
Citation: Neghawi, E.; Liu, Y.

Analysing Semi-Supervised ConvNet

Model Performance with

Computation Processes. Mach. Learn.

Knowl. Extr. 2023, 5, 1848–1876.

https://doi.org/10.3390/

make5040089

Academic Editor: Andreas Holzinger

Received: 23 October 2023

Revised: 15 November 2023

Accepted: 22 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Analysing Semi-Supervised ConvNet Model Performance with
Computation Processes
Elie Neghawi *,† and Yan Liu †

Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada;
yan.liu@concordia.ca
* Correspondence: e_negh@live.concordia.ca
† These authors contributed equally to this work.

Abstract: The rapid development of semi-supervised machine learning (SSML) algorithms has shown
enhanced versatility, but pinpointing the primary influencing factors remains a challenge. Historically,
deep neural networks (DNNs) have been used to underpin these algorithms, resulting in improved
classification precision. This study aims to delve into the performance determinants of SSML models
by employing post-hoc explainable artificial intelligence (XAI) methods. By analyzing the components
of well-established SSML algorithms and comparing them to newer counterparts, this work redefines
semi-supervised computation processes for both data preprocessing and classification. Integrating
different types of DNNs, we evaluated the effects of parameter adjustments during training across
varied labeled and unlabeled data proportions. Our analysis of 45 experiments showed a notable
8% drop in training loss and a 6.75% enhancement in learning precision when using the Shake-
Shake26 classifier with the RemixMatch SSML algorithm. Additionally, our findings suggest a strong
positive relationship between the amount of labeled data and training duration, indicating that more
labeled data leads to extended training periods, which further influences parameter adjustments in
learning processes.

Keywords: deep learning; explainable artificial intelligence; convolutional neural networks (CNN);
semi-supervised machine learning

1. Introduction

Recent advancements in semi-supervised machine learning (SSML) have led to the
development of increasingly intricate models, architectures, and methods for parameter
tuning, resulting in some of the most advanced algorithms to date [1]. However, as
these algorithms become more sophisticated, so too does their complexity, which has
led to a demand for greater transparency, particularly when the algorithms produce
questionable results. When outcomes are inaccurate, it becomes even more essential
to have clear explanations. Moreover, even with accurate results, the ability to trust in
machine learning depends on being able to understand and justify how the decisions
were made. This is crucial in high-stakes scenarios. As such, explainable artificial
intelligence (XAI) methods are being developed to make the inner workings of these
complex SSML algorithms more transparent, moving away from the notion of them as
‘black boxes’ to systems whose reasoning can be understood and trusted by users. There
are two primary categories of XAI: post-hoc methods and model-based XAI. If an ML
model’s design ensures user transparency regarding its internal operations and decision-
making, it is classified under model-based XAI. Due to the profound intricacy of SSML,
this approach is unsuitable. Hence, post-hoc XAI, which evaluates the decision-making
logic of these enigmatic AI models, is critical, especially for grasping SSML algorithms’
overarching rationale.

Mach. Learn. Knowl. Extr. 2023, 5, 1848–1876. https://doi.org/10.3390/make5040089 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make5040089
https://doi.org/10.3390/make5040089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0001-8385-2601
https://orcid.org/0000-0002-6747-8151
https://doi.org/10.3390/make5040089
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make5040089?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2023, 5 1849

Amidst XAI’s complexities [2], labeled data acquisition remains a challenge [3]. The
ML community often combines a vast volume of unlabeled data with minimal labeled
counterparts in standard SSML algorithms. These algorithms typically include a network
classifier and two primary costs: classification and consistency costs. While the former
utilizes labeled data, the latter assesses discrepancies between network classifier augmen-
tations using unlabeled data. Although familiar SSML algorithms incorporate designs
such as the Π model [4] newer algorithms such as MixMatch and RemixMatch employ
innovative patterns enhancing performance metrics.

DNNs as network classifiers have amplified learning accuracy [5]. Still, their intrica-
cies often shroud performance justifications, leading to arbitrary adjustments in custom
SSML algorithms. Recognizing this, our study systematically investigates SSML algo-
rithm variations, focusing on learning accuracy and training effects related to DNN and
SSML integration. Using prior frameworks [6], we unveil the fundamental factors in-
fluencing learning and training. Moreover, we employ XAI methodologies to devise a
preprocessing-focused semi-supervised computation process (PF-SSCP), which essentially
mirrors previous designs with slight reordering.

By integrating contemporary DNNs, including Shake-Shake26, DenseNet [7], and
WideResNet [8], with each SSML algorithm, we establish a benchmark. Preliminary results
highlight the performance superiority of Shake-Shake26 over DenseNet by 1.13% in terms
of loss. However, this performance comes at the cost of extended training durations and
increased resource consumption due to intricate interlayer connections. This raises our
study’s central question:

Which are the most influential factors impacting computational costs and training accu-
racy when melding deep neural networks (DNN) with semi-supervised machine learning
(SSML)?

Our research contributes in the following ways:

• We propose a framework method for connecting contemporary DNNs with SSML and
illustrate a computation process with highlights of the most critical functions.

• We outline essential preprocessing steps when implementing these networks across
varying labeled/unlabeled data ratios.

• We synergize the preprocessing-focused SSCP (PF-SSCP) with the classifier-focused
SSCP (CF-SSCP), offering insights to maximize performance.

• We present SSML algorithms’ anatomy, furnishing guidelines for future model design
rooted in this anatomy’s understanding.

2. Related Work

Several approaches exist for explaining CNNs, with one of the most notable being the
unification and taxonomic view of graph neural networks (GNNs) [9]. This significant work
delineates the commonalities and distinctions among existing methodologies, offering a
foundation for future advancements [10]. The evaluation is streamlined by creating a suite
of benchmark graph datasets specifically for GNN explainability. This encompasses metrics
and datasets essential for appraising GNN explainability [11]. Nonetheless, complexities
escalate when these concepts are applied to SSML algorithms due to the employment of
multiple DNNs as network classifiers. Our approach delves into model-level explanations,
directing attention to the taxonomy of SSMLs, and underscores precise changes and their
driving forces.

An alternative study presented an interpretable compositional CNN approach [12,13],
aiming to refine the conventional convolutional neural network (CNN) structure. This
strategy is designed to facilitate the learning of filters that capture meaningful visual motifs
within intermediate convolutional strata. While effective for illustrating a singular CNN, its
applicability falters with SSML, where the network classifier integrates two or more CNNs.

Additionally, the XGNN method, which is a novel approach to graph generation,
trains a graph generator to approximate predictions for target graphs rather than optimiz-

Mach. Learn. Knowl. Extr. 2023, 5 1850

ing the input graph directly [14]. The graphs generated by this method are considered
to be accurate explanatory targets that capture the unique patterns characteristic of
graphs. The XGNN’s graph generation process uses reinforcement learning, allowing it
to incorporate any competent graph generation algorithm within its framework, which
broadens the scope and applicability of its explanations. This approach enhances the
overall understanding of how trained graph neural networks (GNNs) function. How-
ever, while XGNN demonstrates strong performance in explaining graph classification
models, its application to SSML algorithms is less effective. To address this, our tech-
nique leverages the robust graph generation capabilities of XGNN but enhances them by
adding a layer of decomposition based on instance-level explanations [15]. This serves
to shed light on three critical aspects of the latest SSML algorithms, providing a more
nuanced understanding.

Recent advancements in SSML extensively use certain techniques, including consis-
tency regularization, self-training, and entropy minimization. The study reported in [16,17]
indicates that SSML methods may experience a significant decline in performance when
there is a discrepancy between the distribution of unlabeled data used during training and
those encountered post-training, even if other variables such as initialization, preprocessing,
regularization, and augmentation are well-managed. Conversely, our research focuses
on developing a generalized approach to these techniques and elucidating the specific
procedural steps that lead to better performance, independent of the specific characteristics
of the unlabeled data.

Informed machine learning [16] integrates supplementary prior knowledge during
model training. The referenced study provides a comprehensive synopsis of diverse
strategies within this domain, meticulously outlining the informed machine learning design
process and its numerous constituent elements. It also clearly distinguishes informed ML
from conventional ML paradigms. Our research, however, zeroes in on SSML algorithms,
starting with the initial design, then delving deeper into the taxonomy of each and revealing
the influential factors in every segment.

3. Survey Analysis of SOTA Models with Modular Computation Components

This section conducts a technical survey of SOTA semi-supervised learning (SSL) mod-
els, focusing on dissecting and visualizing the computational components to examine their
modularity. The purpose of this modular-based analysis is to abstract away from the intri-
cate parameter-level specifics of each model and instead to concentrate on their functional
attributes. The goal is to distill a computation process that encapsulates the shared compu-
tational components found within various models. Through this high-level analysis, we
aim to pinpoint critical computational junctures that may be leveraged to enhance learning
performance. The models under consideration, which include Temporal Ensembling, the Π
model, Mean Teacher, MixMatch [18], and ReMixMatch [19], are explored for their design,
taxonomy, and innovative contributions to the field of SSML. We intend to illustrate the
interplay of these advanced techniques with the proposed semi-supervised computation
process (SSCP), tracing the connections between modular computation components and
the original models’ equations.

3.1. Temporal Ensembling

The Temporal Ensembling structure [4] maintains a configuration that can be depicted
in Figure 1, featuring a network classifier with a single DNN. The primary distinction
between Temporal Ensembling and the generic form with multiple DNNs lies in the
fact that, here, network augmentations are assessed only once per epoch, and network
consistency relies on previous evaluations for the unsupervised loss component.

Mach. Learn. Knowl. Extr. 2023, 5 1851

In the Temporal Ensembling model, the data xi undergo the same preprocessing
steps to achieve optimal performance. After this phase, the preprocessed data are fed
into a neural classifier network, which determines the classification prediction zi. In the
subsequent iteration, zi is aggregated, aiding in the computation of both consistency and
classification costs in the current iteration. This mirrors the process followed in generic
SSML; however, the computation of the consistency cost is exclusive to the unlabeled data.
In Figure 1, the critical path for various steps, in the case of unlabeled data, is illustrated as
a black path. For labeled data, both classification and consistency costs are calculated, and
the forward propagation is depicted by the black and orange paths. Moreover, the total
loss computation is articulated in Equation (12), mirroring that of the generic SSML.

Figure 1. Representation of the Temporal Ensembling model structure.

The classification cost computation aligns precisely with that of generic SSML, as
detailed in Equation (11), and is defined as the cross-entropy between the prediction zi and
the label yi.

Regarding the consistency cost, despite being governed by the same Equation (10),
there is significant variation in the target vector z̃i. Here, z̃i is not derived from another
neural network’s assessment under varying dropout conditions. Instead, it is an accumu-
lation of ensemble predictions preceded by a bias correction step. The neural network
computes zi, which is then amalgamated into the ensemble outputs Zi following the update
Zi ← αZi + (1− α)zi [4], with α representing the momentum term that dictates the depth
of historical training data influencing the ensemble. During the initial iteration (i = 0), zi−1
is set to zero, indicating that the initial values for z̃ and Z are also zero. Consequently, it is
imperative to correct the startup bias in Z by dividing it by the factor (1− αt) to obtain the
training target z̃i. In the context of backward propagation, this loss is applied solely to the
current neural network.

Temporal Ensembling offers several advantages over other SSML algorithms, as
outlined below:

• Since the network undergoes evaluation once for each input, the training process
is expedited.

• With a training target characterized by reduced noise compared to the Π model,
Temporal Ensembling can potentially realize superior accuracy performance.

However, Temporal Ensembling also presents certain limitations, detailed as follows:

• It necessitates the storage of auxiliary data and the introduction of a new hyperparam-
eter, α, thereby demanding additional memory resources.

• Similar to the Π model, the Temporal Ensembling model lacks dynamic learning
capabilities, necessitating system retraining for effective functionality.

Mach. Learn. Knowl. Extr. 2023, 5 1852

3.2. Π Model

This model, a variant of SSML, employs a self-ensembling mechanism during train-
ing [4], ensuring network output consistency across two instances of the same input under
different dropout conditions.

In Figure 2, both labeled and unlabeled data, xi, are subjected to identical preprocessing,
without discrepancy. Upon entry into the network classifier, the data are replicated across two
analogous neural networks. These networks are differentiated by the following factors:

• Dropout regularization, infusing an element of randomness into these twin architectures.
• The types of augmentations employed, which expand the dataset and render identical

labeled and unlabeled data as distinct inputs.

Figure 2. Π model structure representation.

These two neural networks yield the classifications zi and z̃i, which are instrumental
in computing the total loss. When labeled data are input into the network classifier, both
consistency and classification costs are derived. As shown in Figure 2, this scenario necessitates
following the black and orange paths for forward propagation to ascertain the total loss.

Conversely, for unlabeled data, only the consistency cost is derived, meaning that
the black path in Figure 2 is pursued during forward propagation. Ultimately, the losses
across the entire dataset are aggregated via a weighted sum. A pivotal aspect here is the
employment of the ramp-up function w(t), which assigns weights to the consistency costs,
compelling the semi-supervised system to prioritize classification costs in the initial stages.
Throughout the loss computation, a backward propagation must be initiated to update the
parameters aimed at loss reduction. In Figure 2, backpropagation is signified by the red
path, indicating that both neural network parameters, θ and θ′, are updated, thus revising
the entire neural network flow.

Evaluating the performance of the Π model, we observe that it offers better accuracy
than preceding SSML algorithms. However, this model has the following limitations:

• The network output is computed twice for the same input data, resulting in additional
computational costs.

• The model is vulnerable to errors when fed incorrectly labeled data, negatively im-
pacting its accuracy.

• This model cannot learn dynamically as it relies on batch-learning, in contrast with
online learning neural networks.

3.3. Mean Teacher

To address the shortcomings of the two SSMLs given in the previous subsections, the
Mean Teacher method calculates the averages of the model weights rather than predicting
the outcome. This model is based on an average of consecutive student models; hence, it is
referred to as the Mean Teacher method [4].

In this case, the raw data xi are first preprocessed and then injected into the network
classifier in the same manner as the previous SSML models. However, in this case, the

Mach. Learn. Knowl. Extr. 2023, 5 1853

network classifier is not the same as previous models. Here, the network classifier consists
of two identical DNNs with dropout conditions referred to as the student and teacher
models. Primarily, the Mean Teacher model is exactly the same as the Π model during the
computation of forward propagation for both unlabeled and labeled data. However, the
Mean Teacher method diverges from the Π Model during the backward propagation phase
and in the strategy it employs to update weights.

The backward propagation is simply computed for the the parameters θ of the student
model. For the teacher model, the parameter update for θ̃ happens using the parameters of
the student model, θ, by calculating the exponential moving average (EMA) as shown in
Figure 3. This can be observed in Equation (1) [4]:

θ̃t = αθ̃t−1 + (1− α)θt (1)

where
θ̃t specifies the parent weights;
θ̃t−1 signifies the parent weights of the previous run;
θt specifies the child weights; and
α specifies the smoothing parameter.

Figure 3. Mean Teacher model structure representation.

It has been observed that averaging the model weights over various training steps
is more likely to provide a more accurate model compared to utilizing the final weights
promptly. In the case of the Mean Teacher model, the information can be aggregated after
each step rather than every epoch. However, previous research studies have overlooked a
significant metric, which is the difference in the program’s run-time. It has been observed
that the Mean Teacher model can be trained in much less time than the Π model, and it
achieves much improved accuracy compared to Temporal Ensembling. However, there are
some drawbacks of the Mean Teacher model:

• Both the supervised networks perform forward propagation using different param-
eters. However, the student model is the only one with backward propagation to
compute the gradients.

• The Mean Teacher model utilizes much greater memory resources compared to the
other two models since the dropout conditions (η and η′) must be kept and preserved
during each epoch.

3.4. MixMatch

Compared to the previous methods discussed, MixMatch [18] has a different approach
and follows the PF-SSCP method. In every batch, this model augments the raw labeled
data xb and keeps the labels yb, generating the dataset X̂. For the unlabeled data, the raw

Mach. Learn. Knowl. Extr. 2023, 5 1854

input xb is augmented K times, where K is a hyper-parameter. Then, those K augmented
entries are passed through the network classifier to predict all their labels (z̃b2, z̃b2 to z̃bk),
and after that, their average, z̃bavg, is taken as a prediction for all the K entries. z̃bavg is
sharpened using temperature sharpening to reduce the entropy of the label distribution.
This can be carried out as follows:

Sharpen(p, T)i :=
p

1
T
i

∑L
j=1 p

1
T
j

(2)

where
p is some input categorical distribution;
T is a hyperparameter that needs to be tuned; and
L is the number of labeled classes.

As such, the output of the sharpening will produce unlabeled data with the pseudo-
labels z̄b, denoted as Û. Concatenating and shuffling both X̂ and Û, we obtain W. MixUp
is conducted on X̂ and the first |X| entries of W to obtain X′, where |X| is the size of the
labeled data in the batch. Additionally, MixUp is applied on the unlabeled data in the batch
Û with the rest of the entries W to obtain U′. To understand how MixUp works, we need to
understand how (x′, p′) is computed using two examples with their corresponding labels
and probabilities, (x1, p1), (x2, p2), as shown below:

λ ∼ Beta(α, α) (3)

λ′ = max(λ, 1− λ) (4)

x′ = λx1 + (1 + λ′)x2 (5)

p′ = λp1 + (1 + λ′)p2 (6)

where α is the hyperparameter to tune. Due to λ ≥ 0.5 and the max function, the first term
x1 and its label p1 have more importance than the second point x2 and its label p2. This
makes the MixUp model’s prediction for X′ and U′ correspond to labeled and unlabeled
output guesses, respectively. As we know the exact output of labeled data, the classification
cost is basically the cross-entropy. On the other hand, for the consistency cost, since we
are guessing the labels of the unlabeled data, the L2 loss [20] is used. These losses can be
shown in the equations below:

LX =
1
|X′| ∑

x,p∈X′
H(p, pmodel(y|x; θ)) (7)

LU =
1

L|U′| ∑
x,p∈U′

||z̄b − pmodel(y|u; θ))||22 (8)

L = LX + λU LU (9)

3.5. ReMixMatch

Following the same principle as MixMatch, ReMixMatch [19] adopts the PF-SSCP
method but introduces several modifications. One significant alteration is the augmenta-
tion anchoring method. As depicted in Figure 4, the labeled input xb undergoes a robust
augmentation process using a variant of AutoAugment known as CTAugment, which con-
currently learns an augmentation policy during model training. This strongly augmented
labeled data x̂b, together with the label yb, constitutes the dataset X̂. For the unlabeled
input xb, the model employs multiple strong augmentations K, resulting in x̂b,1..k. Using the
same unlabeled raw input xb, a weakly augmented version is generated by applying only a

Mach. Learn. Knowl. Extr. 2023, 5 1855

crop or a flip, yielding X̂bw. This X̂bw is then processed through the network classifier to
obtain the prediction z̃bw.

Figure 4. MixMatch (Top) and ReMixMatch (Bottom) model structure representation.

Another notable modification is the implementation of distribution alignment on
z̃bw. This adjustment involves maintaining a running average of the network classifier’s
predictions for the unlabeled data, denoted as p̃(y), and estimating the marginal class
distribution p(y) for the labeled examples during training. The model then applies a
ratio of p(y)/ p̃(y) to the network classifier’s prediction of the label z = pmodel(y|u; θ),
followed by normalization using Normalize(x)i = xi/ ∑j xj. Subsequently, temperature
sharpening, as previously discussed in the context of MixMatch, is applied to produce the
pseudo-labels z̄bw.

Utilizing both x̂b,1..k and z̄bw, the model generates the unlabeled dataset Û. It is evident
that the multiple strongly augmented versions of the unlabeled data are based on the
weakly augmented variants. Beyond this stage, the procedure aligns precisely with that of
MixMatch, adhering more generally to the PF-SSCP framework.

4. SSML Model Analysis Framework

As with many other ML algorithms, SSML algorithms maintain a similar structure,
albeit with minor differences. Referring to Figure 5, we observe the network classifier-
focused structure of previous SSML models, such as the Π model, Mean Teacher, and
Temporal Ensembling. The preprocessing of labeled and unlabeled data is conducted, which
are then injected into the network classifier without splitting, simultaneously. Throughout
the preprocessing step, data quality is enhanced by suppressing undesirable distortions
or enhancing certain image features essential for further processing. For instance, some
of these operations could include filtering, geometric transformations, pixel brightness
adjustments, or a combination thereof.

Mach. Learn. Knowl. Extr. 2023, 5 1856

Figure 5. Network classifier-focused semi-supervised computation process (CF-SSCP).

Analyzing these SSML algorithms, the network classifier block comprises single or
multiple instances of essentially the same DNN to execute the optimal data classification.
Consequently, this unique network classifier design facilitates transformative parameter
updates. This feature differentiates various SSML models. A network classifier can include
the following types:

• One DNN: Here, a single DNN is employed in the classifier, conducting both backward
and forward propagations.

• Two DNNs: This configuration utilizes two nearly identical DNNs, differing slightly
in their dropout conditions and parameter initialization. Forward propagation occurs
in both DNNs; however, backward propagation might not occur in one of these DNNs
in some designs.

• Three or more DNNs: Here, three or more DNNs are employed, potentially with
varying initialization conditions. Additionally, dropout conditions may or may not be
integrated into these DNNs.

Depending on the total number of DNNs, the network classifier’s output integrates
one or more classifications for computing the loss. Based on the data type input, there are
two distinct cases for loss computation:

• Unlabeled data: For unlabeled data, the consistency cost among two or more DNN
instances is calculated, multiplied by the number of classes and the inverse of the
batch size.

• Labeled data: In this scenario, the consistency cost among two or more DNN instances
and the classification cost between one or more models are computed.

It is noteworthy that the classification cost is calculated only for labeled data. For
unlabeled data, the classification cost is not computed and is set to zero.

Upon assessing the most recent state-of-the-art MixMatch and ReMixMatch, we no-
ticed a deviation in the structure of the previous semi-supervised computation process.
These alterations are depicted in Figure 6.

Figure 6. Preprocessing-focused semi-supervised computation process (PF-SSCP).

Mach. Learn. Knowl. Extr. 2023, 5 1857

As illustrated, preprocessing is applied to both unlabeled and labeled datasets, sub-
sequently outputting postprocessed unlabeled and labeled datasets. The preprocessing
step generates pseudo-labels for the unlabeled datasets, effectively rendering both datasets
labeled [21]. Regarding the network classifier, in most designs, it is simplified to one DNN;
however, there is potential for further exploration. The network classifier’s predictions
are utilized for calculating the classification cost and the consistency cost. Examining each
SSCP, the primary distinctions between PF-SSCP and CF-SSCP are as follows:

• The design’s emphasis is placed on preprocessing steps rather than the network classifier.
• The classification cost is consistently calculated due to the pseudo-labels on the unla-

beled datasets.

While these established differences might seem minor, when evaluating these dis-
tinctions and conducting experiments on these SSML algorithms, the following research
question was prompted:

RQ1: How do PF-SSCP compare to CF-SSCP in parameter updates in network classifiers
and preprocessing techniques, respectively, measured in training time, learning accuracy,
and training loss?

Furthermore, the consistency cost (also known as the unsupervised loss) can be
computed using the classification outputs of one or more DNN instances, denoted as zi and
z̃i. Moreover, in instances where only one DNN is employed, z̃i represents the evaluations
of the previous network, not a second network’s evaluation. Generally, the consistency cost
is formulated as follows [4,22]:

Consistency Cost = w(t) ∗ Squared Difference

= w(t) ∗ 1
C|B| ∑i∈B

‖zi − z̃i‖2 (10)

where
zi represents fθ(g(xi∈B)) and θ denotes the function’s training parameter.
z̃i denotes fθ′(g(xi inB)), and θ′ represents the function’s training parameter.
|B| is the batch size.
w(t) signifies the time-dependent weighting function (discussed subsequently).
C represents the number of classes, with yi ∈ {1 . . . C} (e.g., cat, tree, dog, car, etc., for
CIFAR-10).

When data are labeled, zi is used in conjunction with the label yi to compute the
classification cost (or the supervised loss). The supervised loss, or classification cost, is
essentially the log of the product of classification and the corresponding label. For mini-
batches of size B, this is the inverse of the mini-batch size multiplied by the sum of the
losses’ negative values, as shown in Equation (11) [4]:

Classification Loss = − 1
|B|∑ log zi[yi] (11)

Combining both losses provides the total loss used for updating the network’s parameters.
In light of these computations and the observed variations in SSCP designs, the following
research question emerges:

Loss = Classification Cost + Consistency Cost

= Cross Entropy + w(t) ∗ Squared Difference

= − 1
|B| ∑

i∈(B∩L)
yi ∗ log zi + w(t) ∗ 1

C|B| ∑i∈B
‖zi − z̃i‖2

(12)

where

zi specifies the fθ(g(xi∈B)) and θ specifies the function training parameter.

Mach. Learn. Knowl. Extr. 2023, 5 1858

|B| represents the batch size.
L includes the labeled input indices.
yi is the label for input xi.
w(t) specifies the time-dependent weighting function (discussed later).
C specifies the number of different classes yi ∈ {1 . . . C} (cat, tree, dogs, car, etc..)

As the loss has been decomposed, and it highly depends on the labeled/unlabeled
data ratio, it raised another subquestion during our experiments:

RQ2: Given the consistency and classification costs’ computation methods in PF-SSCP
and CF-SSCP, how do these costs impact the effectiveness of the semi-supervised learning
models in terms of accuracy and loss during the training and inference phases?

The research questions RQ1 and RQ2 delve deep into the comparative analysis of the
PF-SSCP and CF-SSCP methods, focusing primarily on their structural differences and the
implications these hold on the effectiveness of semi-supervised machine learning models.

5. Empirical Evaluation Method

Before diving into the experiments and assigning values to specific hyperparameters,
it is important to discuss the methodology used to address the research questions. The
adoption of various techniques for applying XAI methods [3,23] to analyze trained models
has steered XAI towards post-hoc analysis. It is essential to remember that the complexity
of a machine learning model is often inversely related to its interpretability [24]. Generally
speaking, the more complicated and unconstrained a model is, the more difficult it is to
interpret or explain clearly [25]. Thus, integrating CNNs within SSML algorithms results in
non-monotonic and non-linear response outputs, contributing to the creation of models
that are among the least interpretable. In this context, our methodology is model-specific,
concentrating on global measures that will enable us to comprehend fully the inputs and
their complex modeled correlations with the output predictions.

5.1. Datasets

In this section, we present the dataset utilized for training semi-supervised machine
learning (SSML) classifiers. The CIFAR-10 dataset was selected, comprising 60,000 distinct
32 × 32 color images evenly distributed across ten different classes, with each class contain-
ing 6000 images. From this dataset, we allocated 10,000 images for the testing process and
the remaining 50,000 images for the training phase.

In terms of the dataset, CIFAR-10 was selected for its simplicity and its common use in
benchmarking the chosen state-of-the-art SSML classifiers. We reduced the labeled data in
various ratios primarily to address RQ2 while also evaluating the comparison of PF-SSCP
and CF-SSCP on aspects such as training time, training loss, and learning accuracy, thereby
contributing to the resolution of RQ1. Given our objective of testing the SSML algorithms
with varying quantities of labeled data, we intentionally withheld some of the labels during
the training of these SSML algorithms, as detailed in Table 1.

Table 1. CIFAR-10 Training Datasets.

Labeled Data Unlabeled Data Labeled Data
per Class

Unlabeled Data
per Class

1000 49,000 100 4900
4000 46,000 400 4600

50,000 0 5000 0

As depicted in Table 1, both labeled and unlabeled data are proportionately distributed
across the ten classes, indicating an impartial approach with no class preference. The sub-
stantial gap between the 4000 and the 50,000 labeled datasets serves as an ideal measure for
assessing the efficacy of the unsupervised components relative to the supervised elements

Mach. Learn. Knowl. Extr. 2023, 5 1859

within various SSML algorithms. In the case of the 1000 labeled datasets, the SSML algo-
rithms undergo rigorous testing, primarily relying on the unsupervised components of the
network, thereby approaching the realm of unsupervised machine learning algorithms [26].

5.2. Preprocessing

The preprocessing step primarily hinges on the specific SSML approach and the
dataset in use. For the purposes of this paper, preprocessing is tailored to either the PF-
SSCP or the CF-SSCP methodologies. In CF-SSCP, we execute zero component analysis
(ZCA) [21], a step adopted by both the Mean Teacher and Π models in their processing
of the CIFAR-10 datasets, which contributes to enhanced accuracy and diminished loss.
Conversely, preprocessing in the context of PF-SSCP, as demonstrated in strategies such
as MixMatch and ReMixMatch, adopts a more intricate approach previously elaborated
upon in Sections 3.4 and 3.5. This method capitalizes on the network classifier’s capability
to generate pseudo-labels, negating dependence on randomized algorithms. Additionally,
a crucial element in both preprocessing-focused and classifier-focused SSCP is data aug-
mentation, a strategy that significantly betters results by enriching the training dataset.
We executed various data augmentation techniques, including image flips, zooms, shifts,
and cropping.

5.3. SSML and DNN Combination

The choice of SSML model dictates the nature of integration to be employed, a ne-
cessity given the distinct behaviors exhibited by different architectural choices [27]. This
combination evaluates five critical aspects:

• Performance, gauged through accuracy and loss metrics.
• The duration of the training process.
• Constraints imposed by hardware.
• The initial selection of hyperparameters.
• The appropriateness of the loss function.

Both PF-SSCP and CF-SSCP are guided by these metrics, though the degree of in-
fluence each one holds varies. This variance is attributable to specific design features
outlined in the preceding section for each SSML type and their respective behaviors. In the
context of CF-SSCP, most DNNs utilize dropout regularization, a technique instrumental
in preventing network overfitting. Conversely, PF-SSCP does not mandate overfitting
prevention measures within the DNNs.

5.4. Ramp-Up and Ramp-Down Functions

In CF-SSCP, a ramp-up period was initiated with 40,000 training steps at the onset
of the training process. During this phase, both the learning rate and the consistency cost
parameters were progressively increased from zero to their peak values using a sigmoid-
shaped function. Conversely, for PF-SSCP, a linear ramp-up was employed, escalating from
an initial value of 100 to the maximum over the initial 16,000 training steps.

5.5. SSML Performance Measurements

This segment details the approach adopted to assess the classification efficacy of
the SSML networks, with a specific focus on the variety of network classifiers involved
in the evaluation. As indicated earlier, our experimental analysis was confined to the
CIFAR-10 dataset. Per the discussion in Section 4, any SSML algorithm can be abstracted
into two distinct types of SSML architectures, as illustrated in Figure 5, by employing
diverse network classifiers. In this study, we restricted our consideration to contemporary
CNN models serving as the network classifiers in SSML networks. For the training and
evaluation phases of the proposed systems, we utilized a GeForce GTX 2080 Ti GPU. This
specific GPU was chosen for its proficiency in handling an array of SSML algorithm and
network classifier combinations [28].

Mach. Learn. Knowl. Extr. 2023, 5 1860

It is pertinent to mention that in CF-SSCP, for a streamlined analysis, we amalgamated
the preprocessing stage with the feature selection process, as both these procedures pre-
condition the datasets prior to their introduction to the network classifiers. In contrast,
PF-SSCP placed a greater emphasis on the preprocessing stages as well as the generation
of pseudo-labels, owing to the inherent design of PF-SSCP, to more significantly affect the
dataset rather than the network classifier.

The ensuing performance metrics were established as the foundation for the appraisal
of the proposed models:

• Performance accuracy and training loss, evaluated against varying proportions of
unlabeled to labeled datasets.

• The duration of training necessitated by each amalgamation of SSML with diverse
network classifiers, inclusive of the time expended during the preprocessing and
feature selection stages.

• Utilization of parameters and the complexity intrinsic to various SSML algorithms,
with an exposition on the distinct parameters requisite in each scenario and their
subsequent influence on complexity.

5.6. Experimental Design and Framework Specifications

In order to rigorously evaluate the performance of semi-supervised learning models,
our experiments incorporate two principal computational frameworks: the CF-SSCP and
the PF-SSCP frameworks, as outlined in Table 2. These frameworks provide the basis
for comparing models by assessing the impact of classifier complexity and preprocessing
sophistication. The table showcases the relevant experiments conducted, presenting a clear
framework for analysis, while a comprehensive list of experimental hyperparameters and
additional experimental details are reserved for the Appendix A section of this paper.

Table 2. Experiments for different semi-supervised models under CF-SSCP and PF-SSCP frameworks.

Framework Model Experiment and Architecture Summarized Purpose

CF-SSCP Temporal Ensembling (TE) Exp 1: TE and Shake-Shake26 Ensemble predictions over time for stability and consistency
Exp 2: TE and DenseNet-121 Utilizing ensemble learning with a focus on network depth
Exp 3: TE and WRN-40-2 Applying ensembles to widen and deepen network architectures
Exp 4: TE and WRN-28-10 Ensemble methods combined with a wider network model

Π Model Exp 5: Π model and Shake-Shake26 Ensuring consistent network predictions without skip connections
Exp 6: Π model and DenseNet-121 Consistency of prediction with depth-oriented network architectures
Exp 7: Π model and WRN-40-2 Deeper networks under consistency constraints
Exp 8: Π model and WRN-28-10 Wider networks maintaining prediction consistency

Mean Teacher (MT) Exp 9: MT and Shake-Shake26 Teacher–student model consistency without skip connections
Exp 10: MT and DenseNet-121 Depth and skip connections in a teacher–student setup
Exp 11: MT and WRN-40-2 Deeper architecture in a mean teacher framework
Exp 12: MT and WRN-28-10 Enhanced width in the teacher–student model’s architecture

PF-SSCP MixMatch (MM) Exp 13: MM and Shake-Shake26 Augmentation and mixing strategies for semi-supervised learning
Exp 14: MM and DenseNet-121 Deep architecture applied to advanced mix-and-match techniques
Exp 15: MM and WRN-40-2 Widening and deepening networks with semi-supervised mix–matching
Exp 16: MM and WRN-28-10 Wide network structures in advanced mix–match learning scenarios

ReMixMatch (RM) Exp 17: RM and Shake-Shake26 Refinement of mix–match techniques with a preprocessing focus
Exp 18: RM and DenseNet-121 Application of preprocessing strategies in deep learning models
Exp 19: RM and WRN-40-2 Preprocessing alignment in wider and deeper network structures
Exp 20: RM and WRN-28-10 Extensive preprocessing in a widened network scenario

The selection of architectures for our experiments was deliberate to encompass a broad
range of complexities and capacities pertinent to semi-supervised learning:

• DenseNet-121 (Dense Convolutional Network—121 layers): Known for its dense
connectivity, DenseNet-121 optimizes parameter efficiency and facilitates feature
propagation and reuse. Its design is particularly beneficial for learning with limited
labeled data, which is a common challenge in semi-supervised learning scenar-
ios [29].

• Shake-Shake Regularization Model (Shake-Shake26): The Shake-Shake regulariza-
tion approach, exemplified by the Shake-Shake26 model, introduces stochasticity [30]

Mach. Learn. Knowl. Extr. 2023, 5 1861

into the training process. This method has been shown to enhance generalization on
image classification tasks, presenting a unique advantage in semi-supervised learning
frameworks [31].

• Wide Residual Networks (WRN-40-2): The WRN-40-2 architecture augments the net-
work’s width, offering an optimal trade-off between depth and width. This expanded
network capacity allows it to represent more complex functions and data relationships,
benefiting from the additional unlabeled data in semi-supervised learning setups [8].

• WRN-28-10: The WRN-28-10 extends the width of traditional residual networks even
further, targeting the rigorous demands of high-complexity classification tasks. The
architecture is designed to capitalize on the unlabeled data that are more prevalent in
semi-supervised learning contexts [8].

The adoption of these architectures in our experiments allows us to thoroughly as-
sess the efficacy of semi-supervised learning strategies across varying levels of network
complexity and depth.

6. Evaluation Results and Analysis
6.1. CF-SSCP with Various Network Classifiers

Given CF-SSCP’s substantial reliance on the network classifier, it becomes pertinent to
investigate its performance dynamics across different network classifiers. Accordingly, our
tests for CF-SSCP were conducted using both single (Mean Teacher and Temporal Ensembling)
and double (Π model) network classifiers. The ensuing subsections detail our findings.

6.1.1. Results of Temporal Ensembling

The Temporal Ensembling method, utilizing a singular DNN within the network clas-
sifier, stands as the most straightforward among the three SSML algorithms. As evidenced
in Figures 7 and 8, it is apparent that, under Temporal Ensembling, the efficacy of both
WRN-40-2 and DenseNet-121 is overshadowed by the more robust Shake-Shake26 model.

Figure 7. Loss comparison for Temporal Ensembling: DenseNet-121 vs. Shake-Shake26.

Mach. Learn. Knowl. Extr. 2023, 5 1862

Figure 8. Loss comparison for Temporal Ensembling: WRN-40-2 vs. Shake-Shake26.

Inspection of the accuracy data in Figure 9 reveals that training accuracy marginally
surpasses test accuracy, with the highest accuracy observed at 4000 labels.

Figure 9. Training and testing accuracy for Temporal Ensembling with Shake-Shake26.

However, as Figure 10 demonstrates, the training loss for Shake-Shake26 within the
Temporal Ensembling framework fails to reach optimal performance even with extensive
hyperparameter tuning. This outcome likely stems from the model’s simplicity, concen-
trating solely on the training loss of a single DNN. Thus, exploration into the alternative
models, namely the Π model and Mean Teacher model, is warranted.

Mach. Learn. Knowl. Extr. 2023, 5 1863

Figure 10. Training loss for Temporal Ensembling with Shake-Shake26.

Summary:

In all three experiments, it is evident that Temporal Ensembling experiences the high-
est loss compared to the other two models, the Π model and the Mean Teacher model.
Analyzing the efficacy of various DNNs within the network classifier of Temporal Ensem-
bling reveals that Shake-Shake26 incurs the least loss compared to the other two DNNs,
namely, DenseNet and WideResNet. This suggests that a DNN with fewer skip connections
can yield more accurate results and lower training loss. Additionally, employing two
DNNs in a network classifier appears to facilitate better parameter updates during the
computation of the consistency cost.

6.1.2. Results of Π Model and Mean Teacher

We conducted training and validation for the Π model and Mean Teacher model
utilizing WideResNet as the primary network. This setup was designed to exhibit the
performance metrics of each model by leveraging the CIFAR-10 dataset with varying
percentages of labeled data.

• WideResNet Core Network with Mean Teacher: Figure 11 depicts the accuracy
achieved by the Mean Teacher model using WideResNet as our core network. The
graph indicates that the highest validation accuracy was achieved using the Stochastic
Gradient Descent (SGD) [32] algorithm with 44,000 labels, the maximum in these ex-
periments. Notably, accuracy diminishes as the label count decreases. This trend was
anticipated since accuracy correlates with the total label count, assuming unchanged
hyperparameters.
However, the primary observation here concerns the discrepancy between the SGD
and Adam optimizers. Clearly, the SGD optimizer [33] surpassed Adam in terms of
implementation accuracy.
Examining the loss in Figure 12, the Adam optimizer performs superiorly, with less
test loss. Another notable aspect is both networks’ initial struggle to smoothly reduce
loss, resulting in a highly noisy transition of the loss function. This is attributed to
the unsuitability of maintaining consistent hyperparameter values across different
volumes of labeled data.
Another critical point pertains to initialization. Different initialization parameters
are crucial, evident from the 10,000-label dataset starting significantly lower than the
44,000-label set, causing the latter higher initial loss and hindering performance.

Mach. Learn. Knowl. Extr. 2023, 5 1864

Figure 11. Mean Teacher accuracy with WideResNet across all label quantities.

Figure 12. Mean Teacher loss with WideResNet across all label quantities.

• WideResNet core network with Π model: For the Adam optimizer, accuracy does
not directly correlate with the number of labels, as distinctly seen in Figures 11 and 13.

Figure 13. Π model accuracy with WideResNet across all label quantities.

Mach. Learn. Knowl. Extr. 2023, 5 1865

Here, high training accuracy is noted with 1000, 4000, and 44,000 labels. Among
these, the 1000-label dataset provides the highest accuracy. However, the 10,000-label
dataset’s training accuracy is 20% lower than the others, yet its testing accuracy, at
88.56%, surpasses the rest. Additionally, the 1000-label set displays an improvement in
accuracy up to 58% before a decline, suggesting overfitting, as evidenced in Figure 14.

Figure 14. Π model loss with WideResNet across all label quantities.

Comparing this network with different label quantities, the loss is significantly lower
at 10,000 labels, a result of hyperparameter tuning and network initialization. Even
with 44,000 labels, the network struggles to reduce loss due to an unfavorable start.
Moreover, the network’s commencement varies across datasets, except for the 10,000-label
set, where loss increases from 0 to 30 epochs. Significant fluctuations are particu-
larly noticeable for the 1000-label data. These issues could be addressed through
hyperparameter tuning using strategies such as Random Search or Grid Search.

• Comparison of Mean Teacher with Π model using WideResNet as the core net-
work: Figure 15 compares the testing and validation accuracy of both networks,
demonstrating the Mean Teacher model’s superiority over the Π model with 4000-label
datasets.

Figure 15. Mean Teacher vs. Π model in WideResNet accuracy at 4000 labels.

Furthermore, as shown in Figure 16, the Mean Teacher model excels in terms of loss,
even with suboptimal hyperparameter tuning, highlighting the efficacy of the network
design with the same core network and identical hyperparameters.

Mach. Learn. Knowl. Extr. 2023, 5 1866

Figure 16. Mean Teacher vs. Π model in WideResNet loss at 4000 labels.

• Mean Teacher with DenseNet and Shake-Shake26: We deemed it essential to test
the state-of-the-art SSML Mean Teacher model with a core network other than Shake-
Shake26, hence the choice of DenseNet-121. Figure 17 shows that the training loss
for both student networks is predictably lower, as the teacher network guides them
using the EMA formula. These outcomes suggest that the teacher’s parameters are
optimized for the network’s best overall performance. Moreover, the loss from the
teacher represents the most optimal value attainable.

Figure 17. Student and teacher test loss in Mean Teacher for DenseNet and Shake-Shake26 at
1000 labels.

Additionally, the Shake-Shake26 network significantly outperforms DenseNet-121. As
seen in Figure 18, this superiority is also reflected in accuracy performance. The pri-
mary reason is Shake-Shake26’s broader and deeper network compared to DenseNet-
121. However, it requires more computational time for training and hyperparameter
tuning. System designers must consider this computational overhead, particularly
when prioritizing performance over flexibility across datasets.

Mach. Learn. Knowl. Extr. 2023, 5 1867

Figure 18. Student and teacher test accuracy in Mean Teacher for DenseNet and Shake-Shake26 at
1000 labels.

Figure 19 provides a few intriguing observations about the relationship between
the teacher and the student models. First, with data with 4000 labels, the Shake-
Shake26 network training process experiences a huge surge in the loss in the student
nework. As a result, the teacher’s network progress is also impacted. Secondly, the
accuracy performance of a particular neural network is different for different datasets
with various percentages of the labeled dataset. Therefore, it implies that the neural
network design must be modified to incorporate dataset variations. Moreover, the
hyperparameter tuning in the EMA can render better assumptions that would help in
certain scenarios.

Figure 19. Shake-Shake26 vs. DenseNet-121 in Π model loss at 4000 labels.

Mach. Learn. Knowl. Extr. 2023, 5 1868

Summary:

The incorporation of dual DNNs within a network classifier has shown to confer
improved accuracy and reduced testing loss, a likely consequence of the combined clas-
sification prowess during forward propagation. This dual-network setup also injects
additional variability into the calculation of the consistency cost, which in turn influences
the total loss, with unlabeled data contributing to this effect. A comparative assessment of
semi-supervised machine learning (SSML) models indicates that the Mean Teacher model
surpasses the Π model in terms of accuracy and achieves a lower test loss.

When examining the performance across different SSML algorithms using Shake-
Shake26, this model consistently presented a reduced loss when pitted against the DenseNet
and WideResNet models, which may be attributable to its network width.

6.2. PF-SSCP with Different Network Classifiers

Understanding how PF-SSCP compares to CF-SSCP is crucial, but it is also vital to
discern how the network classifier impactsPF-SSCP. We conducted tests using different net-
work classifiers within both the MixMatch and ReMixMatch frameworks. The subsections
below detail our analysis.

Results of MixMatch and ReMixMatch Analysis

• MixMatch Compared to ReMixMatch with WideResNet as a Core Network:
Given PF-SSCP’s emphasis on performance with the increased use of unlabeled data,
we compared the outcomes from both frameworks using the same WideResNet-28-2,
which has a depth of 28, a width of 2, and incorporates batch normalization [34]. As
depicted in Figure 20, ReMixMatch slightly outperforms MixMatch with 4000 labels.
This discrepancy widens with fewer labeled data.

Figure 20. MixMatch vs. ReMixMatch at 4000 labels with WideResNet-28-2.

With 1000 labels, as shown in Figure 21, the performance gap becomes more pro-
nounced. An intriguing observation is the convergence of the two semi-supervised
machine learning models (SSMLs) within a limited number of epochs. ReMixMatch
achieves higher initial accuracy, indicating its strength with fewer labeled data. How-
ever, overall performance differences are marginal, as MixMatch eventually catches
up by the end of training.

Mach. Learn. Knowl. Extr. 2023, 5 1869

Figure 21. MixMatch vs. ReMixMatch at 1000 labels with WideResNet-28-2.

• MixMatch and ReMixMatch with Shake-Shake26 as a core network:
Employing different core networks allows us to visualize the performance contri-
butions of the SSMLs, independent of the underlying networks. By switching to
Shake-Shake26, we sought to discern any performance variations. A close examina-
tion with 1000 labels, as seen in Figure 22, reveals an insignificant difference compared
to WideResNet-28-2. Shake-Shake26 converges more rapidly, with marginally better
accuracy, but this is not as pronounced when these Deep Neural Networks (DNNs)
are used independently.

Figure 22. MixMatch and ReMixMatch at 1000 labels with WideResNet-28-2 and Shake-Shake26.

Mach. Learn. Knowl. Extr. 2023, 5 1870

In Figure 23, with 4000 labels, ReMixMatch paired with Shake-Shake26 shows the
highest accuracy. Notably, ReMixMatch with WideResNet and MixMatch with Shake-
Shake26 are closely matched. The accuracy of ReMixMatch with WideResNet is
slightly higher, but only by a narrow margin. Another key observation is the diver-
gence in convergence patterns between MixMatch with Shake-Shake26 and MixMatch
with WideResNet, as confirmed through five consecutive tests to ensure the find-
ing’s accuracy.

Figure 23. MixMatch and ReMixMatch at 4000 labels with WideResNet-28-2 and Shake-Shake26.

Summary:

A comparative review of the experimental data reveals that MixMatch and ReMix-
Match algorithms yield higher accuracy improvements over the Mean Teacher, Π model,
and Temporal Ensembling methods, underscoring the significance of preprocessing in
model performance. When juxtaposing MixMatch with ReMixMatch, the latter exhibits
a marginal lead in accuracy, indicating its slight edge within the preprocessing-enhanced
learning approaches.

6.3. Training Time

Since the training time of a neural network in a production environment is critical,
choosing the correct DNN for the SSML is a major decision in some cases where data change.
Table 3 presents the training time results for every combination of all DNNs by executing
all the SSMLs on the GPU—i.e., an Nvidia 2080 Ti GTX. The deeper and wider DNN is
Shake-Shake26, and for this reason, the results demonstrate the highest training time in
this case. On the other hand, the lowest training time was observed for DenseNet-121. This
is due to the interconnection among the layers [35], making the total number of parameters
lower as compared to the WideResNet model.

Mach. Learn. Knowl. Extr. 2023, 5 1871

Table 3. Pearson correlation coefficients.

Network Classifier SSML
Algorithm

Labeled Data/
Unlabeled Data

Training
Time (min)

PCC Average PCC

Shake-Shake26

49,000/1000 1020

PCCshake = 0.7227

p-value= 0.002003

z′shake = 0.929

PCCaverage = 0.701

p-value= 0.003597

z′avg = 0.87

Temporal E. 46,000/4000 824
0/50,000 120

49,000/1000 1161
Mean Teacher 46,000/4000 1094

0/50,000 158

49,000/1000 1351
Π model 46,000/4000 1272

0/50,000 168

49,000/1000 1211
MixMatch 46,000/4000 1103

0/50,000 163

49,000/1000 1239
ReMixMatch 46,000/4000 1142

0/50,000 149

DenseNet-121

49,000/1000 323

PCCdensenet = 0.7585

p-value= 0.001046

z′densenet = 0.993

Temporal E. 46,000/4000 276
0/50,000 110

49,000/1000 392
Mean Teacher 46,000/4000 337

0/50,000 124

49,000/1000 443
Π model 46,000/4000 407

0/50,000 168

49,000/1000 404
MixMatch 46,000/4000 353

0/50,000 131

49,000/1000 411
ReMixMatch 46,000/4000 367

0/50,000 139

WideResNet

49,000/1000 387

PCCwide = 0.5968

p-value= 0.01904

z′wide = 0.688

Temporal E. 46,000/4000 324
0/50,000 132

49,000/1000 537
Mean Teacher 46,000/4000 485

0/50,000 158

49,000/1000 553
Π model 46,000/4000 512

0/50,000 179

49,000/1000 551
MixMatch 46000/4000 512

0/50,000 149

49,000/1000 567
ReMixMatch 46,000/4000 517

0/50,000 151

Furthermore, in case of the Π model, the training time is higher due to the model’s ability
to perform backward propagation for both the student and the teacher models. Expectedly,
the lowest training time is still that of Temporal Ensembling, as it includes only one DNN in
the classifier, which reduces the total number of parameters and the SSML’s complexity.

Adding the PF-SSCPs, MixMatch and ReMixMatch require more training time as
compared to the CF-SSCPs, excluding the Π model. This is the due to the complexity
of the preprocessing step introduced and the pseudo-label calculation to generate the
labeled and unlabeled training sets. Comparing MixMatch and ReMixMatch, it is clear
that ReMixMatch requires more training time due to its more complex calculation of the
pseudo-labels, as shown in Figure 4.

In order to see if the correlation would still withhold, Table 3 presents the Pearson cor-
relation coefficients (PCC) [36] and the training time for all network classifiers independent
of the SSCP with different SSML algorithms.

As shown previously, the training times for the Shake-Shake26 model as the DNN
with a 49,000/1000 ratio of unlabeled/labeled data are shown as 1020, 1161, 1351, 1211,
and 1239 min using the Temporal Ensembling model, Mean Teacher model, Π model,
MixMatch, and ReMixMatch, respectively. On the other hand, the training times are 120,
158, 168, 163 and 149 min when there are no labels. In Table 3, we have similar results for

Mach. Learn. Knowl. Extr. 2023, 5 1872

the other network classifiers. The Pearson correlation coefficients (PCC) for each network
classifier are used to indicate a positive correlation between the training time and the
labeled/unlabeled data ratio.

Looking at PCCshake, we can observe a correlation of 0.7227 with a p-value of
0.002003, compared to utilizing only the CF-SSCP algorithm with a p-value of 0.0278
and PCCshake of 0.7227. Moreover, we can observe that 0.73 > 0.7227 > 0.7 and
0.002003 < 0.0278 < 0.05, which indicates a higher correlation. We can find similar results
for the DenseNet model with a PCCDenseNet value of 0.7585. However, for WideResNet, we
see a weaker correlation, although it is noticeably positive with a PCCWideResNet of 0.5968.
To evaluate the average correlation coefficient among all three network classifiers, we
used Fisher’s Z to transform each correlation coefficient. Subsequently, we calculated the
mean z′ value in each case. This means z′avg value was then transformed to the correlation
coefficient again. After performing these computations, the PCCavg was found to be 0.701,
which is greater than 0.692, as stated with CF-SSCP, which indicates a higher correlation.

7. Discussion

As observed in the experiments, SSML based on PF-SSCP demonstrates higher accu-
racy and lower loss compared to that based on CF-SSCP, directly informing our conclusion
regarding RQ1. This improved performance can be attributed to the quantity of data
inputted into the DNNs, which plays a pivotal role in an SSML’s effectiveness. This is due
to the utilization of parameter updates in each design. Additionally, for both PF-SSCP and
CF-SSCP network classifiers, we observed that fewer skip connections enhanced accuracy
and diminished loss. This diversification of parameter updates facilitated more effective
forward propagation, influencing the consistency cost.

Another insight gleaned from these experiments pertains to the correlation between
training time and the ratio of labeled to unlabeled data, as addressed in RQ2. The pres-
ence of more labeled data necessitated increased computational time to calculate the loss,
primarily due to the classification cost. Alterations in the classification cost significantly
affected the loss, prompting substantial parameter updates during backward propagation,
which, in turn, impacted subsequent forward propagation.

8. Conclusions

In this paper, we delved into various facets of SSML through the lenses of post-hoc
XAI and global scale analysis. We dissected SSML into two distinct SSCP components,
highlighting the disparities in learning precision, training time, and design when integrated
with cutting-edge DNNs as network classifiers. Through detailed graphs, we elucidated
their operational mechanics, pinpointing the factors that contribute most significantly to
their functionality.

Moreover, our research, grounded in 45 rigorous experiments, substantiated the impact
of preprocessing techniques introduced within the PF-SSCP method. Our analyses revealed
that the choice of a DNN as a network classifier, regardless of the SSML algorithm employed,
profoundly influences the magnitude of parameter updates, both in terms of frequency
and size, particularly when more skip connections are present. Additionally, our findings
indicated that the preprocessing stages within SSML exert a more pronounced effect than
the selection of the network classifier itself. This insight offers a strategic direction for ML
developers and engineers, encouraging the adoption of innovative frameworks within
SSMLs and DNNs to fully harness the potential of domain-specific data.

Building on prior discoveries, we further reinforced the observed correlation between
training time and the ratio of labeled to unlabeled data, providing robust statistical evidence
to support this relationship. In future endeavors, we aim to meticulously analyze and
deconstruct groundbreaking SSML frameworks in conjunction with DNNs. Our goal is to
authenticate the efficacy of the contributing factors identified in this study by exploring a
broader spectrum of cases.

Mach. Learn. Knowl. Extr. 2023, 5 1873

Author Contributions: Conceptualization, E.N. and Y.L.; methodology, E.N.; software, E.N.; vali-
dation, E.N. and Y.L.; formal analysis, E.N.; investigation, E.N.; resources, Y.L.; data curation, E.N.;
writing—original draft preparation, E.N.; writing—review and editing, E.N. and Y.L.; visualization, E.N.;
supervision, Y.L.; project administration, Y.L.; funding acquisition, Y.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: E.N. and Y.L. declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SSML Semi-supervised machine learning
DNNs Deep neural networks
XAI Explainable artificial intelligence
CNN Convolution neural networks
GNNs Graph neural networks
SSCP Semi-supervised machine learning process
PF-SSCP Preprocessing-focused semi-supervised computation process
CF-SSCP Network classifier-focused semi-supervised computation process
ResNet Residual neural network
WRN Wide residual network
DenseNet Densely connected convolutional network
PCC Pearson correlation coefficient

Appendix A

• Experiment 1 (Temporal Ensembling and Shake-Shake26): This trial involved processing
32 × 32 × 3 images with ZCA and training on two Shake-Shake26 networks. A batch
size of 128 was used over 300 epochs, with a dropout rate of 0.2, a learning rate of 0.2
(reduced at 50% and 75% of epochs), a momentum of 0.86, and a weight decay of 0.0002.

• Experiment 2 (Temporal Ensembling and DenseNet-121): Similar to Experiment 1 but
utilizing two DenseNet-121 networks with a batch size of 64 and an initial learning rate
of 0.1, which is reduced at the midpoint and three-quarter mark of epochs, alongside
a momentum of 0.9 and a weight decay of 0.0001.

• Experiment 3 (Temporal Ensembling and WRN-40-2): Similar to Experiment 1 but using
two WRN-40-2 networks, with a dropout of 0.1, learning rate of 0.1 (decreased at
pre-set epochs), and a weight decay of 0.0005.

• Experiment 4 (Temporal Ensembling and WRN-28-10): Similar to Experiment 3 but with
two WRN-28-10 networks and an increased dropout of 0.3.

• Experiment 5 (Π model and Shake-Shake26): Similar to Experiment 1 but under the Π
model methodology with the same dropout rate and learning rate reduction schedule.

• Experiment 6 (Π model and DenseNet-121): Similar to Experiment 2 but following the
Π model framework with identical dropout and learning rate scheduling.

• Experiment 7 (Π model and WRN-40-2): Similar to Experiment 3, applying the Π model
approach with a dropout of 0.3.

• Experiment 8 (Π model and WRN-28-10): Similar to Experiment 7 but using WRN-28-10
networks.

• Experiment 9 (Mean Teacher and Shake-Shake26): Similar to Experiment 1 with the
Mean Teacher model, applying an EMA of 0.999 and using the Adam optimizer with
specified parameters.

• Experiment 10 (Mean Teacher and DenseNet-121): Similar to Experiment 2, adhering to
the Mean Teacher methodology.

Mach. Learn. Knowl. Extr. 2023, 5 1874

• Experiment 11 (Mean Teacher and WRN-40-2): Similar to Experiment 3 with the Mean
Teacher framework and the same dropout rate.

• Experiment 12 (Mean Teacher and WRN-28-10): Similar to Experiment 7, utilizing the
Mean Teacher strategy.

• Experiment 13 (MixMatch and Shake-Shake26): Similar to Experiment 1 but using the
MixMatch approach, with specific augmentations and no dropout regularization.

• Experiment 14 (MixMatch and DenseNet-121): Similar to Experiment 2, employing the
MixMatch method with a weight decay of 0.997.

• Experiment 15 (MixMatch and WRN-40-2): Similar to Experiment 3, following the
MixMatch technique with an optimal weight decay.

• Experiment 16 (MixMatch and WRN-28-10): Similar to Experiment 7, incorporating
the MixMatch framework.

• Experiment 17 (ReMixMatch and Shake-Shake26): Similar to Experiment 13 but applying
the ReMixMatch methodology.

• Experiment 18 (ReMixMatch and DenseNet-121): Similar to Experiment 14, using the
ReMixMatch strategy with a preferred weight decay.

• Experiment 19 (ReMixMatch and WRN-40-2): Similar to Experiment 15, employing the
ReMixMatch technique with a specific weight decay.

• Experiment 20 (ReMixMatch and WRN-28-10): Similar to Experiment 16, following the
ReMixMatch approach.

• Experiment 21 (Temporal Ensembling and Shake-Shake26 with reduced dropout): Similar to
Experiment 1 but with a reduced dropout of 0.023.

• Experiment 22 (Temporal Ensembling and DenseNet-121 with reduced dropout): Similar to
Experiment 2, with a lowered dropout rate of 0.045.

• Experiment 23 (Temporal Ensembling and WRN-40-2 with reduced dropout): Similar to
Experiment 3, with a dropout rate adjusted to 0.087.

• Experiment 24 (Temporal Ensembling and WRN-28-10 with reduced dropout): Similar to
Experiment 4, with a decreased dropout of 0.083.

• Experiment 25 (Π model and Shake-Shake26 with reduced dropout): Similar to Experiment
5, maintaining a dropout rate of 0.2.

• Experiment 26 (Π model and DenseNet-121 with reduced dropout): Similar to Experiment
6, with a lowered dropout of 0.022.

• Experiment 27 (Π model and WRN-40-2 with reduced dropout): Similar to Experiment 7,
with a reduced dropout of 0.072.

• Experiment 28 (Π model and WRN-28-10 with reduced dropout): Similar to Experiment
8, with a dropout rate of 0.068.

• Experiment 29 (Mean Teacher and Shake-Shake26 with reduced dropout): Similar to Exper-
iment 9, with a dropout of 0.03.

• Experiment 30 (Mean Teacher and DenseNet-121 with reduced dropout): Similar to Experi-
ment 10, with a reduced dropout rate of 0.02.

• Experiment 31 (Mean Teacher and WRN-40-2 with reduced dropout): Similar to Experi-
ment 11, with a decreased dropout of 0.082.

• Experiment 32 (Mean Teacher and WRN-28-10 with reduced dropout): Similar to Experi-
ment 12, with a lowered dropout rate of 0.075.

• Experiment 33 (MixMatch and Shake-Shake26 with four augmentations): Similar to Exper-
iment 13 but with an increased number of augmentations set to 4.

• Experiment 34 (MixMatch and DenseNet-121 with reduced weight decay): Similar to
Experiment 14, with a modified weight decay of 0.997.

• Experiment 35 (MixMatch and WRN-40-2 with optimal weight): Similar to Experiment
15, with a tuned weight decay of 0.999.

• Experiment 36 (MixMatch and WRN-28-10 with optimal weight): Similar to Experiment
16, applying a fine-tuned weight.

• Experiment 37 (MixMatch and WRN-16-10 with optimal weight): Similar to Experiment
14, but using WRN-16-10 networks.

Mach. Learn. Knowl. Extr. 2023, 5 1875

• Experiment 38 (ReMixMatch and Shake-Shake26 with dropout): Same as Experiment 17,
but with a dropout of 0.953.

• Experiment 39 (ReMixMatch and DenseNet-121 with dropout): Similar to Experiment 18,
with a dropout rate of 0.238.

• Experiment 40 (ReMixMatch and WRN-40-2 reduced weight decay): Similar to Experi-
ment 19, with a lowered weight decay of 0.877.

• Experiment 41 (ReMixMatch and WRN-16-10 with optimal weight): Similar to Experi-
ment 14, using WRN-16-10 networks.

• Experiment 42 (ReMixMatch and WRN-16-10 with dropout): Similar to Experiment 41,
with a dropout rate of 0.38.

• Experiment 43 (ReMixMatch and WRN-16-10 with weight decay): Identical to Experiment
42, with a weight decay of 0.997.

• Experiment 44 (ReMixMatch and WRN-28-10 with dropout): Similar to Experiment 20,
with a dropout rate of 0.233.

• Experiment 45 (ReMixMatch and WRN-28-10 with very low dropout): Similar to Experi-
ment 20, with a very low dropout of 0.0233.

References
1. Chapelle, O.; Schölkopf, B.; Zien, A. (Eds.) Semi-Supervised Learning; The MIT Press: Cambridge, MA, USA, 2006.
2. Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

2019. Available online: http://xxx.lanl.gov/abs/1811.10154 (accessed on 3 April 2023).
3. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,

6, 52138–52160. [CrossRef]
4. Laine, S.; Aila, T. Temporal Ensembling for Semi-Supervised Learning. CoRR 2016, abs/1610.02242. Available online: http:

//xxx.lanl.gov/abs/1610.02242 (accessed on 14 February 2022).
5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. CoRR 2015, abs/1512.03385. Available online:

http://xxx.lanl.gov/abs/1512.03385 (accessed on 17 February 2022).
6. Neghawi, E.; Liu, Y. Evaluation of Parameter Update Effects in Deep Semi-Supervised Learning Algorithms. In Proceedings of

the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020;
pp. 351–360.

7. Lin, Y.; Han, S.; Mao, H.; Wang, Y.; Dally, W.J. Deep Gradient Compression: Reducing the Communication Bandwidth for
Distributed Training. CoRR 2017, abs/1712.01887. Available online: http://xxx.lanl.gov/abs/1712.01887 (accessed on 3 March 2023).

8. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. 2017. Available online: http://xxx.lanl.gov/abs/1605.07146 (accessed
on 19 March 2023).

9. Baldassarre, F.; Azizpour, H. Explainability Techniques for Graph Convolutional Networks. CoRR 2019, abs/1905.13686. Available
online: http://xxx.lanl.gov/abs/1905.13686 (accessed on 22 February 2023).

10. Yuan, H.; Yu, H.; Gui, S.; Ji, S. Explainability in Graph Neural Networks: A Taxonomic Survey. CoRR 2020, abs/2012.15445.
Available online: http://xxx.lanl.gov/abs/2012.15445 (accessed on 3 March 2023).

11. Xie, N.; Ras, G.; van Gerven, M.; Doran, D. Explainable Deep Learning: A Field Guide for the Uninitiated. CoRR 2020,
abs/2004.14545. Available online: http://xxx.lanl.gov/abs/2004.14545 (accessed on 7 March 2023).

12. Shen, W.; Wei, Z.; Huang, S.; Zhang, B.; Fan, J.; Zhao, P.; Zhang, Q. Interpretable Compositional Convolutional Neural Networks.
CoRR 2021, abs/2107.04474. Available online: http://xxx.lanl.gov/abs/2107.04474 (accessed on 8 February 2023).

13. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
14. Yuan, H.; Tang, J.; Hu, X.; Ji, S. XGNN: Towards Model-Level Explanations of Graph Neural Networks. CoRR 2020, abs/2006.02587.

Available online: http://xxx.lanl.gov/abs/2006.02587 (accessed on 20 December 2022).
15. Pope, P.E.; Kolouri, S.; Rostami, M.; Martin, C.E.; Hoffmann, H. Explainability Methods for Graph Convolutional Neural

Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; pp. 10764–10773. [CrossRef]

16. Kim, G. Recent Deep Semi-supervised Learning Approaches and Related Works. CoRR 2021, abs/2106.11528. Available online:
http://xxx.lanl.gov/abs/2106.11528 (accessed on 17 February 2022).

17. Tarvainen, A.; Valpola, H. Weight-averaged consistency targets improve semi-supervised deep learning results. CoRR 2017,
abs/1703.01780. Available online: http://xxx.lanl.gov/abs/1703.01780 (accessed on 22 December 2022).

18. Berthelot, D.; Carlini, N.; Goodfellow, I.J.; Papernot, N.; Oliver, A.; Raffel, C. MixMatch: A Holistic Approach to Semi-Supervised
Learning. CoRR 2019, abs/1905.02249. Available online: http://xxx.lanl.gov/abs/1905.02249 (accessed on 22 December 2022).

19. David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. ReMixMatch:
Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring. arXiv 2020, arXiv:1911.09785.

20. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

http://xxx.lanl.gov/abs/1811.10154
http://doi.org/10.1109/ACCESS.2018.2870052
http://xxx.lanl.gov/abs/1610.02242
http://xxx.lanl.gov/abs/1610.02242
http://xxx.lanl.gov/abs/1512.03385
http://xxx.lanl.gov/abs/1712.01887
http://xxx.lanl.gov/abs/1605.07146
http://xxx.lanl.gov/abs/1905.13686
http://xxx.lanl.gov/abs/2012.15445
http://xxx.lanl.gov/abs/2004.14545
http://xxx.lanl.gov/abs/2107.04474
http://xxx.lanl.gov/abs/2006.02587
http://dx.doi.org/10.1109/CVPR.2019.01103
http://xxx.lanl.gov/abs/2106.11528
http://xxx.lanl.gov/abs/1703.01780
http://xxx.lanl.gov/abs/1905.02249

Mach. Learn. Knowl. Extr. 2023, 5 1876

21. Pal, K.K.; Sudeep, K.S. Preprocessing for image classification by convolutional neural networks. In Proceedings of the 2016 IEEE
International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India,
20–21 May 2016.

22. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2013.
23. Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.;

et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. 2019.
Available online: http://xxx.lanl.gov/abs/1910.10045 (accessed on 17 April 2023).

24. Chen, J.; Song, L.; Wainwright, M.J.; Jordan, M.I. Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.
CoRR 2018, abs/1802.07814. Available online: http://xxx.lanl.gov/abs/1802.07814 (accessed on 22 February 2023).

25. Lipton, Z.C. The mythos of model interpretability. Queue 2018, 16, 30. [CrossRef]
26. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. 2020.

Available online: http://xxx.lanl.gov/abs/1911.05722 (accessed on 22 February 2023).
27. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. CoRR 2015,

abs/1512.00567. Available online: http://xxx.lanl.gov/abs/1512.00567 (accessed on 5 April 2023).
28. Hadjis, S.; Zhang, C.; Mitliagkas, I.; Ré, C. Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs. CoRR

2016, abs/1606.04487. Available online: http://xxx.lanl.gov/abs/1606.04487 (accessed on 18 February 2022).
29. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. CoRR 2016, abs/1608.06993. Available online:

http://xxx.lanl.gov/abs/1608.06993 (accessed on 17 February 2022).
30. Mania, H.; Pan, X.; Papailiopoulos, D.; Recht, B.; Ramchandran, K.; Jordan, M.I. Perturbed Iterate Analysis for Asynchronous

Stochastic Optimization. 2016. Available online: http://xxx.lanl.gov/abs/1507.06970 (accessed on 23 August 2023).
31. Gastaldi, X. Shake-Shake regularization. CoRR 2017, abs/1705.07485. Available online: http://xxx.lanl.gov/abs/1705.07485

(accessed on 23 August 2023).
32. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. Coursera Neural

Netw. Mach. Learn. 2012, 4, 26–31.
33. Goyal, P.; Dollár, P.; Girshick, R.B.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, Large Minibatch

SGD: Training ImageNet in 1 Hour. CoRR 2017, abs/1706.02677. Available online: http://xxx.lanl.gov/abs/1706.02677 (accessed
on 7 March 2023).

34. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. CoRR
2015, abs/1502.03167. Available online: http://xxx.lanl.gov/abs/1502.03167 (accessed on 7 March 2023).

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

36. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://xxx.lanl.gov/abs/1910.10045
http://xxx.lanl.gov/abs/1802.07814
http://dx.doi.org/10.1145/3236386.3241340
http://xxx.lanl.gov/abs/1911.05722
http://xxx.lanl.gov/abs/1512.00567
http://xxx.lanl.gov/abs/1606.04487
http://xxx.lanl.gov/abs/1608.06993
http://xxx.lanl.gov/abs/1507.06970
http://xxx.lanl.gov/abs/1705.07485
http://xxx.lanl.gov/abs/1706.02677
http://xxx.lanl.gov/abs/1502.03167
http://dx.doi.org/10.1109/CVPR.2016.90

	Introduction
	Related Work
	Survey Analysis of SOTA Models with Modular Computation Components
	Temporal Ensembling
	 Model
	Mean Teacher
	MixMatch
	ReMixMatch

	SSML Model Analysis Framework
	Empirical Evaluation Method
	Datasets
	Preprocessing
	SSML and DNN Combination
	Ramp-Up and Ramp-Down Functions
	SSML Performance Measurements
	Experimental Design and Framework Specifications

	Evaluation Results and Analysis
	CF-SSCP with Various Network Classifiers
	Results of Temporal Ensembling
	Results of Model and Mean Teacher

	PF-SSCP with Different Network Classifiers
	Training Time

	Discussion
	Conclusions
	Appendix A
	References

