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Abstract

:

The proliferation of Android-based devices has brought about an unprecedented surge in mobile application usage, making the Android ecosystem a prime target for cybercriminals. In this paper, a new method for Android malware classification is proposed. The method implements a convolutional neural network for malware classification using images. The research presents a novel approach to transforming the Android Application Package (APK) into a grayscale image. The image creation utilizes natural language processing techniques for text cleaning, extraction, and fuzzy hashing to represent the decompiled code from the APK in a set of hashes after preprocessing, where the image is composed of n fuzzy hashes that represent an APK. The method was tested on an Android malware dataset with 15,493 samples of five malware types. The proposed method showed an increase in accuracy compared to others in the literature, achieving up to 98.24% in the classification task.
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1. Introduction


In the contemporary digital age, Android has become the most widely used mobile operating system in the world, powering billions of smartphones and other connected devices. The open and adaptable nature of the Android ecosystem [1] has not only facilitated innovation and user empowerment but has also inadvertently opened the floodgates to a relentless wave of cyber threats. Among these threats, Android malware is a pervasive and evolving menace. According to Kaspersky Security Network [2], in Q3 2022, over 5.5 million mobile malware was blocked, which shows an exponential increase in mobile malware lately.



Android malware encompasses malicious software designed to exploit vulnerabilities, steal sensitive information, disrupt operations, and sometimes extort users. These malicious programs, often cloaked in seemingly innocuous applications, pose a significant threat to personal privacy, data security, and the integrity of the Android ecosystem.



In light of this looming threat, the necessity to detect and classify Android malware has never been more critical. As the Android malware landscape continues to evolve with increasing sophistication, more than traditional security measures are needed. Thus, the development of robust malware detection and classification techniques is paramount. By understanding the inner workings of malware and employing advanced analysis methods, we gain the capacity to mitigate the threats they pose, safeguard user data, and fortify the resilience of the Android ecosystem.



Researchers have faced new opportunities and challenges in the landscape of Android malware analysis. Traditional methods for detecting and classifying Android malware often relied on features such as n-grams, API calls, and sandbox outputs, combined with machine learning and deep learning algorithms. While these techniques have been somewhat effective, they have limitations. As Android malware becomes increasingly sophisticated, it is not only about the static analysis of code or the behavior of applications but also about how they visually appear to the human eye.



A novel approach gaining attention involves transforming malware samples into images and leveraging machine learning and deep learning algorithms to classify and detect malware based on visual content. This innovative technique adds a new dimension to malware analysis and presents new challenges. Converting APK files into images introduces concerns about the loss of information, the potential for adversarial attacks, and the need for preprocessing techniques.



The research community is exploring these image-based techniques as Android malware evolves with more complex and polymorphic characteristics. This shift opens to deeper insights and improved detection but also emphasizes the significance of robust preprocessing, comprehensive datasets, and resilient machine learning and deep learning models.



This work proposes a new method for Android malware classification, transforming the APK sample into a grayscale image composed of the fuzzy hashing of decompiled and preprocessed code. The main contributions of this work can be described as follows.



	
A novel method is introduced for transforming Android applications into grayscale images of fuzzy hashes. The decompiled code is initially subjected to preprocessing using Natural Language Processing (NLP) techniques. Subsequently, a fuzzy hashing technique is employed to compute hashes for each code block, significantly reducing image size. The importance of image size is underscored due to the potential impact on feature extraction, particularly in light of the variations in image dimensions.



	
For the first time, it is introduced to the utilization of NLP techniques for text cleaning and extraction in our cutting-edge research. These techniques prove invaluable in preserving and standardizing data while eliminating extraneous information that could introduce noise into the images, ultimately enhancing accuracy.



	
An experimental evaluation of the proposed method on a public multiclass malware dataset to demonstrate its feasibility compared to existing literature.






This paper is organized as follows. Section 2 describes concepts related to the investigation. Section 3 shows an analysis of the state-of-the-art. Section 4 presents the proposed method. Section 5 provides details of the experimental evaluation and results. Section 6 contains the limitations, future work, and conclusions.




2. Related Concepts


This section describes the concepts related to this investigation, such as fuzzy hashing and NLP techniques used in the research.



2.1. Fuzzy Hashing


Fuzzy Hashing (  F H  ), which is also called Context Triggered Piecewise Hashing (  C T P H  ), is a combination of Cryptographic Hashes (  C H  ), Rolling Hashes (  R H  ), and Piecewise Hashes (PH). It can be perceived as   F H = C T P H = P H + R H  . Unlike traditional hashes, in which their hashes (checksum) can be seen more as right or wrong and as black or white,   C T P H   is more like the gray hash type, as it can identify two files that may be near copies of one another that generally may not be located using traditional hashing methods.   F H   allows two arbitrary blobs of data to be compared for similarity based on common strings of binary data using a score percentage between 0 and 100, where 0 is low similarity, and 100 is high similarity [3].



To determine if two files are the same, algorithms such as MD5, SHA1, and SHA256, to name a few, are generally used. However, it is necessary to know how similar they are, not only if they are the same or different.   F H   algorithms such as SSDEEP or SDHASH can be used. The SSDEEP algorithm sequentially divides a file into equal groups of bytes, and on each of these groups, it calculates a hash. Then, a new hash is calculated to represent the entire file. The resulting hash can be used to compare the similarity with other files.



The SDHASH (similarity digest hash) method finds common and rare features in a file and matches the rare features in another file to determine the similarity between the two files [4]. Generally, a feature is a 64-byte string found using an entropy calculation [5]. It employs the cryptographic hash function SHA-1 and Bloom filters to calculate the SDHASH fuzzy hash value [6].



SDHASH is a robust algorithm for FH. This algorithm provides high accuracy compared to the predecessor SSDEEP. The algorithm can compute SDHASH with some options that generate different SDHASH lengths, and the results can be compared. Two or more SDHASH can be compared even if the length is different.



Bloom filters have predictable probabilistic properties, which allow for two filters to be directly compared using a Hamming distance-based measure   D ( . )  . The result estimates the fraction of features the two filters have in common that are not due to chance. The maximum match among the second filters is found to compare two digests for each of the filters in the first digest. The resulting matches are then averaged [5].



Formally, the similarity distance   S D ( F , G )   for digests   F =  f 1   f 2  …  f n    and   G =  g 1   g 2  …  g m   ,   n < m  , is defined as:


  S D  ( F , G )  =  1 N   ∑  i = 1  n   max  j = 1 … m   D  (  f i  ,  g i  )  ,  



(1)







An important point to consider is that directly estimating the empirical probability of encountering a 64-byte feature is not feasible, nor is it practical to store and retrieve such observations. SDHASH calculates a normalized Shannon entropy measure and assigns features to 1000 equivalence classes to address this. The statistics are gathered using this approximation method.



The similarity between two files has a threshold from 0 to 100, with 100 being the highest similarity detected.



The significance in the range is a confidence value that the two data objects have non-trivial amounts of commonality. Strong (range: 21–100) these are reliable results with very few false positives. Marginal (range: 11–20), the significance of resemblance comparisons in this range depends substantially on the underlying data. Weak (range: 1–10) are generally weak results; typically, most would be false positives. Negative (range: 0), the correlation between the targets is statistically comparable to that of two blobs of random data. Unknown (range: −1) is a rare occurrence for files above 4 KB unless they contain large regions of low-entropy data. However, in all the cases, the significance depends on the amount of data and the type of data [7].



The difference between SSDEEP and SDHASH is that the hash length is always the same; in SDHASH, the length depends on the input (amount of data). As mentioned, SDHASH is more robust, which yields the options that can be used at the compute time. For instance, the segment size by default is 128 MB, but the developer preferences define this setting.




2.2. APK File Structure


An Android Application Package (APK) file is a compiled application for the Android operating system. The package contains all the files needed for a single application and is organized in a particular structure. Figure 1 shows the APK file structure and a list of the most prominent files and directories:




	
META-INF/: Directory with the APK metadata, such as its signature.



	
lib/: Directory with compiled native libraries used by the app. The folder contains multiple directories, one for each supported CPU architecture (armeabi-v7a, x86, etc.).



	
res/: Directory with the resources not compiled into resources.arsc. This directory contains all resources except the files in res/values. The resource files are in a binary XML format, and all image files are optimized (crunched) to save space and improve run-time performance when inflating these files.



	
assets/: The directory with application assets can be retrieved by AssetManager.



	
AndroidManifest.xml: Application manifest in the binary XML file format. It contains application metadata, for example, app name, version, permissions, minimum SDK version, etc.



	
classes.dex: The classes are compiled in Java language that will be executed on the device by the virtual machine.



	
resources.arsc: It contains all the metadata information about the resources. An ARSC file is an Android Resource table file that contains the list of the application resources in a table format.








There are multiple tools to decompile an APK. An APKTool [8] was used in this research. In the decompiling process, multiple types of files are generated. All the APKs have Java code compiled into classes.dex file. On the other hand, the application properties are declared in AndroidManifest.xml, both compiled in binary format. Additional resources are included in the APK structure, such as images, app signature, and Cascading Style Sheets (CSS). Furthermore, the most essential part of the APK is the source code and the properties. Therefore, this investigation chose those essential files to analyze the application.



This investigation focuses on two types of files: smali files, which are generated after decompiling classes.dex, and AndroidManifest.xml which contains the properties of the application in XML format.




2.3. Natural Language Processing Techniques


In NLP, many techniques can be used for text cleaning or extraction that are beneficial during machine learning training [9]. The following section will describe some techniques used in this investigation.



	
Punctuation: In NLP, punctuation refers to using marks or symbols in text analysis to help identify and structure sentences, paragraphs, and other text units. Punctuation can be used as a feature in various NLP tasks, such as part-of-speech tagging, sentence boundary detection, and sentiment analysis. For example, in part-of-speech tagging, punctuation marks can be used as context clues to help determine the correct part of speech for a word. In sentence boundary detection, punctuation marks such as periods, question marks, and exclamation points can be used to identify the boundaries between sentences. In sentiment analysis, punctuation can be used as a feature to help identify the tone and emotion of a text.



	
Tokenization: It is the process of breaking down a text document or string of text into smaller units called “tokens”. In NLP, these tokens usually correspond to words but can also be phrases, symbols, or individual characters. Tokenization is essential in many NLP tasks, such as text classification, sentiment analysis, and language translation.



	
Lemmatization: In NLP, lemmatization refers to the process of reducing a word to its base or dictionary form, known as the “lemma”. In other words, it is converting words to their canonical form. For example, the lemma of the word “running” is “run”, the lemma of “went” is “go”, and the lemma of “better” is “good”. The main goal of lemmatization is to reduce inflectional forms and sometimes derivationally related forms of a word to a common base form. Lemmatization is often used in NLP and text analysis tasks such as language translation, information retrieval, and sentiment analysis.



	
Stemming: It is the process of reducing a word to its root or stem form by removing any suffixes or prefixes. The resulting stem may not necessarily be a valid word in the language, but it still captures the essential meaning of the original word. For example, the stem of the word “jumping” is “jump”, the stem of “cats” is “cat”, and the stem of “happiness” is “happi”. In this example, “happi” is not a valid English word, but it still captures the essential meaning of “happiness”. Stemming is a simpler and faster approach to normalizing words compared to lemmatization, and it is often used in information retrieval.



	
Keyword Extraction: Term Frequency (TF) is a metric used in NLP and information retrieval to quantify the importance or frequency of a term within a document or a corpus. It measures how frequently a specific term appears in a document or text. TF is calculated by dividing the number of times a term occurs in a document by the total number of terms in that document. It is often normalized to prevent bias towards longer documents. One common normalization approach is to divide the raw term frequency by the maximum term frequency in the document, which results in a value between 0 and 1.






TF measures the frequency of a term within a document   t f   (term frequency). It indicates how often a term appears in a document relative to its total number of words. A higher TF value indicates a term is more significant within the document. Specifically, it is denoted by   t  f  i j    , i.e., how often the word i appears in the document j [10].





3. Related Work


There have historically been two primary avenues in malware analysis: static analysis and dynamic analysis [11]. These two approaches diverge mainly in executing the malware sample, as dynamic analysis involves running it within a controlled environment. Subsequently, the features extracted from this execution are harnessed to train Machine Learning (ML) and Deep Learning (DL) algorithms, forming the foundation for constructing classification and detection models. These models are widely used for multi-platform malware analysis [12,13,14].



Image Visualization


This section reviews the works related to ML and DL for malware analysis using image visualization. The reviewed works have the approach of converting samples into images no matter the platform. Moreover, for comparison purposes, Android-related works are used.



Geremias et al. [15] presented a method for Android malware analysis that first extracts the features in feature vectors, and PCA was applied to generate a matrix of   M × M   size. Then, generate three grayscale images using different data types (API calls, OPCodes, and Dex). The final image is composed of the three images as layers to build a colored image (multi-view), and finally, the resulting images are used to train a CNN model. The method was evaluated using the CICMalDroid dataset, which contains 11,598 samples, and achieved an accuracy of 98.70%.



Kural et al. [16] presented a framework called Apk2Img4AndMal. The tool transforms the APK into a grayscale image without any preprocessing or reverse engineering process. No feature extraction from the static or dynamic analysis is needed. The images are generated by reading the APK as binary and transformed into a grayscale image. The images are analyzed using CNN, achieving an accuracy of up to 94.00%. The framework was tested with 24,588 Android malware and 3000 benign applications.



Jaiteg et al. [17] proposed a method that combines features from the APK file decompiled, looking for the optimal combination (Android manifest (AM), certificate (CR), classes.dex (CL), and resource (RS)), the handcrafted features were extracted from the image sections using multiple algorithms such as Gray Level Co-occurrence Matrix-based (GLCM), Global Image deScripTors (GIST), and Local Binary Pattern (LBP). The authors generated 15 sets of images using different combinations of files as input data for image generation. The resulting images were used to feed a CNN. The method was evaluated using the DREBIN dataset, which contains multiple classes. The method attained a high accuracy of 93.24% for malware image combination CR + AM using the Feature Fusion-SVM classifier.



Xu et al. [18] presented a method to analyze Android malware using DEX (bytecode) files. The DEX files were transformed into grayscale images using an interpolation algorithm to generate uniform-sized images. During the detection process, CNN was improved to extract and normalize the features using the GIST algorithm (lightGBM + LR) used to extract texture features. This article selects 5000 Android application software, including 2500 benign and 2500 malicious applications. The research attained a high accuracy of 98.7%.



Xiang et al. [19] investigated an Android malware detection model based on deep learning using autoencoders to detect malware. This paper aimed to study whether the autoencoders can reconstruct malware images with low loss and detect malware by judging the error value and reducing the risk of data confusion and redundant API injection (NOP no-operation instruction). They proposed using a neural network model to exclusively learn the features of malware instead of malware and benign features. Andro-dumpsys dataset was used, which contains 906 malicious binaries from 13 different malware families and 1776 benign files downloaded from the Google Play store. An accuracy of up to 93.00% was achieved.



Naït-Abdesselam et al. [20,21] proposed transforming the APK into an RGB leveraging the three channels to store different data on them (Green Channel: Conversion of Permissions and app components from AndroidManifest.xml, Red Channel: Conversion of API calls and unique opcode sequences from DEX file, Blue Channel: Conversion of protected strings, suspected permissions, app components, and API calls) image to use it in a CNN and ResNet for classification of malware. The method was evaluated using the AndroZoo dataset, which increases the number of samples across time. The authors chose n samples per time time-frame, and the method attained a detection accuracy of up to 99.37%.



Yong et al. [22] presented a new way to analyze Android malware based on DEX files. They proposed converting DEX files into RGB images, then applied text and color features. Also, from the DEX file, plain text was filtered to obtain text features, the GIST was used to get texture features, and the color moments were used to feed multiple kernels as input data for malware classification. The resulting images showed that samples from the same family have similar colors and textures. The authors used a Support Vector Machine (SVM) in the classification phase, applying multiple kernels for testing. AMD dataset contains 24,553 samples, categorized into 135 varieties among 71 malware families ranging from 2010 to 2016, with a classification accuracy of up to 96.00%.



Peng et al. [23] showed a method for Android malware classification based on the traffic generated (PCAP). The traffic was filtered by removing third-party traffic, and the resulting flows (malicious traffic) were split into sessions. The first part of the session is used to generate a grayscale image representing the traffic characteristics for each session. Finally, the images were analyzed using a deep learning model (1.5D-CNN). CICAndMal2017 dataset, which contains over 1700 benign and 400 malware samples. The model proposed achieved an accuracy of up to 98.5%.



Jianguo et al. [24] focused on Android malware analysis. The authors transformed the APK data into nodes and edges combining features from static and dynamic analysis (for instance: code region–invoke–sensitive API, sensitive API–invoked by–code region, code region–belongs to–package, package–contains–code region, code region–included in–signature MD5, signature md5–includes–code region). This transformation is called a heterogeneous graph, and the graph is represented into a matrix to feed the HG-CNN classifier. The dataset was collected from diverse sources using a known dataset like Drebin. With 11,423 benign and 14,546 malware samples, the authors achieved an accuracy of over 97%.



Yajamanam et al. [25] showed a method for Windows malware analysis, transforming the sample into a grayscale image. The samples were classified based on their GIST features. Unlike the previous related work, the researchers tested the robustness of the GIST features by adding noise to the images. Based on the results, as expected, the accuracy of classifying images with noise decreased compared to the images without noise. A couple of datasets were used in this research: The Malimg dataset consists of more than 9000 malware samples belonging to 25 families, and the Malicia dataset contains 11,363 malware samples, primarily composed of 3 types of malware.



Huang et al. [26] presented work for robust hashing, treating the samples as two-dimensional images. The authors performed multiple tests to compare SVM with robust hashing techniques. They found that some classes are correctly classified by robust hashing, and the results can be comparable with SVM. Malimg dataset was used in this investigation, which consists of more than 9000 malware samples belonging to 25 families.



Yang et al. [27] presented an algorithm that transforms the APK into a grayscale image based on Portable Executable (PE) file format. The images have APK data (CERT.RSA, AndroidManifest.xml, resources.arsc, and classes.dex) converted directly without preprocessing. In this investigation, the researchers used the Drebin corpus, which contains 5560 samples from 178 classes. The images were used in different machine-learning algorithms for testing. Random Decision Forest (RDF) is the algorithm with the highest results, reaching up to 95.51% in accuracy.



Tingting et al. [28] in their research proposed a binary malware detection by converting opcode sequences into images in combination with PCA to extract the features, and then, SVM was used for the malware classification applying multiple kernel functions to increase the accuracy. The highest accuracy achieved was 97.62% using SVM and RBF kernel function. The dataset used contains 9168 malware samples and 8640 benign programs.



Ajit et al. [29] showed a method without feature extraction, decompiling, preprocessing, and static or dynamic analysis output. They converted the APK sample directly into four image formats (grayscale, RGB, CMYK, HSL) to test which format worked better with machine learning algorithms (Decision Tree, Random Forest, KNN) for the classification task. They proved that using grayscale achieved the highest accuracy of 91.00% using Random Forest.



On the other hand, other researchers have proposed Android malware analysis based on static features such as permission [30]. Still, without transforming the features into image format, the permissions were represented as a vector in a binary sequence, and the analysis was based on a feature vector, training a machine learning model. The accuracy was 96%.



The works listed presented malware detection and classification methods by transforming the samples into images. The proposed method highlights transforming the sample into a grayscale image. Unlike the works reviewed, a new way to convert the sample into an image was presented. The image is composed of the fuzzy hashes generated by the decompiled code and preprocessed utilizing NLP techniques for text cleaning and extraction, which reduces the image size and the time-consuming of the CNN. A summary of the related work is presented in Table 1.





4. Proposed Method


This paper aims to study the feasibility of utilizing a deep learning model based on a CNN architecture for malware classification by converting a sample into a grayscale image composed of fuzzy hashes derived from decompiled and preprocessed code. Therefore, our malware classification method is divided into two stages: data preprocessing (APK to a grayscale image) and malware classification (multiple families). Figure 2 shows the proposal workflow at a high level, and the architecture is detailed in Figure 3.



First, it performs a novel transformation of the APK file into a lightweight grayscale image utilizing a fuzzy hashing of the decompiled smali code and manifest file. Secondly, it trains a CNN model on the obtained images for malware family classification. Furthermore, VirusTotal [31] is used to label the corpus, as described in Section 5.2.



4.1. Android Binary to Visual Representation


The scope of this phase is to transform Android binary into image data that the classification model can handle, as shown in Figure 3.



The first step is decompiling the APK, as mentioned in Section 2.2; during this process, multiple files are generated (An APK has n smali files and one AndroidManifest.xml). At this point, only smali files and AndroidManifest.xml are selected. It is feasible to determine the malware family by analyzing the smali code and the application properties file.



The second step consists of preprocessing the smali files generated by each APK using NLP techniques for text cleaning to remove useless information by the Equation (2)


  T  C  s m a l i   =  [ P R , T K , S T , L M ]  ,  



(2)




where Text Cleaning (TC) is a sequence of the Punctuation Removal (PR), Tokenization (TK), Stemming (ST), and Lemmatization (LM) techniques applied to smali files.



The AndroidManifest.xml is also preprocessed in this stage. Furthermore, unlike the smali file, from the manifest file, helpful information is extracted, such as components of the app (which include all activities, services, broadcast receivers, and content providers), permissions, and hardware and software features the app requires discarding XML tags [32], by the Equation (3)


  T  E  A n d r o i d M a n i f e s t   =  [ P R , T K , I R ]  ,  



(3)




where Text Extraction (TE) is a sequence of the Punctuation Removal (PR), Tokenization (TK), and Information Retrieval (IR) techniques applied to the AndroidManifest.xml file. For information retrieval, Term Frequency (TF) was applied.



In contrast to prior studies, the importance of incorporating NLP techniques in this research stems from their capacity to preprocess decompiled data by eliminating useless information and ensuring data standardization. This plays an essential role as the fuzzy hashing technique measures similarity, and standardized data enhances these similarities. Moreover, it prevents the incorporation of noise into the images and facilitates a reduction in image size, ultimately proving advantageous during training.



As part of the second stage, fuzzy hashing is computed from the smali and AndroidManifest.xml files, using the same amount of data to obtain the same hash length in the output. The size of input data (grayscale) is a matrix of   N × M  , where N is the length of SDHASH (fuzzy hash), which is 344 (344 pixels), and M, depends on the number of fuzzy hashes plus AndriodManifest data. Defining a standard image size for every APK is impossible because each is unique. The resize is performed into the CNN. The grayscale image structure has AndroidManifest data at the top and all the fuzzy hashes after. Each malware sample has n fuzzy hashes at this stage, as shown in Figure 4, a graphical description of how a fuzzy hash is computed. The SDHASH is a string encoded in Base64; each byte of the fuzzy hash is converted to a scale from 0 to 255, corresponding to one pixel in the grayscale image. Figure 5 shows three grayscale images generated by applying SDHASH to different input data obtained from the same APK sample.




4.2. Convolutional Neural Network


An image itself has specific properties. CNN models are widely explored for image analysis. In the architecture depicted in Figure 3, the APK is transformed into a grayscale image at the first stage. CNN is suitable for image classification at the second stage.



The CNN model was built with three convolution layers, three pooling layers, a ReLU activation function, an Adam optimizer, and varying the epoch values in the experimental phase to increase accuracy at the learning stage Figure 6 describes the CNN model summary.



This CNN model takes an input grayscale image, processes it through convolutional and pooling layers to extract features, flattens these features, and then passes them through fully connected layers for classification. The number of filters, filter size, activation functions, and units in the dense layers were adjusted for this research.



	
Rescaling: The layer scales the input pixel values to the range   [ 0 , 1 ]  .



	
Conv2D: This is a 2D convolutional layer with 16 filters of size 3 × 3. It applies convolution to the input image, preserving the input shape with a rectified linear unit (ReLU) activation function. This layer extracts various features from the image.



	
MaxPooling2D: After each convolution, a max-pooling layer downsamples the output. It reduces the spatial dimensions, helping the model focus on the most important features.



	
Conv2D: This is a 2D convolutional layer with 32 filters of size 3 × 3. It applies convolution to the input image, preserving the input shape with a rectified linear unit (ReLU) activation function. This layer extracts various features from the image.



	
MaxPooling2D: After each convolution, a max-pooling layer downsamples the output. It reduces the spatial dimensions, helping the model focus on the most important features.



	
Conv2D: This is a 2D convolutional layer with 64 filters of size 3 × 3. It applies convolution to the input image, preserving the input shape with a rectified linear unit (ReLU) activation function. This layer extracts various features from the image.



	
MaxPooling2D: After each convolution, a max-pooling layer downsamples the output. It reduces the spatial dimensions, helping the model focus on the most important features.



	
Flatten: This layer flattens the output from the previous layers. It converts the 2D feature maps into a 1D vector.



	
Dense: A fully connected (dense) layer with 128 units and ReLU activation. This layer learns complex relationships between the extracted features.



	
Dense: The final dense layer with the number of units equal to the number of classes in your classification problem. It provides the output of the model, which is used for classification.






The CNN model splits the corpus using 80% of the data as the training set (K-fold validation was used to split the training dataset. In this case,   K = 10  , 10-fold validation), and 20% of the data was selected as the validation set. The corpus description is presented in Section 5.2.





5. Experiments


This section aims to validate the proposed malware classification approach using a CNN model. The experiments test the hypothesis that a deep learning model can effectively classify malware samples into their respective families using grayscale images generated through fuzzy hashing. This section covers the experimental setup, dataset description, evaluation, and results.



5.1. Experimental Setup


As described, the method was tested on a ransomware [34] and CICAndMal2017 [35,36] corpus (15,493 samples of multiple Android malware families). The algorithm was programmed in Python 3 (Jupyter Notebook), Shell-Scripting, and running Linux on DELL XPS 15 9550 natively (Ubuntu 18.02, CPU Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz, 8 Core Processors, 32GB RAM, 500 GB SSD, and GPU NVIDIA GeForce GTX 960M).




5.2. Corpus Description


The corpus (dataset) contains 2288 Android ransomware samples shared by Wuhan University for research purposes [34], and 13,205 samples of Adware, Banking, Riskware and SMS from CICMalDroid 2020 [35,36]. Table 2 shows the corpus distribution.



The dataset was labeled with the usage of VirusTotal [31] considering the results from the most popular antivirus. For instance, the sample with MD5 hash “1F6D3E6A3F3186D5 FD23E937B159B922” has multiple labels, per the VirusTotal report, as shown in Table 3.



The reports were standardized for the remaining samples since each antivirus uses its labels, some of which are similar, while others are quite distinct. Additionally, one antivirus lacks labels for malware families. In essence, the number of samples matches the number of families. Table 4 shows the top Android malware family distribution after standardized per class.




5.3. Classification Accuracy


The accuracy of the method was evaluated using F1-scores for each ransomware family, whose formula requires true positives (  T P  ), true negatives (  T N  ), false positives (  F P  ), and false negatives (  F N  ) to measure the effectiveness of the proposed method (4)–(7).


  P r e c i s i o n =   T P   T P + F P   ,  



(4)






  R e c a l l =   T P   T P + F N   ,  



(5)






  A c c u r a c y =   T N + T P   T P + F P + T N + F N   ,  



(6)






  F 1 =   2 × p r e c i s i o n × r e c a l l   p r e c i s i o n + r e c a l l   .  



(7)







A confusion matrix (CM) is a graphical representation to draw the performance of a classification model. The CM uses   T P  ,   F P  ,   T N  , and   F N  ; hence, they can be used to calculate precision, recall, and accuracy metrics per class as well as global metrics (4)–(7).




5.4. Experimental Results


This section describes the tests performed to demonstrate the feasibility of Android malware classification using fuzzy hashing converted to a grayscale image in combination with the CNN model.



The first stage of the proposal consists of transforming the APK into grayscale images. In the image analysis field, there exists a problem that must be adequately addressed, which is the image size. In this case, as the malware samples are different, they have different sizes. Table 5 shows the distribution using three different input data after generating the grayscale images. The image size was reduced using the fuzzy hashing approach compared to the other two input data.



The CNN was evaluated using three types of images generated to prove that the fuzzy hashing approach has an accuracy higher than the other types of images, reducing the time-consuming. Section 4.2 described the CNN settings as part of the second stage. Table 6 summarizes the twelve scenarios tested. The parameters varied during the evaluation of CNN to find the optimal values.



The experiments were performed in two ways: the first was using the five types of malware (adware, banking, ransomware, riskware, and SMS) utilizing these labels, and the other way was using the top classes of each type of malware after label standardization. Based on the distribution shown in Table 4, the top twenty of the classes hold 81.12% (12,516 samples) of the dataset (15,493). Meanwhile, the other 195 classes hold 18.88% (2778 samples) of the dataset.



The experimental results presented in Table 6 summarize the metrics of the CNN model using the different types of images and CNN parameters. Each experiment was executed ten times for each stage (training and validation), and the results represent the average. For instance, using the whole data for five classes, the accuracy was 85.23%, and 97.62% using the most representative twenty classes. There was an increase in the model accuracy by leaving out non-significant classes from the dataset from the standardized labels. In both cases, with the dataset of fuzzy hashing images.



Figure 7 describes training and validation curves for loss and accuracy for the best test results shown in Table 6. The curves represent one execution using five and twenty classes. The learning curves represent a compelling performance in classifying Android malware.



To assess the accuracy of the method, the actual and predicted labels were compared using a confusion matrix (CM), a commonly utilized metric for evaluating the performance of classification models. Figure 8 presents the confusion matrix for the test using only five classes, showing poor accuracy of less than 90%. This suggests that the corpus was not correctly labeled and can improve the accuracy of the model using appropriate family labels.



Figure 9 shows the evaluation results using the twenty classes. It is noted that the twenty classes with the most samples achieved good accuracy after labeling utilizing VirusTotal, which is expected as larger samples usually result in better accuracy. However, the test using the classes without label validation impacted the accuracy of the model. This indicates that the performance of the model is affected by the imbalanced classes and incorrect labels.



The metrics per class are described in Table 7 and Table 8 for the five and twenty classes, respectively, for one of the ten executions that achieve the highest accuracy.



There is a misclassification issue based on the results shown in the confusion matrix. Resuming the scope of this research, the proposed model uses images composed of fuzzy hashing, which allows us to measure the similarities. The misclassification is related to wrong labeling, as it was noticed in the experiments using the five types of malware compared with the top twenty classes labeled utilizing VirusTotal. The samples misclassified share more similarities with other classes than the ones assigned by the antivirus.



The tests showed that the images of fuzzy hashes achieved a good performance based on the extracted features; one reason is that the image size was reduced by applying NLP and fuzzy hashing techniques, eliminating useless data. Consequently, CNN classified the images faster than those containing more data. The preprocessing applied was beneficial for increasing the accuracy and reducing the time-consuming of the CNN.





6. Discussion


In their comprehensive review of the state-of-the-art Android malware classification, the researchers employed a range of algorithms. Notably, Support Vector Machines (SVM), k-Nearest Neighbors (KNN), and Random Forest (RF) stand out as some of the prevalent algorithms frequently employed in image classification tasks.



Deep learning and machine learning algorithms were tested in our evaluation stage using different data types. The tests were designed using images and the decompiled data (smali and AndroidManifest code) for a reasonable comparison.



For image-based classification, a deep learning model based on CNN was trained. As discussed in the document, the primary approach of this research is image-based malware classification using CNN. The CNN model achieved up to 98.24% in accuracy metric and an average of 97.62% (10 executions), such as it is expected that a CNN works well with images. Additional neural network models were evaluated using the images generated in those tests ResNet50 and VGG16, achieving 96.67% and 95.88% during the validation executed ten times, respectively. The three CNN models achieved almost the same accuracy during the evaluation phase.



On the other hand, an additional machine learning model was trained with the same images, and the Support Vector Machine (SVM) achieved an average of 94.91%. The k-NN classification scheme was tested. However, no explicit training phase is required, as the classification is computed based solely on the nearest neighbor in the training set [25]. K-nearest neighbor (k-NN) algorithm, with   k = 1   using the images generated, achieved an accuracy of 78.19%. The comparison shows an increase in the accuracy metric of CNN over SVM and k-NN using the same input data (grayscale images).



Other tests were performed using the decompiled data (smali and AndroidManifest) in machine learning models such as k-NN, Random Forest (RF), Multilayer Perceptron (MLP), and SVM. In NLP, a text is a document that can be used for text classification. The documents were used in the classifiers mentioned to classify the malware. The accuracy attained using k-NN, RF, MLP, and SVM was 93.3%, 92.18%, 93.68%, and 95.42%, respectively.



In Section 3, Table 1. shows related studies for Android malware analysis considered for comparison purposes. Therefore, Table 9 shows the results obtained with the ML and DL algorithms tested using the data generated in the research versus the works documented in the state-of-the-art.



For the comparative tests, models requiring training and validation steps (CNN, SVM, RF, MLP) were executed ten times, while k-NN was run once. The additional tests reaffirmed the efficacy of the CNN model with images, achieving a remarkable accuracy of up to 98.08% and an average of 97.84%. This superior performance surpasses other classifiers and underscores the accuracy of the fuzzy hash-based image generation method employed.



In contrast, k-NN yielded an accuracy of less than 80%, while SVM achieved over 90% using the same images despite not being optimized for image classification. Furthermore, the algorithms designed for text classification exhibited improved accuracy compared to SVM and k-NN when applied to images, albeit falling short of the results attained with CNN.



The comparison reveals an increase in the accuracy metric of CNN compared to SVM and KNN using the same input data. Regarding the related works, the results indicate an improvement in the classification task using the fuzzy hashing approach by converting fuzzy hashing into grayscale images.



Once the CNN is trained, it takes to classify a new sample is an average of 40 s. The decompiling process is major time-consuming, which takes 50% (20 s); text cleaning and text extraction take 10% (4 s). Data to grayscale image 10% (4 s). And CNN for classification 30% (12 s).




7. Conclusions


This research has introduced a novel mechanism for Android malware classification, transforming malware files into image representation and utilizing Convolutional Neural Network (CNN) to distinguish between various types of malware.



The proposed method in the first stage transforms the APK into a grayscale image composed of hashes and innovatively leverages the sdhash fuzzy hashing technique to represent an APK in similarity hashes. In the preprocessing phase, NLP techniques for text cleaning and extraction, such as Punctuation Removal, Tokenization, Stemming, Lemmatization, and Information Retrieval, were used to standardize the data, reducing the image size. The second stage of the method analyzes Android malware analysis based on the images generated; the preprocessing was beneficial because it reduced the time-consuming and, most importantly, increased the accuracy, demonstrating efficacy in classifying multiclass malware.



This study investigated the feasibility of identifying Android malware families by focusing on features extracted from visual representations. Experimental assessments were conducted across various Android malware families, illustrating the utility and reliability of the proposed methodology. Notably, when tested against diverse malware families, the algorithm exhibited an average classification accuracy of up to 98.24% across twenty representative classes.



In conclusion, this research contributes to the malware classification approach, showcasing its potential to advance the field of cybersecurity. The method demonstrated a good performance, particularly in distinguishing diverse malware families, underscoring its practicality and effectiveness in real-world applications.



7.1. Limitations and Future Work


7.1.1. Available Datasets


The model was tested on a single dataset due to the limited availability of open datasets containing APKs. In future work, we intend to apply the model to more complex datasets.




7.1.2. Labeling Dataset


The availability of open datasets sometimes presents challenges related to labeling accuracy, which can adversely affect classification performance. In such cases, the features may become mixed with other classes, leading to confusion for the algorithm. Future work aims to enhance classification by incorporating similarity comparisons to define classes without relying on VirusTotal intervention.




7.1.3. Broken Samples


The method is functional with decompiled data as long as the samples contain at least classes.dex and AndroidManifest.xml. If these essential files are missing, the method may not function correctly. Conversely, it’s important to note that the method has limitations; it cannot process corrupted or broken samples.




7.1.4. Imbalanced Classes


In the real world, there is not the same amount of malware samples as benign ones. Therefore, it is challenging to have a balanced dataset with the same number of members per family. Imbalanced classes impact the CNN performance, reducing the accuracy as future work performs hunting to get more samples to balance the classes.




7.1.5. Multiplatform


The model proposed demonstrated a high accuracy for Android malware classification. As future work, the model can be extended for multiplatform malware analysis, which involves Microsoft, IoT, Mobile, and Linux malware.
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Figure 1. Android Application Package structure before and after the decompiling process. The diagram was generated based on the input and output generated by APKTool [8]. 
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Figure 2. Workflow for APKs analysis of the proposed method. 
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Figure 3. Proposed architecture: (A) APK to image conversion. This step transforms the APK into a grayscale image. (B) Grayscale images are analyzed in CNN for Android malware classification. 
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Figure 4. SDHASH fuzzy hashing description for the compute stage. Source: The image was generated based on the research from Naik [33]. 
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Figure 5. Android sample MD5 “0A0C881A01EA942DC052CA560198D82B” converted in a grayscale image using three different input data after decompiled sample: (A) Image created after decompiling process without any preprocessing, (B) Image created after preprocessing decompiled code using NLP, (C) Image created using fuzzy hashing technique after preprocessing with NLP. 
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Figure 6. CNN model summary. 
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Figure 7. Experimental metrics using grayscale images based on fuzzy hashing, the graphs show the accuracy and loss during training and evaluation. (a,b) CNN training and validation results using five classes with 70 epochs, accuracy 85.51% (c,d) CNN training and validation results using the top twenty classes in the dataset with 100 epochs, accuracy 98.24%. Source: It was obtained through Python execution of the CNN model using the seabron library. 
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Figure 8. Confusion matrix for the five classes. Source: It was obtained through Python execution of the CNN model using the seabron library. 
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Figure 9. Confusion matrix for the twenty classes. Source: It was obtained through Python execution of the CNN model using the seabron library. 
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Table 1. Summary of the related work.
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	Ref./Year
	Samples
	Type of Images
	CNN
	Other Algorithm
	Other Features
	Accuracy





	[15], 2022
	APK
	RGB
	Yes
	PCA
	Multi-view image
	98.70%



	[16], 2021
	APK
	Grayscale
	Yes
	-
	APK read as binary
	94.00%—CNN



	[17], 2021
	APK
	Grayscale
	Yes
	GLCM, GIST LBP
	Feature fusion
	93.24%—SVM



	[18], 2021
	APK
	Grayscale
	Yes
	GIST
	dex file read as binary
	98.70%—GIST



	[19], 2020
	APK
	Grayscale
	Yes
	Auto-enconders
	Reconstruction error
	93.00%



	[20], 2020
	APK
	RGB
	Yes
	ResNet
	Decompiled data to RGB
	99.37%—ResNet



	[24], 2020
	APK
	RGB
	Yes
	SVM, KNN, RF, HS-resNet,
	Static and dynamic features
	97.00%



	[23], 2020
	APK
	Grayscale
	Yes
	1.5D-CNN
	Network traffic as image
	98.50%



	[22], 2020
	APK
	RGB
	No
	SVM, GIST, Multiple Kernels
	dex as image and plain text
	96.00%—SVM



	[21], 2020
	APK
	RGB
	Yes
	ResNet
	Decompiled data to RGB
	99.37%—ResNet










 





Table 2. Malware dataset distribution.
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	Malware Type
	Reference
	No. Samples
	Percentage
	No. Classes





	Adware
	[35,36]
	1515
	9.78%
	1



	Banking
	[35,36]
	2506
	16.18%
	1



	Ransomware
	[34]
	2288
	14.77%
	1



	Riskware
	[35,36]
	4362
	28.15%
	1



	SMS
	[35,36]
	4822
	31.12%
	1










 





Table 3. Sample MD5 “1F6D3E6A3F3186D5FD23E937B159B922”, partial results from VirusTotal.
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	AntiVirus
	Malware





	AegisLab
	Trojan.AndroidOS.Generic.C!c



	AhnLab-V3
	Trojan/Android.WipeLocker.33939



	Alibaba
	Trojan:Android/Soceng.408e621d



	ESET-NOD32
	A Variant Of Android/Wipelock.F



	F-Secure
	Undetected



	Kaspersky
	HEUR:Trojan.AndroidOS.Soceng.f



	MaxSecure
	Undetected



	McAfee-GW-Edition
	Artemis!Trojan



	Symantec Mobile Insight
	Trojan:Habey



	BitDefender
	Undetected










 





Table 4. Malware dataset labels standardized from VirusTotal results (top twenty).
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	No. Class
	Class Name
	No. Samples
	Percentage (%)





	1
	Trojan_FakeInst
	2991
	19.39



	2
	Trojan_Opfake
	1168
	7.57



	3
	Trojan_ASMalwAD
	1097
	7.11



	4
	Ransomware_LockScreen
	739
	4.79



	5
	AdWare_SMSreg
	711
	4.61



	6
	Trojan_SmsSend
	706
	4.58



	7
	Ransomware_Locker
	704
	4.56



	8
	Trojan_Bankun
	672
	4.36



	9
	PUP_Wapsx
	439
	2.85



	10
	Trojan_Simplelock
	437
	2.83



	11
	TrojanDropper_SmsPay
	414
	2.68



	12
	PUP_Dowgin
	372
	2.41



	13
	Trojan_HiddenApp
	353
	2.29



	14
	Trojan_FakeApp
	329
	2.13



	15
	RiskWare_Dnotua
	304
	1.97



	16
	Trojan_Koler
	263
	1.70



	17
	Trojan_Spitmo
	226
	1.46



	18
	Trojan_Rootnik
	205
	1.33



	19
	Trojan_SMSstealer
	199
	1.29



	20
	Trojan_Marcher
	187
	1.21










 





Table 5. Image size after converted in a grayscale format using three different input data: (a) SDBF—Image generated using fuzzy hashing technique after preprocessing with NLP, (b) Src NLP—Image created after preprocessing decompiled code using NLP, (c) All Src—Image generated after decompiling process without preprocessing.






Table 5. Image size after converted in a grayscale format using three different input data: (a) SDBF—Image generated using fuzzy hashing technique after preprocessing with NLP, (b) Src NLP—Image created after preprocessing decompiled code using NLP, (c) All Src—Image generated after decompiling process without preprocessing.





	File Size
	(a)-SDBF
	(b)-Src NLP
	(c)-All Src





	0 KB–20 KB
	9041
	4515
	4593



	20 KB–40 KB
	1129
	3389
	3106



	40 KB–60 KB
	533
	1180
	1048



	60 KB–80 KB
	508
	575
	897



	80 KB–100 KB
	592
	997
	226



	101 KB–500 KB
	3158
	2676
	3395



	500 KB–1 MB
	304
	999
	1177



	1 MB–2 MB
	220
	764
	634



	2 MB–3 MB
	4
	186
	183



	3 MB–4 MB
	4
	73
	92



	>4 MB
	0
	139
	142



	Total
	15,493
	15,493
	15,493










 





Table 6. Metrics summary of the tests performed using five and twenty classes, each experiment was executed ten times, and the results represent the average for the two epochs with higher accuracy during the training process.
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	No. Test
	Image Type
	Precision
	Recall
	F1-Score
	Accuracy
	No. Classes
	Epochs
	Time





	1
	Fuzzy Hashing
	0.84
	0.84
	0.84
	84.67
	5
	100
	10:43



	2
	Fuzzy Hashing
	0.86
	0.85
	0.86
	85.23
	5
	70
	07:24



	3
	Source Code—NLP
	0.82
	0.82
	0.83
	83.24
	5
	100
	14:12



	4
	Source Code—NLP
	0.85
	0.83
	0.85
	84.18
	5
	70
	11:27



	5
	All Source Code
	0.81
	0.83
	0.82
	82.36
	5
	100
	18:38



	6
	All Source Code
	0.70
	0.23
	0.81
	81.12
	5
	70
	16:19



	7
	Fuzzy Hashing
	0.97
	0.98
	0.98
	97.62
	20
	100
	11:47



	8
	Fuzzy Hashing
	0.97
	0.95
	0.97
	96.83
	20
	70
	09:43



	9
	Source Code—NLP
	0.96
	0.96
	0.96
	96.15
	20
	100
	16:41



	10
	Source Code—NLP
	0.96
	0.97
	0.97
	96.42
	20
	70
	13:29



	11
	All Source Code
	0.95
	0.96
	0.96
	95.88
	20
	100
	20:15



	12
	All Source Code
	0.95
	0.95
	0.95
	95.25
	20
	70
	17:22










 





Table 7. Summary of metrics for the test performed with the five classes. The metrics represent the highest accuracy achieved for one of the ten executions, with the five classes trained for 70 epochs. Source: Output of the CNN model for validation data.
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	Class
	Precision
	Recall
	F1-Score
	Support





	Adware
	0.5683
	0.5544
	0.5613
	285



	Banking
	0.7801
	0.8063
	0.7930
	506



	Ransomware
	0.9287
	0.9018
	0.9151
	448



	Riskware
	0.8535
	0.8502
	0.8518
	781



	SMS
	0.9469
	0.9528
	0.9498
	954



	Accuracy
	
	
	0.8551
	2974



	Macro avg
	0.8551
	0.8131
	0.8142
	2974



	Weighted avg
	0.8550
	0.8551
	0.8549
	2974










 





Table 8. Summary of metrics for the test performed with the twenty classes. The metrics represent the highest accuracy for one of the ten executions, with the twenty classes trained for 100 epochs. Source: Output of the CNN model for validation data.
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	Class
	Precision
	Recall
	F1-Score
	Support





	Adware_SMSreg
	1.0000
	0.9779
	0.9888
	136



	PUP_Dowgin
	0.9649
	0.9483
	0.9565
	58



	PUP_Wapsx
	0.9634
	0.9634
	0.9634
	82



	Ransomware_Koler
	0.9649
	0.9483
	0.9565
	58



	Ransomware_Locker
	0.9783
	0.9783
	0.9783
	138



	Ransomware_LockScreen
	0.9935
	0.9871
	0.9903
	155



	Ransomware_Simplelock
	0.9894
	0.9789
	0.9841
	95



	Riskware_Dnotua
	0.9545
	0.9333
	0.9438
	45



	Trojan_ASMalwAD
	0.9821
	0.9821
	0.9821
	168



	Trojan_Bankun
	0.9739
	0.9739
	0.9739
	115



	Trojan_FakeApp
	0.9322
	0.9649
	0.9483
	57



	Trojan_FakeInst
	0.9966
	1.0000
	0.9983
	589



	Trojan_HiddenApp
	0.9792
	1.0000
	0.9895
	47



	Trojan_Marcher
	0.9697
	1.0000
	0.9846
	32



	Trojan_Opfake
	0.9883
	0.9883
	0.9883
	257



	Trojan_Rootnik
	0.9583
	0.9787
	0.9684
	47



	Trojan_SmsSend
	0.9928
	0.9648
	0.9786
	142



	Trojan_SMSstealer
	0.9231
	1.0000
	0.9600
	24



	Trojan_Spitmo
	0.9302
	1.0000
	0.9639
	40



	TrojanDropper_SmsPay
	0.9700
	0.9700
	0.9700
	100



	accuracy
	
	
	0.9824
	2385



	macro avg
	0.9703
	0.9769
	0.9734
	2385



	weighted avg
	0.9826
	0.9824
	0.9824
	2385










 





Table 9. Comparison: proposal vs. state-of-the-art. It includes the tests performed using ML and DL algorithms with images and text.
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	Algorithm
	Data
	Training (%)
	Validation (%)
	SD (  σ  )





	Our CNN
	Images
	97.96
	97.62
	0.51



	ResNet50
	Images
	97.09
	96.67
	2.67



	VGG16
	Images
	95.86
	95.88
	1.29



	KNN
	Images
	78.19
	-
	-



	SVM
	Images
	95.17
	94.91
	2.17



	KNN
	Code/Text
	93.30
	-
	-



	RF
	Code/Tex
	92.18
	88.45
	5.03



	MLP
	Code/Tex
	93.68
	92.40
	4.01



	SVM
	Code/Tex
	93.87
	95.42
	1.28



	CNN [16]
	Images
	94.00
	-
	-



	SVM [17]
	Images
	93.24
	-
	-



	SVM [24]
	Images
	97.00
	-
	-



	SVM [22]
	Images
	96.00
	-
	-
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