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Abstract: In this paper, we present a comparative study of modern semantic segmentation loss func-
tions and their resultant impact when applied with state-of-the-art off-road datasets. Class imbalance,
inherent in these datasets, presents a significant challenge to off-road terrain semantic segmentation
systems. With numerous environment classes being extremely sparse and underrepresented, model
training becomes inefficient and struggles to comprehend the infrequent minority classes. As a
solution to this problem, loss functions have been configured to take class imbalance into account
and counteract this issue. To this end, we present a novel loss function, Focal Class-based Intersection
over Union (FCIoU), which directly targets performance imbalance through the optimization of
class-based Intersection over Union (IoU). The new loss function results in a general increase in
class-based performance when compared to state-of-the-art targeted loss functions.

Keywords: loss function; off-road; semantic segmentation; class imbalance; terrain segmentation;
U-Net; intersection over union; IoU

1. Introduction

In vision-based off-road terrain segmentation, imbalanced datasets present a signifi-
cant obstacle for the adequate training of models which completely encompass all terrain
classes. In modern driving datasets, the distributions of class labels are highly imbalanced
resulting in a subset of classes appearing considerably more often leading to a “class
imbalance” problem. In some cases such as the Rellis-3D outdoor dataset, four specific
classes account for roughly 94% of total labeled pixels [1]. Other off-road and urban driving
datasets feature similar distributions [2–4]. The presence of imbalanced class distributions
lead to reduced model effectiveness, particularly for the very infrequent minority classes.

As models are predominantly trained through incremental corrective adjustments
based on measured performance, sparse exposure to minority classes may bias training
to favor majority class detection. In extreme cases, sparse exposure may lead to models
ignoring the presence of minority classes entirely. To ensure the robustness of segmentation
systems and to allow for a comprehensive solution to be developed, the training process
and model must be resilient to imbalanced data distributions.

When considering the class imbalance problem, it presents itself in two main manners:
(1) in the imbalanced distribution of occurrence frequency for a class pixel within a specific
image, and (2) in the imbalanced occurrence of a class within each image in the dataset.
Manner (1) occurs when the total amount of pixels pertaining to the majority classes greatly
outnumber the minority classes. This imbalanced pixel distribution is readily seen when
examining pixel label distributions of major driving datasets [1–4]. The second manner
involves the frequency presence of each class within the set of dataset images. Since the
more frequent classes are generally present in most if not all images, the model is more often
exposed to them resulting in increased net influence. To remedy these issues, numerous
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approaches have been suggested in the contemporary literature. These approaches can be
divided into two main types: data-level, and algorithmic-level methods [5].

As class imbalance is a direct byproduct of infrequent class data occurrence within
the dataset, a logical approach is to equalize the distribution of data prior to its use in
model training [5]. Data-level methods such as data augmentation provide a logical
manner of increasing the overall presence of minority classes in training sets. Applying
transformations to images containing the minority classes to generate synthetic data points
results in some glaring issues, however. Since the new data generated forms new versions
of past images, the resulting data will remain imbalanced overall or no longer accurately
represent the desired training environment.

Rather than altering the dataset, algorithmic-level methods specifically target class
imbalance and related effects through alterations to the standard training algorithm(s). A
particularly popular subset of these being the modification of the loss/objective function
used during training. To ensure that the model is not over-trained on majority class data,
specialized loss functions counterbalance the influence of majority classes by increasing
the impact of minority classes during training. The resulting advantage to this approach
thereby being the reduction in both training time and the overall increase in achieved
model performance. In the most extreme cases, this may allow models to detect priorly
undetected classes as they become increasingly sensitive to them. These tailored loss-
function approaches are found to be rather effective in increasing model performance
within imbalanced environments [5,6]. As loss functions are extremely varied, we have set
out to detail and apply them to our specific use-case environment.

The application of semantic segmentation to terrain segmentation has become increas-
ingly widespread and developed greatly in recent years. Surveys such as [7–9] provide
detailed overviews of current models and approaches for semantic segmentation on off-
road environments. These surveys, however, mainly focus on the design aspects such as
model architecture and datasets, but do not consider class imbalance as well as possible
approaches which remedy this issue.

Research surveys assessing and comparing loss function performance in imbalanced
datasets has been published, but mainly focus on the medical imaging field [6,10]. The task
of medical image segmentation suffers from the same issues of class imbalance as off-road
terrain segmentation. Generally, medical images contain large areas entirely representing a
single class (such as the background class). In Jadon et al. (2020), a study was conducted
comparing the results of training with nine different loss functions on the segmentation
of the NBFS Skull Stripping Dataset [11]. The survey by Ma et al. (2021), then expanded
upon this work, presenting 20 different loss functions and comparing their performance
when employed on four different medical image segmentation datasets [6]. These surveys
both highlighted the potential impact the loss function can have on the resulting model
performance. With some loss functions resulting in considerably greater performance when
compared to others. As the problem faced in off-road terrain segmentation is extremely
similar, these surveys have formed the basis for the selection of loss functions which will
be evaluated within this publication.

To our knowledge, no prior work concerning the performance comparison of loss
functions in off-road environments has yet to be published. Therefore, in this paper, we
provide the following contributions:

1. We present a study of current loss functions tailored to solving class imbalance issues.
2. With the aforementioned loss functions, we train, evaluate, and compare their perfor-

mance when applied on the Rellis-3D off-road dataset.
3. We present a novel loss function FCIoU which aims to further reduce the impact of

class imbalance.

2. Loss Functions

The use of loss functions to counterbalance against class imbalance is widespread
within the semantic segmentation literature [12–18]. As the objective function dictates the
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direction that the model will be optimized, the loss function can be tailored to better target
minority classes. Implementations of each loss function vary greatly but, in general, tend
to be variations of currently existing and proven semantic segmentation loss functions
such as the dice loss [19], cross-entropy (CE) loss, or intersection over union (IoU) loss [20]
functions. The counterbalancing of pre-existing loss functions generally occur either by
(1) indirectly targeting class imbalance through increasing the impact of individual poorly
performing pixels [12,13,17,18], or (2) by applying a general weight to each class with the
aim of increasing the overall loss generated by minority classes [15,16]. In this section, a
detailed description of each loss function contained within this study is provided.

2.1. Cross-Entropy (CE) Loss

The cross-entropy (CE) loss function is a distribution-based loss function which has
seen widespread utilization and has grown to become the de-facto standard for semantic
segmentation tasks. CE loss measures the dissimilarity between the prediction and ground-
truth probability distribution as described in Equation (1):

LCE = − 1
N

C

∑
c=1

N

∑
i=1

gc
i log sc

i (1)

where c represents a specific class within the entire set of classes C, i represents a specific
pixel instance within the set of all pixels N, g represents the ground-truth annotation label
values (either 0 or 1), and sc

i ∈ [0, 1] represents the probabilistic prediction output for the
model defined as:

sc
i = P(pi ∈ c | I, N, C) (2)

sc
i therefore, represents the conditional probability that the specific pixel pi in image I

is part of the associated class c. The probability value is obtained from the model output
by applying the softmax function across every class. As can be inferred, the loss function
only returns a non-zero value for the specific active class of the pixel where gc

i = 1.
Therefore, only the prediction score for the ground-truth class label value contributes to the
loss measured.

The CE loss function, however, does have a particularly large downside when being
employed with an imbalanced dataset. This downside is due to the underlying assumption
made that the target distribution is balanced and evenly distributed. This leads to the loss
function evaluating each pixel prediction evenly compared with others. As the majority
classes appear in a considerably larger quantity of pixels, those classes generate a much
greater portion of the total loss calculated for the system. As model training is tied to the
scores generated, the CE loss function will indicate increased performance mainly when
the majority class predictions are effective.

To prevent this, variations of the CE loss function have been developed to counterbal-
ance the loss function to favour the low-performing minority classification methods. The
simplest of these approaches, known as the weighted CE (WCE) loss function is configured
to assign an array of static weights (wc) for each class as defined by:

LWCE = − 1
N

C

∑
c=1

N

∑
i=1

wcgc
i log sc

i (3)

Examples of the use of this function can be seen in [15]. This approach, in general, is
not efficient, both in training optimization and training hyper-parameter tuning. Since the
weights are manually configured, determining the best weights to employ can be a time-
intensive laborious process which may require several iterations to determine. Additionally,
initializing with the wrong weights will result in inefficient or ineffective training. In Jun
et al., a 2021 survey comparing loss functions, the weighted cross entropy method scored
the lowest performance consistently when compared to other methods [6].
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For the purposes of this study, only the base CE loss function will be employed as a
baseline evaluation of the model’s performance. As the de facto standard loss function, the
CE loss will serve as the point of comparison for the other loss functions which are tailored
to handling class-imbalance.

2.2. Focal Loss

To avoid the issues inherent with assigning static weights, other methods such as
the focal loss [12] employ dynamic weighting for each pixel instance based on the pixel’s
prediction certainty ( si

c
)

and is represented by:

LFocal = −
1
N

C

∑
c=1

N

∑
i=1

(1− sc
i )

γgc
i log sc

i (4)

The weighted term is therefore configured to be inversely proportional with the
prediction value. A lower prediction score sc

i ∈ [0, 0.5] will result in considerably larger loss
than the higher prediction values. This will provide a general increase in the prediction
accuracy for all samples and will indirectly aid in strengthening performance towards
minority classes. An additional focusing parameter γ is present to increase the overall
impact of low predictions. For the purposes of the evaluation of the focal loss, the focusing
parameter value of γ = 2 will be used as it was determined to be the most effective in
associated research [6,12].

2.3. Dice Loss

The dice loss operates by minimizing the dice coefficient metric [21]. Since the dice
coefficient is already employed to provide a measure of system performance [10], this
implementation presents an extension for the overall process. The dice loss measures the
completement (1 − score) of the dice score as follows:

LDice = 1−
2 ∑C

c=1 ∑N
i=1 gc

i sc
i

∑C
c=1 ∑N

i=1 gc
i + ∑C

c=1 ∑N
i=1 sc

i

(5)

The main advantage of the dice loss function and similar region-based loss functions,
when compared to distribution-based loss functions, is how they are inherently indifferent
to the number of pixels present in the image. This is due to how the function calculates a
ratio ([0, 1]) representing how closely tied the prediction region is with the ground-truth
region. Therefore, the quantity of samples is irrelevant when calculating the value as only a
relative metric is being obtained.

2.4. Tversky Loss

The Tversky loss [18] is a variant of the dice loss that disproportionately penalizes
false negative predictions which tend to occur more frequently in imbalanced cases and is
defined by:

LT = 1− ∑C
c=1 ∑N

i=1 gc
i sc

i

α∑C
c=1 ∑N

i=1
(
1− gc

i
)
sc

i + β∑C
c=1 ∑N

i=1 gc
i
(
1− sc

i

) (6)

With the α and β being hyper-parameters which control the level at which false
positives and false negatives are factored into the loss, respectively. For the purposes of
the study, the values of α = 0.3 and β = 0.7 are used as was recommended in the original
literature [18].

2.5. IoU (Jaccard) Loss

The intersection over union (IoU) loss function employs a similar method to dice
loss by converting a well-known performance metric, the IoU/Jaccard score, into a loss
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function. Since the IoU score has become commonplace in measuring the performance of
semantic segmentation systems [22–24], its conversion into a loss function enables direct
optimization of performance metrics in a manner similar to dice loss:

LIoU = 1− ∑C
c=1 ∑N

i=1 gc
i sc

i

∑C
c=1 ∑N

i=1
(

gc
i + sc

i − gc
i sc

i
) (7)

2.6. Power Jaccard

In a manner similar to focal loss, the power Jaccard loss function uses dynamic
weighting to improve the segmentation ability of the IoU loss function [17] as shown in
Equation (8).

LPJ = 1− ∑C
c=1 ∑N

i=1 gc
i sc

i

∑C
c=1 ∑N

i=1
(

gc
i
)p

+
(
sc

i
)p − gc

i sc
i

(8)

The power Jaccard function modifies the IoU score calculation formula through the
new power term p applied to the prediction and ground-truth values in the denominator.
The addition of the power term results in the reduction of influence high certainty predic-
tions have on the overall loss thereby increasing the impact of the minority classes. As was
found in the associated literature paper, the value of p = 2 resulted in optimal performance
and is used within this survey.

2.7. Compound Loss Functions

Compound loss functions employ combinations of several loss functions to benefit
from the individual advantages of each component loss functions. Component loss func-
tions can thereby target different aspects of model training concurrently. This approach
has come across a large quantity of success. In the loss function comparison survey by Jun
et al. (2021), the combination loss functions consistently obtained the highest performance
when compared to their counterparts [6]. Out of all the compound loss functions presented
in that study, the DiceTopK and DiceFocal loss functions obtained the best results and are
included within this study.

2.8. DiceFocal Loss

The DiceFocal loss is the combination of the dice loss function and the focal loss
function. The resulting loss from this function is calculated as follows:

LDF = LD + LF (9)

2.9. DiceTopk Loss

Another variant of a dice-based combination loss is the DiceTopk loss which combines
the Topk loss function with dice loss. The TopK loss function itself is a variant of the cross-
entropy loss function where only a subset, typically examples where the model struggles
the most, is considered when calculating the loss. The resulting loss function forces the
optimizer to increasingly focus on hard samples. TopK loss selects its top “k” amount loss
by either: (1) retaining the pixels with probability values below a set threshold value, and
(2) retaining the top k percent of worst loss generating samples [6]. For the purposes of this
study, the Topk approach where k = 10% of the worst performing samples is utilized due
to its comparatively higher performance than other iterations [6]. The Topk (k = 10%) loss
function utilized during the study is described in Equation (10):

LTk = −
1
N

C

∑
c=1

∑
i∈K

gc
i logsc

i (10)
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where K represents the set of k% worst pixels. The DiceTopK compound loss function is
then calculated by:

LDTk = LD + LTk (11)

3. Proposed Loss Function
FCIoU (Focal Class-Based Intersection over Union)

We propose the FCIoU (Focal Class-based Intersection over Union) loss function as a
novel method of treating class imbalance. In line with the state-of-the-art literature, this
new loss function is tailored to counterbalance the detrimental effects of class imbalance
through the dynamic weighting of the IoU loss. As the effects of class imbalance manifest
themselves most visibly when examining class-based IoU scores, our aim is to optimize
the model to best improve the overall score obtained for each class. In doing so, we aim to
directly target the root issue within class imbalance. The class based IoU formulation for
the specific class c is represented by:

IoUc =
∑N

i=1 sc
i gc

i

∑N
i=1 sc

i + gc
i − sc

i gc
i

(12)

Examining the class based IoU scoring is insufficient due to the inherent imbalanced
class presence distribution. With this in mind, our main approach generates a class-based
counter balancing function which advantages the worst performing (minority) classes. To
achieve this, a loss-shaping function was used to convert the measured IoU scores into loss
values favouring the worst-performing classes. This loss-shaping function is applied to
each measured class IoU scores individually and is defined as:

fLshaping = −log10

(
IoU 0.5

c

)
(13)

The negative log function was selected as the basis of the loss-shaping function due to
its shape favouring low IoU score values as shown in Figure 1.

Mach. Learn. Knowl. Extr. 2023, 5, FOR PEER REVIEW  6 
 

 

𝐿 =  − 1𝑁 𝑔  log s∈  (10)

where 𝐾 represents the set of 𝑘% worst pixels. The DiceTopK compound loss function 
is then calculated by: 𝐿 = 𝐿 + 𝐿  (11)

3. Proposed Loss Function 
FCIoU (Focal Class-Based Intersection over Union) 

We propose the FCIoU (Focal Class-based Intersection over Union) loss function as a 
novel method of treating class imbalance. In line with the state-of-the-art literature, this 
new loss function is tailored to counterbalance the detrimental effects of class imbalance 
through the dynamic weighting of the IoU loss. As the effects of class imbalance manifest 
themselves most visibly when examining class-based IoU scores, our aim is to optimize 
the model to best improve the overall score obtained for each class. In doing so, we aim 
to directly target the root issue within class imbalance. The class based IoU formulation 
for the specific class 𝑐 is represented by:  𝐼𝑜𝑈 = ∑ 𝑠 𝑔∑ 𝑠 + 𝑔  − 𝑠 𝑔  (12)

Examining the class based IoU scoring is insufficient due to the inherent imbalanced 
class presence distribution. With this in mind, our main approach generates a class-based 
counter balancing function which advantages the worst performing (minority) classes. To 
achieve this, a loss-shaping function was used to convert the measured IoU scores into 
loss values favouring the worst-performing classes. This loss-shaping function is applied 
to each measured class IoU scores individually and is defined as:  𝑓 = − log (𝐼𝑜𝑈 .  ) (13)

The negative log function was selected as the basis of the loss-shaping function due 
to its shape favouring low IoU score values as shown in Figure 1.  

 
Figure 1. Loss-Shaping Function. The loss-shaping function (red) increases the relative loss gener-
ated by low-scoring (<0.4 IoU) class-based IoU scores when compared to the linear loss–score rela-
tionship of unmodified IoU loss (blue). 

Figure 1. Loss-Shaping Function. The loss-shaping function (red) increases the relative loss generated
by low-scoring (<0.4 IoU) class-based IoU scores when compared to the linear loss–score relationship
of unmodified IoU loss (blue).

Accordingly, the classes which obtained lower overall performance scores (x ∈ [0, 0. 4])
contribute the most to the generated loss. Additionally, the contribution of the loss gen-
erated is greatly reduced for the higher performing classes (x ∈ [0.7, 1]. The optimizer is
thereby incentivized to target the greater loss-generating minority classes.



Mach. Learn. Knowl. Extr. 2023, 5 1752

The first iteration of the full implementation of the FCIoUv1 loss function is formulated as:

L = −
C

∑
c=1

log

( ∑N
i=1 sc

i gc
i

∑N
i=1 sc

i + gc
i − sc

i gc
i

)0.5
 (14)

As will be demonstrated in the obtained results, the initial formulation of the new
loss function presented some issues. Although the model did demonstrate a willingness
to learn minority classes, the resulting segmentation was found to be too smooth and
generalized leading to a homogenized output. Fine details were not being captured by
the segmentation model. Therefore, the sole application of weight corrections to the class
based IoU scores did not allow for low-level fine segmentation to occur.

To improve low-level segmentation, a loss factor considering the individual pixels was
further introduced. This provided a special focus on the pixel-level definition particularly
for the low-prediction scores. For this task, we chose to employ the same approach as
the power Jaccard [17] loss function and modified the calculation of the IoU metric at the
pixel-level. This was carried out by applying a power factor of two to the denominator
prediction score. The difference in how the power term impacts the IoU measurement for a
single sample is seen between the red (new power-term) and blue (regular IoU) functions
represented in Figure 2.
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Figure 2. Power Term IoU Comparison. The power term (red) increases the score of higher certainty
(>0.3) pixel class predictions when compared to the standard IoU (blue) linear relationship.

Higher performing pixel predictions therefore return a, respectively, larger perfor-
mance value than if normal IoU measurement was performed. The result being that the
lowest valued predictions generate a much greater amount of loss. The training optimizer is
then incentivized to focus on the lowest performing cases, thereby increasing performance
at the pixel level. The resulting version, referred to as FCIoUv2 is formulated as:

−
C

∑
c=1

log

( ∑N
i=1 sc

i gc
i

∑N
i=1
(
sc

i
)2

+ gc
i − sc

i gc
i

)0.5
 (15)

The result is a loss function which targets class-imbalance and considers both general
class-based and pixel-level performance.

4. Methodology
4.1. Dataset

The comparative study was completed using the Rellis-3D off-road semantic seg-
mentation dataset [1]. The dataset provides one of the most comprehensive collection of
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annotated terrain segmentation image [8] and is considered to be highly imbalanced [1].
For the purposes of training and performance evaluation, the training and testing image set
provided by the Rellis-3D research team was employed. The imbalanced class distribution
is demonstrated in Figure 3, which displays the image label–pixel distribution for the
Rellis-3D training image set.
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of pixels for the given class within the Rellis-3D [1] training image set. A subplot is present to further
compare minority class presence.

As represented in Figure 3, the pixel–label distribution within the Rellis-3D train-
ing image set is highly imbalanced with the majority grass, sky, tree, and bush classes
comprising the majority of pixels within the training set. The remaining minority classes
consist only a small subset of the training set, being one to two orders of magnitude smaller
than the majority classes. A subgraph is included within the figure to better contrast the
presence of minority classes. As demonstrated, the minority classes do not exhibit an equal
distribution, with some classes appearing more frequently than others. As shown in the
figure, a clear imbalance in the distribution of pixels is present within the dataset.

The Rellis-3D dataset, in total, contains 20 classes each of which representing a distinct
aspect or object contained within the off-road environment. With the dataset being consid-
erably imbalanced, it is therefore expected that the model performs best when predicting
the four majority classes (grass, sky, bush, and tree). For the minority classes, a significant
deterioration in performance is expected with the least frequent fence, building, object, and
pole classes being the most impacted.

4.2. Model

For the comparison of the loss functions, a modified version of the U-Net [25] tailored
to operate on the Rellis-3D dataset was employed. The U-Net was selected due to its
proven effectiveness and overall simplicity. As was carried out in [6], we selected the U-Net
to reduce the possible impact of other unexamined factors on loss function performance.
With the goal being of directly examining and comparing the resulting performance of
loss functions. Since the U-Net struggles with handling highly imbalance datasets, the
improvement in performance will be in majority due to the loss function itself. The resulting
effect of the loss function will therefore be tangible and readily examinable.

Since the U-Net was designed to operate on another dataset [25], the model had to be
resized to function on the larger Rellis-3D images. The new U-Net was resized to input the
full image and output an equal-size prediction. This was carried out through the addition
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of padding to the input images to retain the original size. Due to memory constraints, the
channel depth for each layer was reduced to half of its original size to allow for training to
occur. The parameters for the original and new U-Net are specified in Table 1.

Table 1. U-Net Model Parameters.

Parameter Old New

Input Dimension 512 × 512 1920 × 1200
Output Dimension 388 × 388 1920 × 1200

Base Channel Depth 64 32
Kernel Size 3 5

Padding 0 2

4.3. Training Process

Model training was completed over the period of 10 epochs. For training, the pre-built
training set provided by the Relli-3D team was employed [26]. Through iterative testing,
it was determined that the initial learning rate value of lr = 1× 10−5 was optimal and
presented the best rate for effective learning. To enable finer precise learning, the PyTorch
learning rate scheduler ReduceLROnPlateau [27] was employed to update the learning rate
based on the minimum loss value obtained during the previous epoch. If the measured
loss never reduced further than the previously minimum measured value, the learning rate
was reduced by a applying a factor of 0.1. The use of the adaptive loss allowed for training
of finer model details to be performed without the need for manual modifications.

4.4. Performance Metrics

For performance comparison, class based IoU (IoUc), the mean IoU (mIoU), and the
dice score index were measured for each sample image. The average value of all sample
image scores were then calculated for comparison. The formal representation of these
metrics are defined in Equations (16)–(18), respectively:

IoUc =
∑N

i=1 sc
i gc

i

∑N
i=1 sc

i + gc
i − sc

i gc
i

(16)

mIoU =
1

Nc

C

∑
c=1

IoUc (17)

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(18)

These metrics were chosen to represent the multiple facets that must be considered
when handling a highly imbalanced environment. Both the general performance of the
model as well as the class-based performance are being measured. The dice score employs
the general performance approach by measuring the quantity of overlap between the
ground-truth and prediction segmentation regions thereby measuring how closely the
prediction matches the ground truth map. The class-based IoU, on the other hand mea-
sures the resulting performance individually for each class thereby providing an effective
measurement of the performance of class-imbalance counterbalancing methods. Finally,
the mIoU is calculated to represent the mean levels of performance for each class thereby
providing a single point of comparison between loss functions.

5. Results and Comparison

This section contains the results obtained through the comparative study. Since the dirt
and void class are sparsely presented, they will not be used for the performance analysis
as was carried out in the original Rellis-3D publication [1]. For the evaluation process, the
test set provided by the Rellis-3D team was employed. This provided a targeted sample
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set which covered all classes within the dataset. The scores obtained for each metric were
obtained for each image sample and averaged to represent a generalized view of the results.

A visual representation of the single same image prediction obtained by models
trained using each loss function is shown in Figure 4. The base image and its accompanying
ground-truth annotation image are additionally provided for reference.
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Figure 4. Case Study: Model Image Segmentation Comparison. The figure provides a visual repre-
sentation of the semantic segmentation map predicted by a model trained with the corresponding
loss function. The original (base) image and ground-truth annotation map are included for reference.

As shown in Figure 4, each loss function performed with varying levels of success. In
general, the majority classes predictions are effective with corresponding areas of influence
being well defined. Most loss functions, however, struggled greatly with the detection of the
minority building and person classes which are represented in red and purple, respectively.
Of the 10 loss functions, only the FCIoUV2 loss function resulted in the detection of both
these minority classes demonstrating its effectiveness.

Indicated in Table 2, the overall mIoU loss obtained by the various loss functions
remained consistently low and are in stark contrast to the high performance (>0.75) values
obtained for the dice score. This difference demonstrates the disparity in performance
due to the imbalance class distribution. The large dice score values are the result of the
general measurement of the overlap between prediction and ground-truth segmentations
for each image. As the model performs generally well at predicting the majority classes,
the resulting dice score remains high as most of the image (~75–90%), the majority classes,
is rightfully being detected. The resulting ~10–25% of the area is, however, typically
attributable to the minority image classes. As the model struggles to classify these minority
classes, the mIoU metric remains much smaller. Since each class is being equally weighed
when calculating the mIoU, the resulting score is considerably lower than the dice metric.

Table 2. Loss Function Performance Comparison—Performance Metrics.

Loss Function mIoU Dice

CrossEntropyLoss 0.1910 0.8352
Jaccard (IoU) Loss 0.1165 0.8764

DiceLoss 0.1552 0.853
Focal Loss 0.2472 0.8721
DiceFocal 0.1165 0.7743

Tversky Loss 0.1187 0.7722
DiceTopk 0.1195 0.7475

Power Jaccard 0.2125 0.8772
FCIoUv1 0.2596 0.7483
FCIoUv2 0.3860 0.9013

As indicated in Table 2, our FCIoUv2 performs best in both the mIoU and dice score
metric. These are then closely followed by the focal loss and CE loss functions. The
results indicate a noticeable improvement in performance when targeted loss functions
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are employed. The performance values obtained for the majority and minority classes are
represented in Tables 3 and 4, respectively.

Table 3. Majority Class Performance (Average IoU per Class).

Loss Function 3: Grass 4: Tree 7: Sky 19: Bush

FCIoUV2 0.8386 0.6658 0.9595 0.6192
CrossEntropyLoss 0.8041 0.5593 0.9558 0.5304
Jaccard (IoU) Loss 0.7714 0 0.8443 0.4806

DiceLoss 0.796 0.5415 0.9457 0.511
Focal Loss 0.8304 0.6094 0.9511 0.5905
DiceFocal 0.7577 0 0.8456 0.4938
FCIoUV1 0.7699 0.4792 0.9291 0.5271

Tversky Loss 0.7044 0.4853 0.9476 0
Power Jaccard 0.8248 0.6407 0.9466 0.5659

DiceTopk 0.6641 0.5412 0.9463 0

Table 4. Minority Class Performance (Average IoU per Class).

Loss Function 5:
Pole

6:
Water

8:
Vehicle

9:
Ob-
ject

10:
Asphalt

12:
Build-

ing

15:
Log

17:
Person

18:
Fence

23:
Con-
crete

27:
Barrier

31:
Pud-
dle

33:
Mud

34:
Rub-
ble

FCIoUV2 0.0134 0.1818 0.2404 0.4096 0.3384 0.0017 0.0052 0.2578 0.229 0.7305 0.2451 0.4939 0.2808 0.4372
CrossEntropyLoss 0 0.0056 0 0 0 0 0 0 0 0.2866 0.0232 0.185 0.0882 0

Jaccard (IoU)
Loss 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DiceLoss 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Focal Loss 0 0.1683 0 0 0 0 0 0.0001 0 0.5796 0.026 0.3013 0.1634 0.2288
DiceFocal 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FCIoUV1 0.0004 0.0635 0.0209 0.0635 0.0052 0.0451 0.067 0.0285 0.0914 0.6037 0.046 0.3485 0.2415 0.342

Tversky Loss 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Power Jaccard 0 0 0 0 0 0 0 0 0 0.5769 0.0469 0.0012 0.222 0

DiceTopk 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The loss function prediction performance for majority classes remains generally stable
with each loss functions resulting in a similar set range of values. In extreme cases, however,
some of the majority classes were not detected resulting in a zero measured performance.
Out of the four majority classes, the sky and grass classes performed considerably better
followed by the tree and bush classes. Interestingly, the two best performing classes (sky and
grass) are accordingly the most numerous classes in the dataset as shown in Figure 3. This
indicates a distinct correlation between class-based performance and class-label occurrence
frequency even for majority classes.

The minority class performance, as shown in Table 4, did not exhibit a similar stability
instead featuring a considerable portion of class performance with a near zero score.
These results directly represent the potential impact of imbalanced datasets on model
performance. The most negatively affected classes being the most infrequent building,
log, and object classes thereby indicating a definitive link between model performance
and class frequency. Out of all the of loss functions presented, only the FCIoUV1 and
FCIoUV2 function obtained an above zero, albeit quite small, score for all classes thereby
demonstrating the effectiveness of a targeted class-based IoU loss function approach. Of
the two, the FCIoUV2 loss function greatly outperformed the FCIoUV1 loss function for
almost all classes.

A visualization of the class-based performance results tabulated in Tables 3 and 4 is
presented within the violin plots shown in Figure 5. The differences between the achieved
classification performances for each loss function alongside the stark disparity in perfor-
mance between majority and minority classes is evident within the plots. Figure 5 is divided
into separate columns per each loss function. Within each column, the resulting IoU scores
for the Rellis-3D terrain classes (excluding the dirt class) are represented with circles, with
majority and minority classes indicated in red and blue, respectively. The mean IoU (mIoU)
score, being the average IoU score obtained for each class for the given loss function is
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indicated by the blue horizontal bar in each column. Furthermore, the distribution of IoU
scores is further represented through the blue outlining regions surrounding the center
vertical line. These distributions are obtained through kernel density estimation (KDE)
and represent the relative empirical distribution of class results near the specified IoU
performance score.
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Figure 5. Loss Function Performance Comparison. The figure displays the majority (red) and minority
(blue) class average IoU performance for each analyzed loss function. The mean IoU (mIoU) score and
the score distributions for each loss function are represented by the blue bar and the blue outlining
region, respectively.

As was expected, the majority classes are shown to perform considerably better than
their minority class counterparts. The minority classes, on the other end, performed
quite poorly thereby shifting the performance distributions downwards and centering
them near zero. Only a few of the loss functions did not directly exhibit this behaviour,
with the focal loss, FCIoUV1, power Jaccard, and FCIoUV2 loss function exhibiting a
raised distribution due to greater minority class scores. The FCIoUV2 featured the best
performance distribution, with the center point of the distribution being raised to near
~0.3 IoU.

The FCIoUV2 loss function was found to perform best overall and featured the greatest
performance for both majority and minority classes. The distribution represented in Figure 5
demonstrate that the FCIoUV2 loss function met its intended goal of focusing the model’s
attention on minority class detection while preserving majority class detection performance.
Therefore, the FCIoUV2 was found to be an effective method of mitigating the impact of
class imbalance on model performance.

6. Conclusions

In this work, we highlighted the importance of proper loss function selection towards
negating the adverse effects of class imbalance. We surveyed 10 different loss functions
and evaluated their performance when applied on a common segmentation model (U-Net)
in an off-road environment. Additionally, we presented a novel loss function, the FCIoU
loss function, which directly targeted and optimize model performance to counterbalance
the impact of class imbalance.

Of the selection of loss functions, the FCIoUv2 was found to have performed the best,
followed by the focal loss function and the FCIoUv1 loss function. This improvement in
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performance highlighted the importance of considering class imbalance when selecting loss
functions. The targeted approach towards the optimization for class-based IoU loss and
the counterbalancing to account for class-imbalance was found to greatly improve overall
segmentation. Additionally, the difference in performance between v1 and v2 of the loss
function demonstrates the importance of considering the loss at the pixel level rather than
solely at the class-based level. This scope refinement greatly increased the homogeneity of
the prediction class distribution, thereby allowing the smaller minority classes to be more
readily detected.

In future works, we recommend further research into other possible loss-shaping
functions. As this research did not go in depth into the wide variations of loss-shaping
functions, other options could result in even greater performance increase. Additionally,
a more in-depth comparative study concerning a wide array of different models and
loss functions would allow for a more comprehensive examination of the impact of loss
functions on system performance. We additionally recommend that the FCIoUv2 loss
function be implemented in the training state-of-the-art off-road semantic segmentation
systems. The benefits of implementing the FCIoUv2 will improve the performance of
current semantic segmentation approaches.
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