigated three feature selection algorithms in conjunction with
ML algorithms: univariate feature selection (UFS), principal component analysis (PCA),
and recursive feature extraction (RFE). PCA [15] transforms high-dimensional data into
lower dimensions, whereas UFS [16] selects the strongest features and RFE [17] removes
the weakest features until a specified number of features are reached. PCA is used when
dealing with high-dimensional data, UFS is preferred for a simple selection approach, and
RFE is performed by iteratively selecting the strongest features. The RFE and ML classifiers
performed better than the other classifiers and achieved an accuracy of 99.35%. However,
the sample size was small (n = 519). A sizable dataset was required to assess the efficacy of
the method.

In another study [18], in-depth analyses of thyroid prediction were conducted using
various ML classifiers, with and without feature selection techniques. The DHQ Teaching
Hospital in Dera Ghazi Khan, Pakistan, provided the data. It also included the extra
parameters of blood pressure, body mass index, and pulse rate, which stood out from
previous research. The experiment was conducted with and without L1 and L2 norm
feature selection [19]. L1 regularization aids feature selection by eliminating irrelevant
features, whereas L2 reduces model overfitting by minimizing weight magnitudes. L1
is better when a subset of features is important, whereas L2 maintains a larger set of
features. The final model with the naïve Bayes (NB) classifier and L2 selection achieved
100% accuracy. Another study [20] experimented with different separate distance functions
of the KNN classifier for the same database. In addition, they utilized the L1 norm and
chi-squared test to perform feature selection. The chi-squared test [21] identifies features
strongly associated with the target variable. This is useful for dealing with categorical
or discrete data. In addition to improving model performance, it prevents overfitting
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and enhances interpretability. Chi-squared techniques with KNN, Euclidean, and cosine
distance functions achieved 100% accuracy. However, the proposed model has not yet
been validated by using a public thyroid database. Hence, it cannot be verified based on
overfitting and real-time usage.

To predict hypothyroid illnesses, Mishra et al. [22] used ML techniques, such as
sequential minimum optimization (SMO), RF, DT, and K-star classifiers. SVM training
involves solving large quadratic programming optimization problems. SMO breaks them
into smaller analytically solved problems, reducing the time-consuming optimization [23].
In this investigation, 3772 distinct records were considered. RF and DT performed better
and achieved 99.44% and 98.97% accuracy, respectively. However, hyperthyroid prediction
was not considered in the present study. The efficacy of supervised and unsupervised
classifiers in predicting thyroid conditions has received considerable attention. Instead of
following this pattern, another study [24] concentrated on the idea of feature relevance and
its clinical application. They listed the top four features most likely to indicate the presence
of thyroid disease, and demonstrated how easily and affordably practitioners could test
these features. Moreover, they pointed out the drawbacks of widespread clinical practice in
many nations with universal healthcare of not testing the whole thyroid panel. Finally, the
results are stable and unlikely to vary depending on the classifier used or because of the
fundamental characteristics of the dataset, such as imbalance.

DL-based approaches: Some studies make use of deep-learning-driven algorithms
to provide good performance for the automatic identification of thyroid disorders, which
provides doctors with support for diagnostic decision-making and reduces human false-
positive diagnostic rates. One study [25] used two preoperative medical imaging modalities
to classify thyroid diseases. It developed a diagnostic model for thyroid disease based on
a convolutional neural network (CNN) architecture, and it achieved remarkable perfor-
mances of 0.972 and 0.942 accuracy for computed tomography (CT) scans and ultrasound
images, respectively, using Xception. They conducted experiments using DeseNet121 and
InceptionV3 in addition to Xception.

To improve the prediction accuracy, the authors in [26] followed a series of procedures
for input data before being input into the DL networks. After preprocessing the real data,
they experimented with feature-reduction techniques, such as singular value decomposition
(SVD) and PCA. SVD provides singular vectors with reduced dimensionality. The resulting
data were then fed into KNN and neural network classifiers. In addition, the same data were
applied to the DNN after the data augmentation. The experiment utilized 2 hidden layers
(16 neurons), 1 input layer (23 inputs), and the ReLU activation function for prediction.
They achieved an accuracy of 99.95% when using a DNN. Although it achieved a higher
prediction accuracy, it could not identify the features based on which the network made
the prediction decisions. Additionally, we could not determine whether model overfitting
had occurred or not. Another study [27] proposed a collection of multiple multilayer
perceptron (MMLP) neural networks with backpropagation error handling to improve the
generalization and prevent overfitting during training. They also employed an adjustable
learning rate strategy to address the convergence and local minima issues associated with
backpropagation error. The MMLP model outperformed a single network, increasing the
accuracy by 0.7%. Additionally, using an adjustable learning rate algorithm improved the
accuracy of Internet of Medical Things (IoMT) systems by 4.6%, ultimately achieving 99%
accuracy compared with classical backpropagation.

To identify five distinct thyroid conditions, hypothyroidism, hyperthyroidism, and
thyroid cancer, a CNN-based modified ResNet architecture was used in another study [28].
In the proposed study, the training method was improved by employing dual optimizers to
achieve greater accuracy and outcomes. It was found that the modified ResNet operational
efficiency increased when using Adam and stochastic gradient descent (SGD) optimizers.
The improved ResNet design offers 97% accuracy with SGD compared with 94% accuracy
for the baseline ResNet architecture. Table 1 presents an overview of the studies reviewed.
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Table 1. Related works.

Work Methodology Input Variable Output Performance
Measures

[10] Gray wolf optimization +
multi-kernel SVM

29 clinicopathological
characteristics

Hypothyroid,
hyperthyroid, and normal

Accuracy 97.49%,
sensitivity 99.05%, and

specificity 94.5%

[12] Customized Alexnet 29 clinicopathological
characteristics Thyroid, normal Accuracy 94.8% and

specificity 91%.

[13] ML classifiers Molecular descriptors Thyroid peroxidase (TPO)
active, inactive F1-score 0.83

[14] RFE + ML classifier ID, age, sex, FT3, FT4, T3, T4,
and TSH

Hypothyroid,
non-hypothyroid Accuracy 99.35%.

[18] L2 selection + NB
classifier

ID, gender, age, body mass
index, pregnant, pulse rate,

blood pressure, T3, T4, and TSH

Hypothyroid,
hyperthyroid, and normal Accuracy 100%

[20] Chi-square test + KNN
ID, gender, age, body mass
index, pregnant, pulse rate,

blood pressure, T3, T4, and TSH

Hypothyroid,
hyperthyroid, and normal Accuracy 100%

[22] SMO + RF classifier 29 clinicopathological
characteristics

Hypothyroid,
non-hypothyroid Accuracy 99.44%

[24] Work on the concept of thyroid prediction feature importance and its clinical implications

[25] CNN CT image, ultrasound image
Normal, thyroiditis, cystic,

multi-nodular goiter,
adenoma, and cancer

Accuracy 97.2%

[26] DNN 23 clinicopathological
characteristics Sick-euthyroid, negative Accuracy 99.95%

[27] MMLP 21 clinicopathological
characteristics

Hypothyroid,
hyperthyroid, and normal Accuracy 99%

[28] ResNet X-ray images

Thyroid nodules,
hypothyroid, hyperthyroid,

thyroid cancer, and
thyroiditis

Accuracy 97%

In the reviewed existing works based on conventional approaches, the prediction
accuracy requires improvement because, while considering ML in the medical field, the
prediction accuracy measure plays a significant role. Additionally, the models were built
on a single ML classifier and there was no evidence to recheck their reliability. Only after
ensuring reliability can the proposed models be incorporated into CAD systems. Although a
few studies have achieved a high accuracy, they were developed on private datasets instead
of public datasets and obtained permission to acquire data, privacy, secrecy concerns, etc.
The remaining studies that are based on DL networks face the limitations of the requirement
of huge training data, high computational power, large training time, and black-box nature.
Additionally, the underlying decision-making features are unknown. To resolve these issues,
This study proposed a model with sufficient reliability by implementing an ensemble of
classifiers, in which more than one classifier is involved in making diagnosis decisions.
The classic ML algorithms employed ensured model simplicity and speed. In addition,
the features can be accessed and analyzed at any stage. Training the model with public
data will help it handle diverse data, and thereby, it can be incorporated into real-time
CAD systems.

3. Materials and Methods

The database and the existing techniques used in the present study will be pre-
sented here.

3.1. Database

In this study, we used the thyroid dataset sourced from the University of California,
Irvine (UCI) ML repository [29]. It includes 6 databases from the Garavan Institute in
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Sydney, Australia, with 2800 training and 972 test instances. This was used for binary
classification. In the database, the predictive variable was given as categorical where
“P” represented the presence of hypothyroidism and the opposite with “N”. The dataset
includes various attributes that represent the different clinicopathological characteristics
of patients. In total, 29 attributes that are either categorical or real were included. The
attributes are age, sex, thyroxine (whether currently taking thyroxine medication), query on
thyroxine (whether a patient is currently under investigation), sick, thyroid_surgery, antithy-
roid medications, query_hyperthyroid, I131_treatment, pregnancy, query_hypothyroid,
TSH_measured (whether the TSH level was measured for patients), TSH (actual value of
TSH), T3, referral_source, TT4_measured, T4U, T3_measured, TBG, TT4, FTI_measured,
TBG_measured, T4U_measured, FTI, lithium, tumor, goiter, psych, and hypopituitory were
considered from their corresponding levels in the blood. Hypothyroidism was used as the
target variable.

3.2. SMOTE

Real-world datasets face data-imbalance problems. The data-imbalance issue with
the thyroid database was solved using the synthetic minority oversampling technique
(SMOTE) algorithm [30,31]. To address the imbalanced dataset problem, one common
strategy is to oversample the minority class. However, simply replicating existing examples
from a minority class may not provide new insights into the model. Instead, SMOTE
generates new synthetic examples by combining the information from existing examples.
The SMOTE technique selects examples that are close to each other in the feature space.
It constructs a line linking the chosen example and its nearest neighbors (typically five
neighbors) and then generates a new sample along this line. This synthetic example fills
the gap between two instances and their randomly selected neighbors, thereby effectively
increasing the representation of the minority class. By utilizing SMOTE, we mitigated the
problem of overfitting that can arise from random oversampling. This technique ensures
that synthetic examples are generated in a controlled manner based on the distribution
of existing minority class instances, thus improving the generalization capabilities of
the model.

3.3. Bayesian Optimization

To search for a global optimization issue efficiently and effectively, Bayesian opti-
mization [32] offers a systematic method based on Bayes’ theorem. Contrary to random
or grid search, Bayesian techniques retain notes of previous assessment outcomes. This
methodology involves creating a surrogate function ((score | hyperparameters) or P(y | x))
that serves as a probabilistic model of the objective function. The surrogate function is then
effectively explored using an acquisition function to select candidate samples to evaluate
the actual objective function. In the context of applied machine learning, Bayesian opti-
mization is commonly used for the hyperparameter tuning of well-performing models on a
validation dataset.

Compared to the objective function, the surrogate function is easier to optimize,
and Bayesian approaches operate by selecting hyperparameters that perform best on the
surrogate function to determine the new hyperparameter set to assess the actual objective
function. Following each objective function evaluation, these methods update the surrogate
probability model, which is consistent with the Bayesian reasoning goal, i.e., to become
“less wrong” with more data. With fewer iterations, Bayesian approaches can uncover
better model parameters than random searches.

3.4. Ensemble Learning

While dealing with class imbalance, different classifiers would produce different
results, whereas other classifiers might not be able to perform better in terms of classification.
Consequently, an ensemble-learning technique [33] was used to enhance the ML results. To
solve this problem, many models have been developed and combined. The core assertion is
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that more accurate and resilient models can be produced by appropriately merging the weak
models. Compared to a single model, this strategy delivers a better prediction performance.

The two methods of ensemble learning implemented were boosting and bagging. Bag-
ging (bootstrap aggregating) takes homogeneous weak learners, trains them independently
in parallel, and combines them using a deterministic averaging process. It uses Breiman’s
random forest algorithm with decision tree learners. Numerous boosting algorithms have
been proposed. The first versions, proposed by Robert Schapire [34] and Yoav Freund [35],
lacked adaptability and were unable to fully capitalize on weaker learners. Schapire and
Freund [36] later created AdaBoost, an adaptive boosting algorithm that earned the coveted
Gödel Prize. The first truly successful boosting algorithm created for binary classification
was called AdaBoost. Boosting frequently considers homogeneous weak learners, trains
them sequentially in a highly adaptive manner, and then combines them in accordance
with a deterministic strategy. It follows AdaBoost with decision tree learners. The bias was
reduced by boosting.

4. Proposed Methodology

A detailed workflow diagram of the present study is shown in Figure 2. Early identifi-
cation, diagnosis, and treatment are critical to stop the progression of thyroid illnesses and
lower the mortality rate. The accurate prediction of disease outcomes and understanding
of the interdependencies of clinical features play a crucial role in medical diagnosis and
therapy. By developing a fully automatic ML model that can be incorporated into a CAD
system, a higher prediction time and error rate can be eliminated.

The public thyroid database from the UCI ML Repository [29] was used in this study.
With 29 clinical variables that will help in early diagnosis, this is the only public thyroid
dataset with such a large sample size. By using a public dataset for model development,
the proposed model will be capable of handling real-world data limitations.

Preprocessing the dataset is a crucial step that both data mining and ML rely on.
Real-world data have inherent irregularities and noise, and there is a chance that some
of the data will be missing, duplicated, or irrelevant. This can result in false information
being learned and a decline in algorithm performance. The dataset is encoded, resampled,
normalized, and thereby put into the proper format using preprocessing to make it ready
for processing. In the database, data values are also written in words as well as by numbers.
The training data are frequently labeled in words to make them human-readable and
intelligible. However, machines require numeric representations, and hence, label encoding
transforms actual data into numeric. Machine-learning algorithms can then analyze and
determine the optimal functioning of these labels. Converting categorical data into numeric
values is essential in supervised learning for structured datasets, ensuring accurate analysis.

To verify that the data given into the ML model are not redundant, duplicate rows
were then eliminated as part of the data-cleaning process. A given class is typically
underrepresented in relation to other classes in datasets that accurately reflect the real
world. When learning a concept from a class with few examples, it might be difficult due
to the “class-imbalance” problem. One among the main issues associated with data mining
and pattern recognition is the data-imbalance problem. Unbalanced datasets significantly
impede learning because the bulk of currently used ML techniques presuppose a balanced
class distribution or an equal penalty for misclassification. To solve this problem associated
with our database, data resampling was performed with the SMOTE technique, which
uses oversampling. Patients without hypothyroidism made up the minority group in this
case. Because SMOTE was applied ahead of data splitting, the minority class had sufficient
samples and the data imbalance was mitigated.

SMOTE has several benefits over conventional oversampling. Duplicating existing
data may bias the model in conventional oversampling. SMOTE interpolates between the
minority class’s existing samples to construct synthetic samples. By adding diversity to
the oversampled dataset, the likelihood of overfitting is decreased. SMOTE can assist in
enhancing the model’s capacity to discriminate between classes in the critical regions by
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producing samples along the decision boundary. Additionally, it can assist in decreasing
the effect of noisy data points.
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This study utilized SMOTE class implementation from the imbalanced-learn Python
library. This class is like a scikit-learn data transform object and needs to be defined and
configured before it can be applied to a dataset. By using SMOTE, it initially oversampled
the minority class, ensuring it contained 10% majority class instances. Required ratios
were passed as arguments to the SMOTE and RandomUnderSampler classes, which were
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combined into a pipeline. This pipeline allowed us to apply the transformations step by
step, resulting in a final dataset with the desired number of transformations.

As the final part of preprocessing, data normalization is applied to convert the nu-
merical values in the dataset’s columns to a comparable scale while keeping their ranges.
This method is noteworthy for maintaining the consistency of such value ranges. By using
a linear data transformation called min–max normalization, the range of the dataset is
condensed to a single range, set to 0 to 1. Here, it was applied to the TT4, T4U, FTI, and age
data columns. Then, the statistical summary, such as the mean, count, standard deviation,
percentiles, and minimum–maximum value ranges of the preprocessed data, was obtained.

To analyze the data, feature distributions and seaborn distribution charts, such as
distplot and jointplot, were utilized. First, we selected one specific column of the dataset
since the distplot frequently visualizes univariant sets of observations using histogram, that
is, one observation. Then, a plot of two variables with bivariate and univariate graphs is
created using a jointplot. In essence, it mixes two distinct narratives. Finally, the correlation
between the data columns is evaluated, and a corresponding heatmap is generated. Data
preprocessing was completed, and the data features and targets were separated from the
preprocessed data. Feature-target values were exported into Excel files for later ML stages.

In the ML classification stage, DT, neural network (NN), SVM, LR, and KNN were
initially used. Then, ensemble classifiers were employed since they would be more reliable
than individual classifiers. A 5-fold cross-validation which prevents overfitting was also
performed. Moreover, hyperparameters were tuned by employing Bayesian optimization.
The ensemble-learning approaches of bagging and boosting were employed. Using bag-
ging, several models were trained on a portion of the real dataset before combining the
model results to produce the final prediction conclusion. Another meta-model was also
trained combining the output predictions of many models to produce a concluding forecast.
Boosting-based ensemble techniques contain models that have been trained several times,
relying on previously trained performance errors as well as underperforming models.
Afterward, a weighted average of the predictions was created using the accuracy of various
models. Real-world scenarios benefit most from these ML models that have been trained to
handle a class imbalance that characterizes all real-world data.

Some disease diagnosis may be affected by intricate relationships between features that
are not immediately apparent. The model can capture these complicated relationships when
all clinical features are used. To evaluate feature relevance, feature selection sometimes
necessitates time-consuming data-preprocessing activities. The entire data-preparation
procedure can be streamlined by omitting this step. Models using all features might
provide more transparency in their decision-making process, as clinicians and researchers
can observe the influence of various features on the predictions. Models without feature
selection are better able to adapt to data changes, making them advantageous for real-time
applications where new features become relevant in the future.

When the proposed approach is implemented into medical systems, thyroid disease
screening can be carried out with minimal or no assistance from physicians. As a result,
the standard thyroid screening approach could be changed, allowing for faster screening
and treatment. Patients from remote locations and the elderly who do not have easy access
to hospitals might benefit from the integration of this ML model into mobile applications.
In principle, by retraining the suggested framework, it can be used for many diseases such
as thyroid dysfunction, diabetes mellitus, pituitary tumors, acromegaly, etc. It, however,
requires similar biomedical databases with clinical features that can aid in the prediction of
a specific disease.

5. Experimental Results and Discussion

The results of each experiment conducted during the model development will be
presented and discussed here. Several preprocessing approaches were used to improve
the model performance that include locating and handling missing values and encoding
categorical data. Furthermore, various ML classifier algorithms were tried along with
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cross-validation and hyperparameter tuning. The accuracy, sensitivity, specificity, etc., were
assessed to gauge the efficacy of the prepared model.

As a first step, a thyroid dataset from the UCI ML repository was used since we needed
a real-time database with enough data for model training. A model developed from such a
database would be useful as a CAD system in day-to-day hospital activities. The amount
of data are essential for improved accuracy. When conducting research using private
healthcare data, researchers must also address additional challenges such as obtaining
permission to acquire the data, privacy, and secrecy concerns, etc. These are some of the
reasons why many researchers use this public thyroid disease database. Since the dataset
consisted of data-imbalance problems, the SMOTE algorithm was implemented in the
preprocessing stage, and bar charts of both cases are given in Figure 3.
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Data preprocessing is a data-mining technique used to clean up and make the raw
data that have been collected in the initial stage more workable. The Pandas python library
was employed to perform the ML preprocessing. The actual data included attributes that
have values such as letters or numbers. However, it must be encoded to make it readable
by machines. Hence, data were converted into data frames, and encoding was carried out
using the Sklearn label encoder. Then, all 29 attributes were converted into the “int64” data
type. Later, data cleaning was performed by dropping duplicated rows from the encoded
data, which ensured that the ML classifier input will not be redundant. Next, the statistical
data summary was evaluated using count (nonempty values), mean, standard deviation,
etc., as given in Table 2. How many values fall below the specified percentile is what the
term “percentile” means.

Table 2. Statistical data summary details.

Index Age Sex TSH T3 TT4 T4U FTI

count 3711 3711 3711 3711 3711 3711 3711
mean 46.493 1.266 123.688 30.4934 119.133 64.854 108.716

std 20.863 0.525 81.308 20.240 98.238 31.3301 97.0323
min 0 0 0 0 0 0 0
25% 28 1 63.5 18 21 46 17
50% 50 1 113 23 79 57 56
75% 63 2 167 32 226 71 221
max 93 2 287 69 241 146 234

In the field of medical diagnosis and treatment, the accurate prediction of disease
outcomes and understanding the interdependencies among clinical variables or attributes
are essential. Hence, before going further, the analysis of the data features was performed
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using seaborn distribution plots, such as distplots and jointplots, where the former consid-
ers a single variable, and the latter handles two variables. Distplots showing the different
attribute distributions are shown in Figure 4a–g.
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Distplots combine the functionality of histograms, kde plots, and rug plots in a simple
and unified manner. Here, the rug plot was kept false. It is clear from the plot (Figure 4a)
that thyroid issues become more common as people age. Additionally, the count of occur-
rence is more in females than in males when considering genderwise analysis, as shown
in Figure 4b.

Total thyroxine (TT4) (Figure 4c) and triiodothyronine (T3) (Figure 4g) are thyroid
hormones. Thyrotropin-releasing hormone, which is released by the hypothalamus, stimu-
lates the pituitary gland to generate thyroid-stimulating hormone (TSH). The thyroid gland
then releases T4 and T3 with the aid of TSH. TSH is essential to the system’s operation.
Therefore, the pituitary gland releases more TSH if the T3 and T4 levels are too low, as
shown in the above distplot in Figure 4d. The gland will release less TSH if it is too high,
but this give-and-take system only works if everything is in working order.

When the thyroid gland does not produce sufficient thyroid hormone to meet the
body’s needs, it causes hypothyroidism, also known as underactive thyroid. Primary
hypothyroidism, caused by thyroid gland disease, is indicated by high FTI levels and
elevated TSH levels (Figure 4f). Low levels of TSH and FTI suggest hypothyroidism caused
by a malfunctioning pituitary gland. In the case of hyperthyroidism, TSH levels are low,
while FTI levels are high. Figure 4e shows an increasing trend in T4U, whereas TT4 levels
appear to be declining.

Both the main plot and the marginal plots make up the jointplot, as given in Figure 5.
The combination of univariate and bivariate plots in a single figure is highly beneficial. This
is so that the bivariate analysis can explore the link between two variables and explain the
strength of that association, whereas the univariate analysis concentrates on one variable
and describes, summarizes, and displays any patterns in your data. The Seaborn library’s
jointplot() function by default generates a scatter plot with two kernel density estimate
(KDE) plots at the top and right edges of the graph. By setting the “hue” option to column
“binary class” in this plot, the data points for thyroid (labeled as 1) and nonthyroid (labeled
as 0) conditions are displayed in different hues and are clearly distinguishable. Regarding
the marginal plots, density plots that separately display the data distribution for the two
levels of the hue variable are plotted on both margins. If we observe the scatterplot of
thyroid class, it can be noticed that the columns “age” and “TSH” appear to be positively
correlated with one another as their values rise together. While considering the jointplot
of “age” and “TT4”, it is possible to observe the bimodal distribution of the density plots
irrespective of age. However, for TSH and TT4, the nonthyroid class marginal plots are
comparatively left skewed. From the analysis of these features, it can be concluded that
each attribute plays a key role in predicting thyroid disease.

On the TT4, T4U, FTI, and age columns, min–max normalization was also performed.
This is because, even with very rich data, if normalization is neglected, some traits may en-
tirely outweigh others. Next, using the “Pearson” method (standard correlation coefficient),
the pairwise correlation of all columns was determined. The row variable’s correlation with
the column variable determines the output cell value. Since the variable’s correlation with
itself is 1, each diagonal value is 1.00. Then, a heatmap was created that used various colors
to depict the numerical values in the correlation data frame (Figure 6). Dark colors are
used in this heatmap to show low values, and light colors are used to show high values. To
the right of the figure is a color bar that illustrates how the colors and values relate to one
another. Ticks are located at 0.75, 0.5, 0.25, etc., till 1.00 on the color bar. The minimum and
maximum data values in the correlation data frame are used to compute the tick positions.

Following the completion of data preprocessing, the data features and target were
separated from the preprocessed data frame. Excel files were used to export feature-
target values to use in the ML stages. Using an 80:20 split, the dataset was divided into
training and testing sets, using 80% data for training and 20% for testing. Here, we
employed numerous ML models after partitioning the data with LR, NN, DT, KNN, and
SVM algorithms with 5-fold cross-validation.



Mach. Learn. Knowl. Extr. 2023, 5 1207Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  14 
 

 

  
Figure 5. Jointplot of age with thyroid-stimulating hormone (TSH) and total thyroxine (TT4). 

On the TT4, T4U, FTI, and age columns, min–max normalization was also performed. 
This is because, even with very rich data, if normalization is neglected, some traits may 
entirely outweigh others. Next, using the “Pearson” method (standard correlation coeffi-
cient), the pairwise correlation of all columns was determined. The row variable’s corre-
lation with the column variable determines the output cell value. Since the variable’s cor-
relation with itself is 1, each diagonal value is 1.00. Then, a heatmap was created that used 
various colors to depict the numerical values in the correlation data frame (Figure 6). Dark 
colors are used in this heatmap to show low values, and light colors are used to show high 
values. To the right of the figure is a color bar that illustrates how the colors and values 
relate to one another. Ticks are located at 0.75, 0.5, 0.25, etc., till 1.00 on the color bar. The 
minimum and maximum data values in the correlation data frame are used to compute 
the tick positions. 

 
Figure 6. Heatmap showing the correlation between preprocessed data attributes. 

Figure 5. Jointplot of age with thyroid-stimulating hormone (TSH) and total thyroxine (TT4).

Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  14 
 

 

  
Figure 5. Jointplot of age with thyroid-stimulating hormone (TSH) and total thyroxine (TT4). 

On the TT4, T4U, FTI, and age columns, min–max normalization was also performed. 
This is because, even with very rich data, if normalization is neglected, some traits may 
entirely outweigh others. Next, using the “Pearson” method (standard correlation coeffi-
cient), the pairwise correlation of all columns was determined. The row variable’s corre-
lation with the column variable determines the output cell value. Since the variable’s cor-
relation with itself is 1, each diagonal value is 1.00. Then, a heatmap was created that used 
various colors to depict the numerical values in the correlation data frame (Figure 6). Dark 
colors are used in this heatmap to show low values, and light colors are used to show high 
values. To the right of the figure is a color bar that illustrates how the colors and values 
relate to one another. Ticks are located at 0.75, 0.5, 0.25, etc., till 1.00 on the color bar. The 
minimum and maximum data values in the correlation data frame are used to compute 
the tick positions. 

 
Figure 6. Heatmap showing the correlation between preprocessed data attributes. Figure 6. Heatmap showing the correlation between preprocessed data attributes.

The maximum classification accuracy of 95.62% was obtained from the DT classifier.
However, the prediction accuracy required further improvement since the model is for
medical diagnosis, where accuracy plays a key role. In addition, to incorporate the model
into CAD real-time systems, reliability was another concern. To achieve these targets, the
ensemble-learning algorithms of bagging and boosting were applied. They performed
better than conventional classifiers, and the best accuracy achieved by boosting was 99.5%.
Here, class 0 was used to denote nonthyroid classes, and 1 was used to denote thyroid
classes. Also, we evaluated the model’s negative predictive value (NPV), true-negative
rate (TNR), positive predictive value (PPV), true-positive rate (TPR), and misclassification
rate [37], as given in Table 3.
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Table 3. Performance measures of machine-learning (ML) classifiers trained with preprocessed
thyroid data.

Classifier Class PPV NPV TPR TNR Accuracy Misclassification Rate

LR
0 0.8668 0.8893 0.8926 0.8628

87.77 0.12221 0.8893 0.8668 0.8628 0.8926

NN
0 0.9433 0.9541 0.9546 0.9426

94.86 0.05131 0.9541 0.9433 0.9426 0.9546

DT
0 0.9581 0.9626 0.9631 0.9494

95.62 0.04371 0.9626 0.9581 0.9494 0.9631

KNN
0 0.8919 0.9471 0.9505 0.8847

91.76 0.08231 0.9471 0.8919 0.8847 0.9505

SVM
0 0.8571 0.9062 0.9122 0.8479

88.01 0.11981 0.9062 0.8571 0.8479 0.9122

Bagging 0 0.9743 0.9890 0.9891 0.9739
98.15 0.01841 0.9890 0.9743 0.9739 0.9891

Boosting 0 0.9938 0.9958 0.9959 0.9938
99.5 0.0051 0.9958 0.9938 0.9938 0.9959

Accuracy measures the count of data samples belonging to the test dataset that were
properly categorized out of all the data samples (Equation (1)). The percentage of correct
positive cases predicted out of all positive cases is known as sensitivity or TPR (Equation (2)).
Specificity or TNR is the model’s capacity to accurately categorize a data sample with a
negative case among all the negative cases (Equation (4)). Precision or PPV assesses the
model’s performance by comparing the correct positive cases to those predicted by the
model (Equation (3)). Negative predictive value (NPV) is the probability that a data sample
with a negative screening test truly does not have the disease (Equation (5)). True positive
(TP) and true-negative (TN) indicate positive and negative cases predicted correctly. False
positive (FP) and false negative (FN) denote the false detection of negative cases as positive
and positive cases as negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall or Sensitivity or True positive rate (TPR) =
TP

TP + FN
(2)

Precision or Positive predictive value (PPV) =
TP

TP + FP
(3)

Speci f icity or True negative rate (TNR) =
TN

TN + FP
(4)

Negative predictive value (NPV) =
TN

TN + FN
(5)

The models are fine-tuned by Bayesian optimization, and the classification error plot
is shown in Figure 7. For the finalized boosting ensemble method, the training time
required was 148.82 s with a prediction speed of 7800 obs/s. The hyperparameter range
and optimized values are given in Table 4.

Table 4. Hyperparameters and values.

Hyperparameter Range of Values Optimized Value

Ensemble algorithms GentleBoost, LogitBoost, AdaBoost,
RUSBoost GentleBoost

Number of learners 10–500 496
Learning rate 0.001–1 0.27021

Maximum number of splits 1–6839 5
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Figure 7. Classification error plot.

For the finalized thyroid prediction model using the boosting ensemble method, we
exported the TPR and false-negative rate (FNR) plots (Figure 8) to see the classifier’s
performance for each class. Here, the false positives (FPs), true positives (TPs), false
negatives (FNs), and true negatives (TNs) are 14, 3406, 21, and 3399, respectively. The TPR
measures how many observations are accurately categorized for each true class. The FNR
gives the ratio of mistakenly classified observations to correctly classified observations. The
last two columns on the right of the plot display summaries for each true class. Since false
positives are crucial to our classification problem, PPV and false-discovery rate (FDR) plots
are obtained, as given in Figure 9. PPV represents the percentage of correctly classified
data in each predicted class, while FDR measures the proportion of incorrectly classified
observations for each predicted class.
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The TPR and false-positive rate (FPR) for various thresholds of classification scores,
calculated by the currently chosen classifier, are displayed on the receiver operating charac-
teristic (ROC) curve (Figure 10). The integral of an ROC curve (TPR values) with respect to
FPR from FPR = 0 to FPR = 1 is equivalent to the area under the ROC curve (AUC) value.
The classifier’s overall efficiency is gauged using the AUC value, and obtained a maximum
value of 1, which indicates a higher classifier performance. An AUC of 1.000 indicates per-
fect separation between positive and negative classes in a model’s predicted probabilities.
However, this does not result in 100% performance in other metrics every time, as various
matrices consider factors like classification threshold, class imbalance, and trade-offs. Each
performance measure gives various performance aspects of a model’s behavior.
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A performance comparison of the proposed model with some similar works based on
the same database is given in Table 5.

Table 5. Performance comparison table.

Reference Methodology Model Results

[38] ANN classifier Accuracy = 0.957, precision = 0.957, recall = 0.959, F1-score = 0.957
[12] RF classifier Accuracy = 94.8%, sensitivity = 94.8%, specificity = 91.2%
[27] Multiple MLP Accuracy = 99%
[39] NN classifier Accuracy = 98.4%
[40] RF classifier Accuracy = 99.14%
[41] XGBoost classifier Accuracy = 99%

Proposed
work

Data mining + SMOTE + Bayesian
optimization + Ensemble classifier (Boosting)

Accuracy = 99.5%, PPV = 99.59%, NPV = 99.39%,
sensitivity = 99.39%, specificity = 99.59%, AUC = 1.00

Most of the individuals in the database are those who were referred to the thyroid
clinic for evaluation. Since predictions relating to thyroid are the proposed model’s main
focus, this dataset is a useful resource for training and evaluating the model because it
includes important clinical features for identifying thyroid disease. As a result, the model’s
applicability to this specific task could be ensured. SMOTE and cross-validation techniques
are capable of mitigating bias and improving generalizability. Furthermore, this work could
be extended for other related medical diagnosis applications by retraining the framework
using an appropriate database.

The proposed model is valuable for real-time disease identification since it demon-
strates several important qualities and characteristics such as high accuracy, robustness,
balanced sensitivity and specificity, and adaptability, and it could be integrated into CAD
systems as well. Incorporating our method into a software-based solution allows for patient
data entry, and by utilizing the proposed ML model, it can predict the patient’s thyroid state.
Once a labeled public database is accessible in the future, a multiclass thyroid classification
model will be tested. Additionally, deep networks will then be tried, coupled with the
visualization of feature relevance in classification judgments. The proposed work details
are available at Zenodo [42].

6. Conclusions

The identification of thyroid disorders has become increasingly important in the
medical field due to their rising prevalence, early detection significance, treatment for
preventing complications, and reducing mortality rates. In medical diagnosis and treatment,
accurately predicting disease progression and understanding the interplay of clinical
features are crucial. Hence, an effective real-time CAD system is required.

The majority of the studies that have already been conducted focus on a single model,
which does not ensure model reliability or greater accuracy, which are the two main criteria
for ML models used in medical systems. Even while certain DL techniques offer greater
accuracy, in addition to the typical DL constraints, nobody is aware of the underlying
criteria on which model decisions are made. Hence, in this work, all these limitations are
eliminated by developing a conventional ML model with proper clinical feature analysis
and an ensemble-learning approach. In medical diagnosis and therapy, predicting the
course of diseases and the interdependence of clinical characteristics or features are funda-
mental. The model achieved an accuracy of 99.5% in addition to a PPV and specificity of
99.59%, NPV and sensitivity of 99.39%, and AUC of 1.00. Model reliability is ensured by
the involvement of many models in making binary classification decisions. Additionally,
model development with public databases helps the model to be stable with real-time
system usage.
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