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Abstract: Typically, renewable-power-generation forecasting using machine learning involves cre-
ating separate models for each photovoltaic or wind park, known as single-task learning models.
However, transfer learning has gained popularity in recent years, as it allows for the transfer of
knowledge from source parks to target parks. Nevertheless, determining the most similar source
park(s) for transfer learning can be challenging, particularly when the target park has limited or no
historical data samples. To address this issue, we propose a multi-task learning architecture that
employs a Unified Autoencoder (UAE) to initially learn a common representation of input weather
features among tasks and then utilizes a Task-Embedding layer in a Neural Network (TENN) to learn
task-specific information. This proposed UAE-TENN architecture can be easily extended to new
parks with or without historical data. We evaluate the performance of our proposed architecture
and compare it to single-task learning models on six photovoltaic and wind farm datasets consisting
of a total of 529 parks. Our results show that the UAE-TENN architecture significantly improves
power-forecasting performance by 10 to 19% for photovoltaic parks and 5 to 15% for wind parks
compared to baseline models. We also demonstrate that UAE-TENN improves forecast accuracy for
a new park by 19% for photovoltaic parks, even in a zero-shot learning scenario where there is no
historical data. Additionally, we propose variants of the Unified Autoencoder with convolutional
and LSTM layers, compare their performance, and provide a comparison among architectures with
different numbers of task-embedding dimensions. Finally, we demonstrate the utility of trained task
embeddings for interpretation and visualization purposes.

Keywords: transfer learning; multi-task learning; zero-shot learning; autoencoders; power forecast

1. Introduction

The escalating rise in global surface temperatures emphasizes the urgent need to shift
rapidly towards renewable-energy sources for generating power. As outlined in the 2021
global roadmap for Sustainable Development Goal (SDG) 7, which centers on attaining
accessible and environmentally friendly energy, in conjunction with the stipulations of
the Paris Agreement on climate change, there is a pressing appeal to triple the worldwide
potential for renewable energy by 2030 and to realize a state of net-zero emissions by
2050 [1]. Meeting this capacity increase also requires improved accuracy in predicting
renewable-power generation. Accurate power forecasts are crucial for lowering operational
expenses and enhancing the safety and maintenance of power grids.

In the context of renewable energy, typical day-ahead power forecast models rely on
Numerical Weather Prediction (NWP) data for the upcoming 24 to 49 h. Weather factors
like sunlight and wind speed are vital in estimating power generation for solar and wind
parks, respectively. Various models, including physical, statistical, and machine learning
techniques, have been developed to enhance forecasting accuracy. Deep learning methods
have recently gained attention for power forecasting [2]. Most of these models aim to

Mach. Learn. Knowl. Extr. 2023, 5, 1214–1233. https://doi.org/10.3390/make5030062 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5030062
https://doi.org/10.3390/make5030062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-3079-6367
https://orcid.org/0000-0002-3230-8822
https://orcid.org/0000-0001-9467-656X
https://doi.org/10.3390/make5030062
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5030062?type=check_update&version=1


Mach. Learn. Knowl. Extr. 2023, 5 1215

improve forecasting accuracy for individual solar or wind parks by learning the unique
traits of each park. It involves creating a separate model for each park, called single-task
learning (STL). However, as the number of solar and wind parks grows, developing and
training numerous models becomes resource-intensive. This approach can inadvertently
lead to a significant carbon footprint [3], which contradicts the purpose of renewable-
energy systems.

To address this challenge, Transfer Learning (TL) and Multi-task Learning (MTL) offer
potential solutions by leveraging the relationships between renewable-energy parks to share
knowledge and reduce environmental impact. TL can improve forecasts through retraining,
particularly when a target park has enough historical data [4]. However, when historical
data are limited, MTL becomes helpful in making predictions. MTL involves learning
multiple tasks simultaneously to benefit from insights between tasks [5]. MTL comprises
two key aspects: learning standard information independent of tasksand learning specific
information for each task. Autoencoders (AE) effectively capture shared representations
of tasks [6]. Task embeddings, used to encode task-specific information, are also gaining
traction in MTL.

This paper proposes a novel MTL approach that combines the Unified Autoencoder
(UAE) concept with Task Embedding in a Neural Network (TENN) architecture. The UAE
approach involves training an autoencoder on consolidated data from all tasks to capture
shared, task-independent information. The TENN architecture uses an embedding layer
in a neural network to encode task identity information. We will compare the proposed
Unified Autoencoder-Task-Embedding Neural Network (UAE-TENN) with various STL
and MTL methods. Notably, we are interested in assessing the UAE-TENN’s performance
in the scenario of power forecasting for a new park, where historical data are absent, known
as zero-shot learning (ZSL). This evaluation is pivotal for reliable power forecasts in new
parks without historical data, aiding operational planning. This study seeks to address the
following research questions:

Question 1: Does unified encoding of task-independent features along with task embed-
dings decrease the forecast error for PV and wind parks compared to STL methods?
Question 2: Can autoencoder-based MTL architecture with TE perform better than using
either UAE or TE in MTL architecture?
Question 3: Are autoencoder-based MTL architectures with TE capable of providing better
forecasts in the ZSL scenario for renewable-power forecasts compared to the baseline model?
Question 4: Can convolutional and LSTM autoencoders improve the performance compared
to regular fully connected layers for STL power forecast of photovoltaic datasets?
Question 5: Do convolutional and LSTM autoencoders do a better power forecast in a zero-shot
learning scenario compared to a unified regular autoencoder in the proposed architecture?
Question 6: Does an increase in the number of task-embedding dimensions in the proposed
architecture improve the performance of different autoencoder models?

The assessment of the proposed UAE-TENN architecture through experimentation
provides the following significant contributions:

• Introducing a simplified MTL architecture, UAE-TENN, which demonstrates notably
superior performance compared to STL and MTL baseline models.

• Contributing to the early stages of research in the field of ZSL for renewable-energy
systems by showcasing the substantial advantage of UAE-TENN over baseline models
in ZSL scenarios.

• Conducting an extensive experimental evaluation involving six datasets related to
photovoltaic (PV) and wind sources, collectively encompassing 529 parks.

• Performing an ablation study on the UAE and TE components, indicating that the
removal of either of these components results in decreased performance. Notably,
the TE component has a more pronounced impact on performance enhancement in
UAE-TENN than the UAE component.
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• Comparing Unified Autoencoder architectures that incorporate convolutional and
LSTM layers for this specific application. Evaluating the influence of task-embedding
dimensionality on the performance of the proposed architecture.

• Demonstrating the utility of task embeddings for purposes of interpretation and
visualization.

• Highlighting the ease with which the proposed architecture can be extended to various
other domains.

In summary, this article contributes by introducing a simplified MTL architecture
for renewable-power forecasting, highlighting early ZSL research, conducting extensive
experimental evaluations among competitive models, and demonstrating the architecture’s
applicability across broader domains. The remainder of this article is structured as follows.
Section 2 describes related work and Section 3 introduces the proposed method. The data
sets, experimental evaluation, and findings are described in Sections 4–6. The utility of task
embeddings for visualization is described in Section 7 followed by conclusion and outlook
for future research in Section 8.

2. Related Work

To address our research questions, we review the related work encompassing single-
task learning (STL), multi-task learning (MTL), and zero-shot learning (ZSL), with a specific
focus on predicting renewable-energy power. Typically, predicting renewable power in-
volves using past Numerical Weather Prediction (NWP) data containing weather-related
attributes as input, while the corresponding power-generation data are considered the
target. Comprehensive surveys such as [7] for Transfer Learning (TL) and [5] for Multi-Task
Learning (MTL) provide insights into their general concepts. A recent overview [2] high-
lights the growing prevalence of deep learning architectures in renewable-power prediction
and importantly notes the underutilization of autoencoders (AEs) for the same purpose.

However, AEs have found widespread utilization in studies focusing on images
and text data, especially for tasks involving classification. The adaptability of AEs in
acquiring versatile representations has been highlighted across diverse applications [8].
The authors of [9–11] suggested AEs for applications involving Transfer Learning (TL)
and Multi-Task Learning (MTL) using image datasets for classification tasks. Furthermore,
ref. [12] employs AEs to learn sentence representations in unsupervised texts. Notably, AEs
have received substantial attention across various domains; however, their utilization in
regression tasks, both in general and specifically within the domain of renewable-energy
systems, has remained relatively limited. Among the initial instances of AE application in
the renewable-energy sector, a study employed transfer learning by training multiple AEs
on a single wind park, subsequently adapting them to other wind parks. This approach was
augmented by a deep belief network that amalgamated features extracted from individual
parks [13]. Similarly, a limited number of studies [14,15] proposed AEs for inductive
transfer learning, focusing on wind power forecasting. In [14], a Unified Autoencoder was
trained on wind turbine data to derive latent features, subsequently fine-tuned for final
power prediction. Within the context of renewable-power forecasting, a few initial studies
conducted a comparative assessment of diverse deep learning algorithms within a single-
task learning (STL) framework. AEs were incorporated into a hybrid model, involving
the initial training of a foundational autoencoder using NWP inputs, followed by further
training of a neural network connected to the encoder for power forecasting. Similarly,
ref. [16] introduced a stacked autoencoder for wind speed and power prediction. This
pre-trained model was subsequently fine-tuned for target task experiments conducted at
different locations. An alternate variant of the stacked autoencoder was proposed in [17] for
wind power prediction. In this approach, the autoencoder was co-trained with the power
prediction task, encompassing multi-output predictions for varying horizons. Notably,
while these studies examined AE applications, the exploration of MTL-based autoencoders
and their relevance in ZSL contexts was not explored. Furthermore, none of these studies
leveraged a unified AE for representation learning within MTL tasks.
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In the context of MTL, the commonly adopted architecture involves Hard Parameter
Sharing (HPS), where each task is allocated one or more task-specific final layers within
the model. However, extending this HPS approach to accommodate new parks that lack
close relations to existing ones is challenging [18]. Embeddings have gained significant
popularity in representing categorical entities like words in language models [19], and their
broader applicability to different entity categories is demonstrated in [20]. Employing such
embeddings as task embeddings (TE) to capture task-specific features has been explored
in [4] within the domain of Transfer Learning (TL). Although AEs and TE have been
independently investigated in the context of renewable-energy applications, this study
endeavors to underscore the effectiveness of their combination. Additionally, limited
research exists on ZSL in renewable-energy applications. Furthermore, to the best of
our knowledge, no prior study has undertaken a comparative analysis of STL and MTL
methods across six datasets, encompassing a total of 529 PV and wind parks.

3. Proposed Method

In this section, we introduce the relevant definitions of STL, MTL, and ZSL methods
and then describe our proposed architecture.

3.1. Definitions of STL, MTL and ZSL

The general definition of MTL has been introduced in [5] and we adapted it to STL,
ZSL for consistent formulation, similar to the terminology in [4].

A domain is defined by D = {X , P(X)}, where X is the feature space and P(X) is
the corresponding marginal distribution with X = {x | xi ∈ X , i = 1, . . . , N}. Given a
specific domain, a task consists of a label space Y and a conditional probability distribution
P(Y|X) and is represented as T = {Y , P(Y|X)}, where P(Y|X) is learned from the training
instances (xi, yi) with xi ∈ X and yi ∈ Y , where Y = {y | yi ∈ Y , i = 1, . . . , N}. Here, xi
denotes the NWP data as input features, and yi denotes the historical power measurements
of a park as the target feature.

Definition 1. Single-task Learning Given M tasks, when each task T is learned separately on
the specific training data (xm

i , ym
i ), where m ∈ {1, . . . , M}, i ∈ {1, . . . , N} and M ∈ N+ tasks, it

is termed as single-task learning.

Definition 2. Multi-task Learning Given M tasks, when all tasks or a subset of them are related,
MTL aims to learn all M tasks together improving the performance of each task, using the knowledge
gained from other tasks. In MTL approaches, the domain Dm of each task has training instances
(xm

i , ym
i ), i ∈ {1, . . . , N} where xm

i ∈ Xm, ym
i ∈ Ym, m ∈ {1, . . . , M}, and M ∈ N+ tasks. Here,

typically a single model is built using training data from multiple tasks.

Definition 3. Zero-Shot Learning Given a new task, which does not have any training data
instances (xm

i , ym
i ), the metadata of such a task is used to select the prediction function f (·) from

the already trained similar tasks models to do a prediction.

In contrast to the typical inductive TL approach, where the source task model is fine-
tuned for the target task on target data, the ZSL task does not have any input or output
data at the target task, making the problem more challenging.

3.2. Unified Autoencoder—Task-Embedding Neural Network

In Multi-Task Learning (MTL), neural network architectures, two predominant ap-
proaches are typically employed: Hard Parameter Sharing (HPS) and Soft Parameter
Sharing (SPS) of hidden layers [18]. HPS architectures incorporate shared task-independent
layers for all tasks alongside dedicated task-specific layers. On the other hand, SPS ap-
proaches introduce constraints to minimize the differences between parameters associated
with different tasks, rather than directly sharing parameters. Both these popular approaches
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share a fundamental principle: the acquisition of common features across all tasks and
the capture of task-specific features to facilitate MTL. Following the same principle, we
introduce an architecture that combines a Unified Autoencoder (UAE) with a neural net-
work featuring a Task Embedding (TE) layer, for MTL in renewable-power forecasting. The
UAE undertakes the learning of a shared, task-independent representation, while the TE
layer embedded within the neural network captures task-specific insights. This section
provides an overview of these two architectural components, followed by a discussion of
the training and inference procedures.

3.2.1. Unified Autoencoder (UAE)

Autoencoders aim to learn the latent representation of inputs by reconstructing them.
To fulfill this purpose, we employ a Unified Autoencoder (UAE) to learn latent repre-
sentations of input features extracted from all photovoltaic (PV) or wind parks within a
given dataset, as depicted in Figure 1. In the context of MTL, an AE unifies the feature
representations across all training tasks, leading to its name as Unified Autoencoder (UAE).

Figure 1. The figure represents the UAE-TENN (Unified Autoencoder-Task-Embedding Neural
Network) architecture. In this architecture, the task features are indicated in green, trainable neural
network layers in blue, task-specific embedding in orange, and non-trainable layers in grey. The
upper portion demonstrates Unified Autoencoder training using multi-task input data. The encoder
thus learned is utilized in the lower portion, which represents training a neural network with encoded
input and task embedding.

The architecture of the AE network can be conceptualized as the combination of an
encoding function fθ responsible for projecting inputs into a latent space, and a decoding
function hθ focused on reconstructing the original input using the latent space representa-
tion. The overarching objective of the AE involves minimizing the discrepancy between
the original input and its reconstructed counterpart, as represented in Equation (1). Here,
X signifies the unified data derived from all tasks Xm for m ∈ {1, . . . , M}—and d denotes
the mean squared error between the input and its reconstruction. The parameter set θ
encompasses the trainable parameters of an AE [8].

min
θ

∑ d(X, hθ( fθ(X))) (1)

3.2.2. Task-Embedding Neural Network (TENN)

An embedding serves as a technique that transforms discrete categorical values into
continuous value vectors. This practice finds its significance in various domains, with
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word2vec being a well-recognized instance employed in NLP [19]. Additionally, the
broader utility of embeddings in representing general categories through vectorization is
also documented [20]. In the context of neural networks, an embedding layer is designed
to generate concise, continuous vector representations for discrete variables. This approach
offers advantages over using high-dimensional one-hot encodings for the same categories.
A notable feature of embeddings lies in their applicability to inductive TL scenarios. They
facilitate the incorporation of new tasks into the network by introducing a dedicated embed-
ding vector tailored to the specific task. This contrasts with conventional methods, making
the process of expanding the network with new tasks notably smoother. In our study,
we leverage an embedding layer to convert diverse discrete task indices into task-specific
vector representations. This embedding layer effectively translates each task index m into
its corresponding vector representation. We refer to such a neural network architecture
featuring this embedding layer, coupled with task-specific vector representations as the
Task-Embedding Neural Network (TENN).

Mathematical representation of task embeddings: The mathematical formulation of
this entity embedding layer is outlined in [20]. This formulation has been adapted to task
embeddings g(m), as demonstrated in [4], and is presented below:

g(m) =
M

∑
α=1

wαβδmα = wmβ (2)

Here, wαβ signifies the weight matrix that can be learned, and δmα represents the
Kronecker delta function. This function holds a value of 1 when the values are equal and
0 otherwise.

δmα =

{
1, if m = α,
0, if m 6= α.

(3)

In this context, δmα is a vector with a length of M, representing M tasks and only the
entry corresponding to α = m is non-zero, resembling a one-hot encoding vector. Mean-
while, wαβ stands as a weight matrix encompassing all task embeddings. Consequently,
the function g(m) effectively translates the discrete task index value into a continuous,
real-valued vector.

Practical interpretation of task embeddings: The TE layer can be analogously inter-
preted as a look-up table, featuring vector values corresponding to each task index. These
vectors’ elements constitute the learned weights during the course of neural network train-
ing. To illustrate, envision a two-dimensional TE vector for each of the M tasks, therefore
establishing a TE look-up table with dimensions of M× 2. With each training instance, the
specific task index guides the selection of a single row from the look-up table. This chosen
row is then concatenated with the instance’s other input features. The TE for a given task
m can be obtained by taking the dot product of the one-hot encoding vector for tasks with
the embeddings look-up table. Specifically, for task m, the m-th row of the look-up table,
represented as [wm1, wm2] serves as the corresponding embedding vector.

g(m) =
[
0, 0, · · · , 1, · · · , 0

]


w11, w12
w21, w22

...
wm1, wm2

...
wM1, wM2


=
[
wm1, wm2

]

3.2.3. Training UAE-TENN

We adopt a simple configuration for the UAE architecture, featuring a single hidden
encoding layer to capture the encoded representation of input features from all tasks. Subse-
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quently, the encoded inputs derived from the UAE are combined with task embeddings and
introduced as inputs to a supervised neural network, as illustrated in Figure 1. The training
process of UAE involves the utilization of NWP input features from all tasks, represented
as X. Consequently, the encoder fθ learns a shared representation encompassing weather
attributes across all parks. This results in the transformation of the k input features within
X into a lower-dimensional latent representation denoted as fθ(X). The same architecture
with the ReLU activation function and the Adam optimizer is considered for all datasets to
maintain uniformity. The other hyperparameters, such as the number of epochs and batch
size, are fine-tuned. The dimensionality of the encoding, a key hyperparameter, is carefully
chosen to reduce the dimension of input k features to approximately k/2 dimensions for
each dataset.

In the subsequent stage, a TENN network undergoes training using encoded in-
puts fθ(X), along with task-specific information g(m) from the TE layer. The MTL func-
tion encompasses all M tasks and learns from training instances (xm

i , ym
i , g(m)), where

m ∈ {1, . . . , M} pertains to tasks, xm
i ∈ X, and ym

i ∈ Y. The TENN network is concurrently
trained on multiple tasks, with instances from various tasks being present within each
batch. This approach facilitates the acquisition of embedding vectors in a manner that
fosters similarity between related tasks. The learned TE vectors can also be employed for
gauging the similarity among tasks. The task-embedding dimensionality is also tuned and
the results are shared in subsequent sections. To ensure a valid comparison across datasets,
a consistent neural network structure featuring six hidden layers, Leaky ReLU activation,
and the Adam optimizer is employed. Further hyperparameters, including batch size and
epochs, are fine-tuned, with additional details provided in the Supplementary Materials.

3.2.4. Inference UAE-TENN

After training UAE-TENN, we derive inferences for each task separately, such that the
results can be compared with STL approaches. During inference, as shown in Figure 2, the
encoded task inputs fθ(xm

i ) and respective TE vectors g(m) are concatenated and passed as
input to TENN, to get the task-specific power prediction ŷm

i . The task-specific predictions
are then evaluated using the measures described in Section 4.2.

Figure 2. The task-specific inference procedure using UAE-TENN architecture. This picture show-
cases the inference procedure for task m.

4. Experimental Evaluation

In this section, we outline the datasets used, present the experimental setup, and eval-
uate the results to address our research questions. The datasets are outlined in Section 4.1
and the evaluation metrics adopted for these experiments are described in Section 4.2. The
experimental design and analysis of the distinct experiments for the first three research
questions are detailed in Sections 4.3–4.5, respectively.

4.1. Datasets

The experiments are conducted on six renewable-energy power-forecasting datasets,
encompassing three pairs of PV and wind datasets derived from various sources, including
real-world open-source, synthetic, and private real-world data. We represent real-world
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open-source datasets as PO (PV Open) and WO (Wind Open). Similarly, synthetic datasets
are represented as PS (PV Synthetic) and WS (Wind Synthetic), and private real-world
datasets are named PR (PV Real) and WR (Wind Real), respectively. These datasets are
enriched with essential information, typically found in PV or wind parks, consisting of
NWP data, historical power-generation data, and metadata [21]. The primary input features
for all datasets are NWP-related, while the target variable is day-ahead power generation.
In the case of synthetic and real-world data sources, we have additional metadata available
for each park comprising physical characteristics such as geographical locations, tilt and
azimuth angles of PV panels, turbine type, hub height, rotor diameter, etc for wind parks.
The NWP data for PV parks includes features such as solar direct radiation, solar diffuse
radiation, temperature, humidity, and solar position, among others. In contrast, wind park
NWP data incorporates features like wind speed, wind direction, air pressure, temperature,
humidity, and others.

The PV Open (PO) dataset comprises data from 21 parks, while the Wind Open
(WO) dataset encompasses data from 45 parks. The PV Synthetic (PS) dataset comprises
118 parks, with an equivalent number of parks randomly selected from the Wind Synthetic
(WS) dataset, which consists of data from 263 parks. Further details, including the indices
of considered parks in the WS dataset and scatter plots of all datasets, can be found in the
Supplementary Materials. The PV Real (PR) dataset encompasses data from 42 parks, while
the Wind Real (WR) dataset contains data from 185 parks. Table 1 provides a comprehensive
overview of these datasets, offering insights into the number of features, the total parks
included in each dataset, and an overview of several samples in source parks and target
zero-shot parks. The real-world open-source datasets, denoted as PO (German Solar Farm)
and WO (European Wind Farm), are publicly accessible and have been widely used by
researchers in the field [4,22]. The synthetic datasets PS and WS are also publicly accessible
and are derived from [23]. Notably, the key distinction between these open-source and
synthetic datasets is in the source of their Numerical Weather Prediction (NWP) data. The
open-source datasets rely on the ECMWF weather model [24], while the synthetic datasets
are based on the ICON-EU weather model [25].

Table 1. Datasets overview with source parks and target zero-shot parks information.

Dataset # Features # Total Parks
Source Data Target Zero-Shot Data

# Parks # Mean Train
Samples

# Mean Test
Samples # Parks # Mean Train

Samples
# Mean Test

Samples

Pv Open (PO) 51 21 17 4553 1518 4 4371 1457
Wind Open (WO) 7 45 36 11,462 3821 9 9287 3096
Pv Synthetic (PS) 14 118 94 8405 4234 24 8158 4225

Wind Synthetic (WS) 24 118 94 8467 4223 24 8466 4288
Pv Real (PR) 19 42 34 59,166 19,722 8 53,892 17,964

Wind Real (WR) 27 185 148 46,405 15,468 37 36,289 12,096

Across all datasets, we have divided the data into source parks and target zero-shot
parks using an 80/20 percentage split. The source parks are exclusively used for STL and
MTL experiments, while the target zero-shot parks are reserved for the ZSL experiment
evaluation. In the synthetic dataset pair (PS and WS), a specific test flag is employed to
identify test data. For both the open dataset pairs (PO, WO) and the real dataset pairs (PR,
WR), it is important to note that not all source parks have the same amount of historical
data available. To address this variation, a split of 75/25 of historical data for training
and testing has been applied to each park. This training data covers all seasons to ensure
that the UAE’s representation learning captures the changing distributions of weather
features effectively.

4.2. Evaluation Measures

In all our experiments, we compare the performance metrics of the proposed UAE-
TENN with the baseline models specific to each experiment. Our primary evaluation metric
is the Root-Mean-Squared Error (RMSE) calculated for each individual park, denoted by
RMSEm as expressed in Equation (4), where ym

i and ŷm
i represent the actual and predicted
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power-generation values for park m with a total of N data samples. Furthermore, we
compute the average RMSE across all M parks in a dataset, which we refer to as aRMSE, as
defined in Equation (5).

RMSEm =

√√√√ 1
N

N

∑
i=1

(ym
i − ŷm

i )
2 (4)

aRMSE =
1
M

M

∑
m=1

RMSEm (5)

We compute a Skillm metric for each park to assess the performance enhancement
achieved by the proposed UAE-TENN compared to the baseline model. The mean skill
across all parks within a dataset is denoted as Skill, as indicated in Equation (7). In
the results tables, the skill values can be understood as the percentage improvement in
performance relative to the baseline model. For instance, a Skill value of 0.245 for the
PO dataset in Table 2 translates to an average performance improvement of 24.50% by
UAE-TENN in comparison to the baseline model.

Skillm = 1−
(

RMSEreferencem

RMSEbaselinem

)
(6)

Skill =
1
M

M

∑
m=1

Skillm (7)

In addition, we provide the standard deviation (Std) of RMSE values across all datasets
in the results tables. Lower values for both aRMSE and Std metrics indicate improved
performance, while for the skill metric, higher values denote enhanced performance. To
assess the statistical significance between a reference model and the baseline, we employ
the Wilcoxon one-sided signed-rank test (with a significance level of α = 0.05) [26]. If the
reference model significantly outperforms the baseline in a dataset, this is denoted by an
asterisk symbol (*).

Table 2. Evaluation results of STL methods with UAE-TENN for three different PV power datasets.
The asterisk (*) symbol indicates significantly different aRMSE values of reference than baseline (AE-
NN) tested through a one-sided Wilcoxon signed-rank test with α = 0.05. The bold values in a column
indicates best performance. Additionally, it’s important to note that both open-source datasets, PO
and WO, contain NA values for the PHY model, as there are no available PHY model results.

Model Type
PV aRMSE PV Skill PV Std

PO PS PR PO PS PR PO PS PR

AE-NN 0.112 0.094 * 0.124 0.000 0.000 0.000 0.022 0.015 0.019
PHY NA 0.102 0.189 NA −0.084 −0.587 NA 0.016 0.199
LR 0.088 * 0.104 0.116 * 0.218 −0.096 0.064 0.022 0.019 0.019

GBRT 0.085 * 0.092 0.109 * 0.239 0.023 0.120 0.021 0.014 0.019
NN 0.087 * 0.092 * 0.112 * 0.221 0.021 0.094 0.023 0.013 0.020

UAE-TENN 0.084 * 0.083 * 0.095 * 0.245 0.118 0.222 0.020 0.013 0.011

Mean UAE-TENN 0.087 0.195 0.014

4.3. Comparison with STL Methods

In this section, we conduct an experiment to answer the following research question:
Question 1: Does unified encoding of task-independent features along with task em-

beddings decrease the forecast error for PV and wind parks compared to STL methods?
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This experiment involves the evaluation of five distinct single-task models for compar-
ison: Physical (PHY), Linear Regression (LR), Gradient Boosting Regression Trees (GBRT),
Neural Network (NN), and Autoencoder-Neural Network (AE-NN). The PHY model gen-
erates power forecasts for PV or wind parks based on their physical characteristics and
respective power curves, and it does not rely on historical data [23]. Notably, while the syn-
thetic and real datasets incorporate predictions from the physical model, the open-source
datasets do not. These single-task models serve as benchmarks, offering a range of model-
ing techniques spanning statistical approaches, tree-based methods, and neural networks.
The NN model represents a basic feedforward multi-layer neural network architecture,
which is included for comparison purposes with other single-task models like LR and
GBRT. The AE-NN model, on the other hand, involves training an autoencoder (AE) on
each park individually and subsequently training a neural network (NN) on the encoded
lower-dimensional inputs. This AE-NN model is included to assess whether single-task
representation learning enhances performance relative to other single-task models, and it
serves as the baseline for comparison. This AE-NN model is chosen as a baseline because
AE-NN is a single-task alternative to the proposed multi-task UAE-TENN model. There-
fore, comparing against the AE-NN model provides a fair assessment of the effectiveness of
our approach. This is also similar to the baseline models considered in recent studies [14,27]
All single-task models are compared against the proposed UAE-TENN method, and their
evaluations are conducted separately for each task. As a preliminary insight into the in-
terrelationships among parks within a dataset, we compute the standard deviation of the
unified target data across all parks within each dataset. The calculated standard deviation
values for the datasets PO, WO, PS, WS, PR, and WR are, respectively, 0.225, 0.242, 0.198,
0.256, 0.227, and 0.244. This assessment suggests that, intrinsically, wind datasets exhibit
greater variability in power generation across parks compared to PV datasets.

Tables 2 and 3 present the evaluation results of STL models in comparison with the
proposed UAE-TENN method across all datasets. Notably, the proposed method consis-
tently achieves the lowest average Root-Mean-Squared Error (aRMSE) and significantly
outperforms the baseline models in all PV datasets. However, among the wind datasets, the
lowest aRMSE is attained only in the WR dataset. This distinction arises due to the inherent
dissimilarity among wind parks in contrast to the more homogeneous characteristics of so-
lar parks, as previously mentioned. The Skill metric reveals that, on average, the proposed
UAE-TENN method enhances performance by 19.5% for PV parks and 5.7% for wind parks.
Specifically, the Skill score is positive for all PV datasets and two out of three wind datasets.
The negative Skill score observed for all methods in the WS dataset suggests that the
representation learning achieved by the AE-NN baseline in the STL setting surpasses the
performance of other methods. It is worth noting that, on average, the standard deviation
(std) values are lower for PV datasets compared to wind datasets. However, it is essential
to highlight that the proposed method exhibits comparatively weaker performance in the
WS dataset compared to the baseline model. This discrepancy can be attributed to the
limited commonalities among the wind parks in this dataset, making it challenging to
establish a shared representation using the Unified Autoencoder (UAE) as employed in
the proposed method. Furthermore, the higher aRMSE values and negative Skill scores
observed for the AE-NN, LR, and NN methods in the WR dataset are likely due to the
presence of outliers, as evident from the corresponding higher std values for these methods
in WR. Figure 3 presents a comparison of aRMSE values for STL methods across the three
PV datasets. The aRMSE value for the PHY model in the PO dataset is not applicable (NA),
as mentioned earlier open datasets do not have PHY model predictions. However, for
illustrative purposes in this figure, it has been substituted with the corresponding value
from the PS dataset.
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Table 3. Evaluation results of STL methods with UAE-TENN for three different wind power datasets.
The asterisk (*) symbol indicates significantly different aRMSE values of reference than baseline
(AE-NN) tested through a one-sided Wilcoxon signed-rank test with α = 0.05. The bold values in a
column indicate the best performance.

Model Type
Wind aRMSE Wind Skill Wind Std

WO WS WR WO WS WR WO WS WR

AE-NN 0.132 0.141 6.124 0.000 0.000 0.000 0.040 0.054 65.143
PHY NA 0.255 0.201 NA −1.259 −0.181 NA 0.095 0.069
LR 0.123 0.156 1.515 * 0.042 −0.355 −0.007 0.031 0.047 10.234

GBRT 0.112 * 0.144 0.158 * 0.133 −0.235 0.088 0.032 0.041 0.043
NN 0.110 * 0.137 * 2.598 * 0.145 −0.041 −0.037 0.031 0.039 18.377

UAE-TENN 0.117 * 0.142 0.142 * 0.096 −0.078 0.153 0.032 0.041 0.029

Mean UAE-TENN 0.133 0.057 0.034
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Figure 3. Comparison of aRMSE values among STL methods across three PV datasets PO, PS and PR.

4.4. Comparison with MTL Methods

In this section, we conduct an experiment to answer the following research question:
Question 2: Can autoencoder-based MTL architecture with TE perform better than

using either UAE or TE in MTL architecture?
The first MTL approach, UAE-NN, involves feeding encoded inputs from multiple

tasks into a neural network, training a single model for all source tasks. The second ap-
proach is TENN, where task embeddings are appended to the original inputs of respective
tasks, and a neural network is trained accordingly. The training and inference procedures
for UAE-NN and TENN architectures mirror the UAE-TENN process. UAE-NN does not
include the TE component, while TENN omits the UAE component. Thus, this experi-
ment serves as an ablation study, evaluating the impact of the UAE and TE components
in the UAE-TENN architecture. Here, UAE-NN is considered to be the baseline model
for comparison.

Tables 4 and 5 demonstrate that UAE-TENN consistently outperforms the baseline
UAE-NN, as indicated by positive skill values. UAE-TENN achieves the highest skill scores
in five out of six datasets. On average, UAE-TENN exhibits improvements of approximately
10.80% and 22.1% for PV and wind datasets, respectively, compared to the baseline UAE-
NN. The ablation study reveals that the TE component contributes more significantly to
performance enhancement than the UAE component. This is evident from consistently
lower aRMSE values in TENN in both PV and wind datasets. It can be inferred that the
collaborative use of both components yields superior results compared to employing either
component in isolation. An illustrative time series plot showcasing power forecasts for a
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PV park from the PR dataset is presented in Figure 4 and the comparison of aRMSE for PV
parks is shown in Figure 5a.

Table 4. Evaluation results of MTL methods with UAE-TENN for three PV datasets with baseline
UAE-NN as a baseline model. The asterisk (*) symbol indicates significantly different aRMSE values
of reference than baseline (AE-NN) tested through a one-sided Wilcoxon signed-rank test with
α = 0.05. The bold values in a column indicate the best performance.

Model Type
PV aRMSE PV Skill PV Std

PO PS PR PO PS PR PO PS PR

UAE-NN 0.088 0.107 0.105 0.000 0.000 0.000 0.024 0.021 0.020
TENN 0.087 0.091 * 0.096 * −0.006 0.136 0.080 0.020 0.015 0.014

UAE-TENN 0.084 * 0.083 * 0.095 * 0.029 0.209 0.087 0.020 0.013 0.011

Mean UAE-TENN 0.087 0.108 0.014

Table 5. Evaluation results of MTL methods with UAE-TENN for three wind datasets with baseline
UAE-NN as a baseline model. The asterisk (*) symbol indicates significantly different aRMSE values
of reference than baseline (AE-NN) tested through a one-sided Wilcoxon signed-rank test with
α = 0.05. The bold values in a column indicate the best performance.

Model Type
Wind aRMSE Wind Skill Wind Std

WO WS WR WO WS WR WO WS WR

UAE-NN 0.156 0.199 0.175 0.000 0.000 0.000 0.036 0.083 0.045
TENN 0.115 * 0.146 * 0.148 * 0.267 0.218 0.140 0.031 0.040 0.030

UAE-TENN 0.117 * 0.142 * 0.142 * 0.253 0.240 0.173 0.032 0.041 0.029

Mean UAE-TENN 0.133 0.222 0.034

Figure 4. Exemplary power forecast comparison of MTL methods for a PV park from the real-world
dataset. The X-axis represents the time and Y axis represents the normalized power generation. The
solid blue line (Y) represents the actual power generated by the park and the other three dotted lines
represent the predicted values by different MTL models.

4.5. Zero-Shot Learning Experiment

In this section, we conduct an experiment to answer the following research question:
Question 3: Are autoencoder-based MTL architectures with TE capable of provid-

ing better forecasts in the ZSL scenario for renewable-power forecasts compared to the
baseline model?

In the context of zero-shot learning (ZSL), where historical data for the target task
is absent, predictions are reliant on park metadata. This metadata encompasses various
details such as the geographical location, tilt angle, azimuth angle, elevation, etc., for PV
parks, and for wind parks, it encompasses parameters like hub height, turbine diameter,
number of generators, elevation, and geographical location.
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In this experiment, we compare the performance of the proposed method with the
PHY model and the UAE-NN model. These models were selected from the experiments
conducted in Sections 4.3 and 4.4 due to their applicability to the zero-shot learning (ZSL)
experimental setup. The objective is to predict the power generation of a new park without
access to target task data. The PHY model serves as the baseline for comparison. We
evaluate the proposed UAE-TENN architecture outlined in previous sections for this
experiment. However, as mentioned in Section 3.2.4, predicting using the UAE-TENN
architecture requires a task-embedding vector for the specific task. As the new target
park lacks a task-embedding vector, we address this by substituting it with the task-
embedding vector of the most similar park. To identify the most similar source park, we
explore three similarity metrics based on park metadata: geographical distance, cosine
distance between metadata features, and Euclidean distance between t-SNE embeddings of
metadata features [28]. It is important to note that the open-source datasets (PO and WO)
lack metadata information for parks, preventing us from selecting a suitable source task
based on metadata. Consequently, this experiment is conducted exclusively on the 20% of
parks designated as target zero-shot parks in the PV datasets (PS and PR) and the wind
datasets (WS and WR), where such metadata are available.

The results presented in Table 6 indicate that the UAE-NN model outperforms the
PHY baseline model in the PR and WR datasets, as demonstrated by positive skill values.
The proposed UAE-TENN method demonstrates an average performance improvement
of 19.60% for PV parks. However, for wind parks, the negative skill value arises from
the limited similarity among parks within a dataset, making the TE imputation from the
most similar park less beneficial. This leads to the observation that the TE component
proves advantageous when a strong relationship exists between tasks. It is noteworthy
to consider the intrinsic diurnal cycle of solar energy, which facilitates ZSL for new parks
even when historical solar radiation data are absent, thanks to the geographical location.
Conversely, ZSL for wind parks is more challenging due to higher wind speed variance
across locations, making power prediction difficult without historical wind speed data.
Another interesting observation pertains to the similarity metrics. Specifically, on the real
dataset pair (PR and WR), leveraging only geographical distance yields superior results.
However, for the synthetic dataset pair, incorporating all metadata features, including
geographical information, yields better performance outcomes. The aRMSE comparison of
this experiment on PV datasets is illustrated in Figure 5b.

Table 6. Evaluation results of ZSL methods with UAE-TENN for four datasets with PHY as a baseline
model. The asterisk (*) symbol indicates significantly different aRMSE values of reference than
baseline (AE-NN) tested through a one-sided Wilcoxon signed-rank test with α = 0.05. The bold
values in a column indicate the best performance.

Model Type
PV aRMSE Wind aRMSE PV Skill Wind Skill PV Std Wind Std

PS PR WS WR PS PR WS WR PS PR WS WR

PHY 0.102 0.181 0.212 0.187 0.000 0.000 0.000 0.000 0.018 0.156 0.047 0.061
UAE-NN 0.103 0.104 0.213 * 0.172 * −0.009 0.226 −0.076 0.049 0.026 0.017 0.138 0.039

UAE-TENN 0.088 * 0.101 * 0.220 0.180 0.145 0.247 −0.110 −0.020 0.024 0.016 0.159 0.042

Mean UAE-TENN 0.094 0.200 0.196 −0.065 0.020 0.100
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Figure 5. MTL and ZSL comparison plots. (a) Comparison of aRMSE values among MTL methods
across three PV datasets PO, PS, and PR. (b) Comparison of aRMSE values among ZSL methods
across three PV datasets PO, PS, and PR.

5. Evaluating the Impact of Convolutional and LSTM Autoencoders on
Architecture Performance

In this section, we present extension architectures for the architecture proposed in our
previous work [29], which is introduced in Section 3.2. Specifically, we incorporate convolu-
tional and LSTM autoencoders to encode input data, replacing the regular autoencoder. We
provide a detailed overview of the architecture and experimental evaluation in this section.

5.1. Unified Convolutional Autoencoder-Task Embedding (UCAE-TENN)

In this section, we conduct an experiment to evaluate and compare the convolutional
autoencoder with the regular fully connected autoencoder in the proposed architecture.
In this experiment, we replaced the fully connected neural network layers with convo-
lutional layers in the encoder part of the architecture of Figure 1. In the convolutional
autoencoder architecture, a stack of three convolutional 1D layers is utilized for encod-
ing the data, and the same three convolutional transpose layers are used for the decoder
part of the architecture. The convolutionally encoded data are then appended with the
regular two-dimensional task-embedding layer to train a neural network. The task em-
beddings are learned along with other neural network parameters like in the previous
UAE-TENN architecture.

For the zero-shot learning experiment, the task embedding of the nearest neighboring
park based on the t-SNE embeddings of metadata is utilized for predicting the zero-shot
target park as described in Section 4.5.

5.2. Unified LSTM Autoencoder-Task Embedding (ULAE-TENN)

In this section, we conduct an experiment to evaluate and compare the LSTM (Long
Short-Term Memory) autoencoder with the regular fully connected autoencoder and the
convolutional autoencoder. For the LSTM autoencoder architecture, we use two LSTM lay-
ers in the encoder part of the architecture and use the same two LSTM layers for decoding.
To enable training using an LSTM autoencoder, we convert the data to temporal data by
adding an extra dimension based on the lookback of the time series. The three-dimensional
temporal data are then used for training an LSTM autoencoder, and the encoded data
are appended with the task-embedding layer, as in the previous architectures. The task
embeddings are learned while training the neural network and utilized for inference. For
the zero-shot learning scenario, we utilize the task embedding of the nearest park for the
new zero-shot park, and a prediction is made following the same inference methodology
as previously mentioned.
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5.3. Experimental Evaluation

As an extension of the previous experiments, we consider and evaluate the perfor-
mances of utilizing convolutional and LSTM layers in the autoencoders of the proposed
architecture. The experiments are performed only on the photovoltaic datasets as exper-
iments in previous sections showed good performance improvement for photovoltaic
datasets compared to wind datasets. In this section, we conduct an experiment to answer
the following research question:

Question 4: Can convolutional and LSTM autoencoders improve the performance
compared to regular fully connected layers for STL power forecast of photovoltaic datasets?

The experimental results of the comparison between convolutional and LSTM autoen-
coders with regular fully connected layers for STL inference are presented in Table 7. The
findings suggest that UAE-TENN outperforms the other two complex models that use
convolutional and LSTM layers in UCAE-TENN and ULAE-TENN, respectively. Although
the convolutional autoencoder model shows the same aRMSE as UAE-TENN for the PR
dataset, its skill metric is lower. Additionally, the convolutional autoencoder model out-
performs the other two models in terms of standard deviation metric for both PO and PR
datasets. Conversely, for all three metrics across all three datasets, the ULAE-TENN model
with LSTM autoencoder exhibits poor performance, indicating that the temporal encoding
does not contribute to improving the power forecast for these photovoltaic datasets. The
superior performance of the regular fully connected layers in the UAE-TENN model, as
demonstrated by a high skill metric for all three datasets, suggests that simple encoding of
information is adequate for these datasets.

Table 7. Comparison of regular, convolutional, and LSTM autoencoders in the proposed architecture
for three different datasets in STL inference evaluation. The asterisk (*) symbol indicates significantly
different aRMSE values of reference than baseline (AE-NN) tested through a one-sided Wilcoxon
signed-rank test with α = 0.05. The bold values in a column indicate the best performance.

Model Type
PV aRMSE PV Skill PV Std

PO PS PR PO PS PR PO PS PR

UAE-TENN 0.085 * 0.084 * 0.111 * 0.236 0.108 0.100 0.021 0.013 0.018
UCAE-TENN 0.088 * 0.091 * 0.111 * 0.213 0.032 0.097 0.019 0.014 0.111
ULAE-TENN 0.108 0.114 0.138 0.029 −0.216 −0.117 0.023 0.022 0.138

The superior performance of the UAE-TENN model, which uses regular fully con-
nected layers, compared to the UCAE-TENN and ULAE-TENN models can be attributed
to the nature of the PV power-generation dataset. Unlike image and speech datasets,
which often require convolutional and LSTM layers for effective feature extraction, the PV
power-generation data are relatively simple and can be effectively represented by simple
encoding of information. Furthermore, the UAE-TENN model has fewer parameters to
learn, making it less prone to overfitting compared to the UCAE-TENN and ULAE-TENN
models with more complex architectures. Additionally, the simple encoding of information
in the UAE-TENN model can allow for more efficient training, which can result in better
generalization performance.

Zero-Shot Learning Scenario

The experimental results for the following research question on ZSL is also evaluated
and the results are displayed in Table 8.

Question 5: Do convolutional and LSTM autoencoders do a better power forecast in zero-
shot learning scenarios compared to unified regular autoencoders in the proposed architecture?
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Table 8. Comparison of results for ZSL methods on two datasets with PHY as a baseline model. The
asterisk (*) symbol indicates significantly different aRMSE values of reference than baseline (AE-NN)
tested through a one-sided Wilcoxon signed-rank test with α = 0.05. The bold values in a column
indicate the best performance.

Model Type
PV aRMSE PV skill PV Std

PS PR PS PR PS PR

UAE-TENN 0.085 0.108 * 0.159 0.194 0.015 0.037
UCAE-TENN 0.091 0.106 * 0.101 0.210 0.019 0.042
ULAE-TENN 0.110 0.135 −0.087 0.018 0.022 0.035

The experimental results of zero-shot learning comparison among three different
autoencoder models with regular fully connected, convolutional, and LSTM layers are
presented in Table 8. The results indicate that the ULAE-TENN model with LSTM layers
in autoencoder is performing poorly even in the zero-shot learning scenario, which is
consistent with its poor performance in the STL inference evaluation. UAE-TENN and
UCAE-TENN models are both performing better than the other in two different datasets.
Specifically, for the synthetic dataset PS, the regular autoencoder model UAE-TENN outper-
forms the other two models in all three metrics. For the real dataset PR, the convolutional
autoencoder UCAE-TENN performs better with higher skill and lower aRMSE. Moreover,
the LSTM autoencoder model shows better performance than the other two models only
in the standard deviation metric for the PR dataset. These results suggest that for these
particular datasets, the simpler regular autoencoder model with fully connected layers is
generally sufficient even for zero-shot learning park power forecast and performs better
than the more complex models with convolutional and LSTM layers. It is also interesting
to note aRMSE of none of the three models for the PS dataset is significantly better than the
baseline model whereas, for the PR dataset, two of them are significantly better than the
baseline model.

6. Influence of Task-Embedding Dimensionality on Performance

In this section, we describe the experiment performed to evaluate the following
research question:

Question 6: Does increase in the number of task-embedding dimensions in the pro-
posed architecture improve the performance for different autoencoder models?

The architecture proposed in Section 3.2 incorporates a task-embedding layer with
two dimensions, but it is possible to increase the dimensions of the task-embedding layer.
This experiment was conducted to investigate whether an increase in task-embedding
dimensions would contribute to performance improvement. The results of this experiment
are presented in Tables 9 and 10, which separately evaluate the performance of the proposed
architecture in STL inference and ZSL scenarios, respectively. The results from both tables
demonstrate that increasing the task-embedding dimension from 2 to 4 consistently lowers
the aRMSE values for all three unified architecture models. The same trend is observed in
the aRMSE values for the ZSL scenario, as shown in Table 10. However, only two datasets
were evaluated in this experiment, as metadata for the PO dataset was unavailable for
ZSL experimental evaluation. Overall, the experiment suggests that an increase in task-
embedding dimensions can lead to improved performance in the proposed architecture.
The comparison of aRMSE across different models for PS dataset in MTL and ZSL scenarios
are showcased in Figure 6a,b.
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Table 9. Impact of the number of embedding dimensions on aRMSE for three model architectures
across two datasets PS and PR in STL inference evaluation.

Model Type
UAE-TENN UCAE-TENN ULAE-TENN

PS PR PS PR PS PR

2 0.084 0.111 0.092 0.113 0.112 0.137
3 0.083 0.110 0.089 0.111 0.109 0.137
4 0.082 0.110 0.088 0.111 0.105 0.136

Table 10. Impact of the number of embedding dimensions on aRMSE for three model architectures
across two datasets PS and PR in ZSL scenario evaluation.

Model Type
UAE-TENN UCAE-TENN ULAE-TENN

PS PR PS PR PS PR

2 0.084 0.108 0.094 0.108 0.113 0.127
3 0.083 0.107 0.090 0.107 0.108 0.126
4 0.082 0.106 0.088 0.106 0.102 0.126
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Figure 6. MTL and ZSL comparison plots. (a) Comparison of aRMSE values for MTL with varying
task embedding dimensions across three unified autoencoder models for the PS dataset. (b) Com-
parison of aRMSE values for ZSL with varying task embedding dimensions across three unified
autoencoder models for the PS dataset

7. Utility of Task Embeddings for Visualization

The neural network in the proposed architecture is trained to learn task embeddings.
The learned task embeddings can be visualized for better understanding and interpretabil-
ity of the relationship among the tasks. The interpretation of such task embeddings is
particularly easy for two-dimensional embeddings based on visualization plots. The plots
in Figure 7a,b demonstrate that different models learn task embeddings differently for
the same dataset due to random initialization and different encoding mechanisms of fully
connected layers, convolutional layers, and LSTM layers across these three architectures,
respectively. It can be interpreted that the distance among these learned task embeddings
denotes the similarity among tasks. This task-embedding plot also can be utilized for
task clustering as it reveals the relationship among tasks to identify patterns and groups.
The clusters of closely positioned task embeddings might indicate groups of related tasks
that share similar underlying dynamics. Conversely, isolated embeddings can signify
tasks with unique properties or distinct behaviors. The embedding distances indicate task
similarity or dissimilarity providing indirect information about task relationships. The
changes in embeddings over time or conditions offer insights into evolving task dynamics
and identify anomalies.
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Figure 7. Task embeddings visualization plots. (a) Visualization of two-dimensional task embeddings
learned from UCAE-TENN architecture for PR dataset. (b) Visualization of two-dimensional task
embeddings learned from ULAE-TENN architecture for PR dataset.

8. Conclusions and Future Work

In this paper, we have presented a novel MTL architecture that utilizes a combination
of simple and effective UAE and TE methods to learn task-independent common representa-
tions as well as task-dependent embeddings. We have successfully evaluated the proposed
UAE-TENN method for PV and wind day-ahead power forecasting across six datasets
and 529 parks. Our experimental findings demonstrate that, for PV datasets, the proposed
method outperforms both STL and MTL baseline models. However, in the wind datasets,
owing to the absence of robust temporal correlations, higher standard deviations, and an
increased presence of outliers, the proposed method does not exhibit notably superior
performance. This observation holds true even in the context of zero-shot learning (ZSL),
where the proposed method notably enhances performance for PV parks when contrasted
with wind parks, as the multi-task representation learned by the autoencoder is effective
when tasks exhibit strong correlations.

Additionally, we compared the performance of regular autoencoders with convolu-
tional and LSTM variants of autoencoders for input data encoding and found that the
regular autoencoder exhibits superior performance for this application. Furthermore, we
evaluated the impact of task-embedding dimensionality on model performance and found
that increasing the dimensions of task embeddings consistently led to performance im-
provements, regardless of the autoencoder architecture employed. We also demonstrated
the utility of task embeddings for visualization and interpretation. In future research work,
we plan to explore the utility of Bayesian task embeddings for MTL architectures. We firmly
believe that our proposed MTL framework has the potential to extend its utility to various
domains encompassing STL, MTL, and ZSL applications.
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mdpi.com/article/10.3390/make5030062/s1. Figure S1: Scatter plots of solar radiation and wind
speed features with historical power measurements of a sample park from all PV and wind datasets.
Table S1: Hyperparameters tuned for unified autoencoder models—UAE, UCAE, ULAE on six
different datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

NWP Numerical Weather Prediction
PV PhotoVoltaic
AE AutoEncoder
UAE Unified Autoencoder
TE Task Embedding
TENN Task-Embedding Neural Network
UAE-TENN Unified Autoencoder and Task-Embedding Neural Network
LSTM Long Short-Term Memory Network
TL Transfer Learning
STL Single-Task Learning
MTL Multi-Task Learning
ZSL Zero-Shot Learning
HPS Hard Parameter Sharing
SPS Soft Parameter Sharing
PO Photovoltaic Open-source dataset
WO Wind Open-source dataset
PS Photovoltaic Synthetic dataset
WS Wind Synthetic dataset
PR Photovoltaic Real-world dataset
WR Wind Real-world dataset
RMSE Root-Mean-Squared Error
aRMSE Average Root-Mean-Squared Error
Std Standard deviation
PHY Physical Model
LR Linear Regression
GBRT Gradient Boosting Regression Tree
NN Neural Network
AE-NN Autoencoder-Neural Network
UCAE Unified Convolutional Autoencoder
ULAE Unified Long short-term memory Autoencoder
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