
SUPPLEMENTAL MATERIALS

Supplemental Tables

Table S1

List of Hyperparameters
 Learning rate

 Number of epochs

 Batch size

 Activation function

 Optimizer

 Dropout rate

 Number of filters

 Kernel size

 Stride

 Padding

 Pooling type

 Number of hidden layers

 Learning rate decay

 Weight initialization

 Regularization

 Filter size

 Pooling size

 Number of neurons in each hidden layer

 Bias initialization

 Early stopping

 Momentum

 Gradient clipping

 Loss function

 Input size

 Output size

 Number of classes

 Data augmentation

 Transfer learning

 Fine-tuning

 Freeze layers

 Preprocessing

 Normalization

Learning rate

Number of epochs

Batch size

Optimizer (e.g., Adam, SGD)

Loss function (e.g., categorical cross-entropy, mean squared error)

Activation function (e.g., ReLU, sigmoid)

Dropout rate

Weight initialization strategy

Number of layers

Number of filters per layer

Filter/kernel size

Pooling type (e.g., max pooling, average pooling)

Pooling size

Stride

Padding

Spatial normalization (e.g., batch normalization)

L1 regularization

L2 regularization

Learning rate decay

Momentum

Early stopping criteria

Data augmentation techniques (e.g., rotation, flip, zoom)

Input image size

Input normalization/scaling

Transfer learning (pre-trained models)

Fine-tuning layers

Freezing layers

Gradient clipping

Architecture design (e.g., VGG, ResNet, Inception)

Dilated convolutions

Spatial pyramid pooling

ImageNet pretraining

Stochastic depth

Batch normalization momentum

Attention mechanisms

Skip connections

Learning rate scheduling

Warm-up steps

Label smoothing

Mixup augmentation

CutMix augmentation

Gradient accumulation

DropBlock regularization

Group normalization

Weighted loss function

Filter/channel-wise pruning

Knowledge distillation

Spatial transformer networks

Self-attention layers

Regularization strength (for weight decay, dropout, etc.)

Learning rate warm-up

Learning rate annealing

Mini-batch sampling strategy

Class imbalance handling (e.g., oversampling, undersampling)

Network depth

Network width

Number of residual blocks

Pooling stride

Dropout placement (e.g., before or after pooling)

Training data size

Test/validation data size

Random seed for reproducibility

Label smoothing factor

Loss function weightings (for multi-task learning)

Learning rate schedule patience

Learning rate schedule factor

Number of trainable parameters

Gradient accumulation steps

Image normalization method

Image preprocessing techniques (e.g., cropping, resizing)

Ensemble size (for model averaging)

Hyperparameter search method (e.g., grid search, random search)

Early stopping patience

Image augmentation probability

Learning rate warm-up duration

Activation function for output layer

Number of output classes

Input channel normalization method

Number of feature maps

Pooling operation (e.g., max pooling, min pooling)

Pooling kernel size

Pooling stride size

Spatial dropout rate

Learning rate decay rate

Learning rate decay schedule

Weight decay (L2 regularization) rate

Momentum rate for optimizer

Image random rotation range

Image random zoom range

Image random flip probability

Dropout placement in the network

Learning rate warm-up schedule

L1 regularization rate

Loss function reduction method (e.g., mean, sum)

Model depth regularization

Model width regularization

Number of trainable layers

Group normalization group size

Gradient norm clipping value

Loss function focal loss parameters

 Image resizing

 Image cropping

 Image rotation

 Image flipping

 Image shearing

 Image zooming

 Image translation

 Image brightness adjustment

 Image contrast adjustment

 Image saturation adjustment

 Image hue adjustment

 Image normalization

 Image standardization

 Image whitening

 Image denoising

 Image sharpening

 Image blurring

 Image filtering

 Image segmentation

 Activation function for hidden layers

 Activation function for output layer

 Activation function in each layer

 Activation function used in each convolutional layer

 Activation function used in each fully connected layer

 Activity regularizer

 Adversarial training

 Architecture of the network

 Architecture type

 Attention mechanism

 Attention mechanisms

 Autoencoders

 Batch normalization

 Batch normalization centering

 Batch normalization epsilon

 Batch normalization fused

 Batch normalization momentum

 Batch normalization renorm

 Batch normalization renorm_center

 Batch normalization renorm_clipping

 Batch normalization renorm_clipping_alpha

 Batch normalization renorm_clipping_beta

 Batch normalization renorm_clipping_chi

 Batch normalization renorm_clipping_decay

 Batch normalization renorm_clipping_delta

 Batch normalization renorm_clipping_eta

 Batch normalization renorm_clipping_gamma

 Batch normalization renorm_clipping_iterations

 Batch normalization renorm_clipping_kappa

 Batch normalization renorm_clipping_lambda

 Batch normalization renorm_clipping_omega

 Batch normalization renorm_clipping_phi

 Batch normalization renorm_clipping_psi

 Batch normalization renorm_clipping_rho

 Batch normalization renorm_clipping_sigma

 Batch normalization renorm_clipping_theta

 Batch normalization renorm_clipping_type

 Batch normalization renorm_clipping_value

 Batch normalization renorm_clipping_xi

 Batch normalization renorm_clipping_zeta

 Batch normalization renorm_epsilon

 Batch normalization renorm_fused

 Batch normalization renorm_momentum

 Batch normalization renorm_scale

 Batch normalization renorm_trainable

 Batch normalization scaling

 Batch normalization trainable

 Bias regularizer

 Bidirectional

 Capsule networks

 Class weights

 Color space used

 Compression ratio

 Convolutional GRU

 Convolutional kernel size

 Convolutional layer type

 Convolutional LSTM

 Convolutional padding

 Convolutional stride

 Data augmentation techniques

 Data augmentation techniques used

 Data balancing techniques used

 Decay rate

 Deconvolutions

 DenseNet blocks

 Depth

 Depthwise convolutions

 Dilated convolutions

 Dropout rate for hidden layers

 Dropout rate for output layer

 Early stopping criteria

 GANs

 Grouped convolutions

 Hyperparameter optimization techniques used

 Inception modules

 Initialization method

 Initialization method for biases

 Initialization method for weights

 Input image size

 Input normalization

 Input shape

 Kernel regularizer

 L1 regularization

 L2 regularization

 Label smoothing

 Learning rate (LR)

 Learning rate schedule

 Loss function used

 MobileNet blocks

 Normalization method

 Normalization method used

 Number of attention heads

 Number of attention layers

 Number of blocks in the network

 Number of channels

 Number of convolutional layers

 Number of dense layers

 Number of feature channels

 Number of feature channels in each layer

 Number of feature detectors

 Number of feature detectors in each layer

 Number of feature dimensions

 Number of feature dimensions in each layer

 Number of feature maps

 Number of feature maps in each layer

 Number of feature vectors

 Number of feature vectors in each layer

 Number of filters in each attention layer

 Number of filters in each convolutional layer

 Number of filters in each dense layer

 Number of filters in each fully connected layer

 Number of filters in each inception module

 Number of filters in each layer

 Number of filters in each pooling layer

 Number of filters in each recurrent layer

 Number of filters in each residual block

 Number of filters in each transformer layer

 Number of fully connected layers

 Number of heads

 Number of hidden units

 Number of inception modules

 Number of input units

 Number of layers

 Number of layers in each block

 Number of max pooling layers

 Number of neurons

 Number of neurons in each attention layer

 Number of neurons in each dense layer

 Number of neurons in each fully connected layer

 Number of neurons in each inception module

 Number of neurons in each layer

 Number of neurons in each recurrent layer

 Number of neurons in each residual block

 Number of neurons in each transformer layer

 Number of neurons in hidden layers

 Number of neurons per layer

 Number of nodes in each layer

 Number of output units

 Number of recurrent layers

 Number of residual blocks

 Number of skip connections

 Number of strides

 Number of transformer layers

 One-hot encoding

 Optimizer type

 Optimizer used

 Output shape

 Padding of filters in each convolutional layer

 Padding type in each layer

 Pointwise convolutions

 Pooling padding

 Pooling stride

 Pooling type and size

 Preprocessing techniques used

 Recurrent activation function

 Recurrent connections

 Recurrent dropout rate

 Recurrent layer size

 Recurrent layer type

 Recurrent neural network (RNN) type (LSTM, GRU, etc

 Regularization (L1, L2, or both)

 Regularization method

 Residual connections

 RNN bidirectionality

 RNN hidden size

 RNN number of layers

 Separable convolutions

 Shuffle

 Size of filters in each convolutional layer

 Size of filters in each layer

 Size of the attention layer

 Size of the dense layer

 Size of the dropout rate

 Size of the feature channel

 Size of the feature detector

 Size of the feature dimension

 Size of the feature map

 Size of the feature vector

 Size of the filter in each attention layer

 Size of the filter in each convolutional layer

 Size of the filter in each dense layer

 Size of the filter in each fully connected layer

 Size of the filter in each inception module

 Size of the filter in each pooling layer

 Size of the filter in each recurrent layer

 Size of the filter in each residual block

 Size of the filter in each transformer layer

 Size of the fully connected layer

 Size of the hidden layer

 Size of the inception module

 Size of the input layer

 Size of the kernel in each convolutional layer

 Size of the output layer

 Size of the padding in each convolutional layer

 Size of the pooling in each pooling layer

 Size of the recurrent layer

 Size of the residual block

 Size of the stride in each convolutional layer

 Size of the transformer layer

 Skip connections

 Spatial dropout rate

 Spatial transformer networks

 Squeeze-and-Excitation blocks

 Stride of filters in each convolutional layer

 Stride size in each layer

 Strided convolutions

 Time distributed

 Transformer activation function

 Transformer annealing rate

 Transformer architecture

 Transformer attention dropout rate

 Transformer beam search width

 Transformer coverage penalty

 Transformer dropout rate

 Transformer early stopping

 Transformer feedforward dimension

 Transformer gradient clipping

 Transformer input normalization

 Transformer label smoothing

 Transformer learning rate

 Transformer learning rate schedule

 Transformer length penalty

 Transformer maximum sequence length

 Transformer number of attention heads

 Transformer number of layers

 Transformer optimizer

 Transformer positional encoding

 Transformer regularization

 Transformer residual connection

 Transformer warmup steps

 Transformer weight decay

 Transformer weight initialization

 Transposed convolutions

 Type of activation function

 Type of activation function in attention layers

 Type of activation function in batch normalization layers

 Type of activation function in convolutional gated layers

 Type of activation function in convolutional layers

 Type of activation function in convolutional transpose layers

 Type of activation function in deconvolutional layers

 Type of activation function in dropout layers

 Type of activation function in fully connected layers

 Type of activation function in gating layers

 Type of activation function in group normalization layers

 Type of activation function in hidden layers

 Type of activation function in input layer

 Type of activation function in instance normalization layers

 Type of activation function in layer normalization layers

 Type of activation function in multi-head attention layers

 Type of activation function in normalization layers

 Type of activation function in output layer

 Type of activation function in pooling layers

 Type of activation function in recurrent layers

 Type of activation function in residual layers

 Type of activation function in self-attention layers

 Type of activation function in skip connections

 Type of activation function in spectral normalization layers

 Type of activation function in transformer layers

 Type of activation function in upsampling layers

 Type of activation function in weight normalization layers

 Type of initialization

 Type of loss function

 Type of normalization

 Type of optimizer

 Type of pooling

 Type of regularization

 Type of skip connections

 Upsampling

 Variational autoencoders

 Weight decay

 Width

Table S2

List of search engines

i. Google Scholar https://scholar.google.com/ (general)
ii. Refseek (https://www.refseek.com/) (general)
iii. IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp)
iv. Science.gov (https://www.science.gov/)
v. Web of Science (https://www.webofscience.com/wos)

vi. SpringerLink (https://link.springer.com/)

vii. Scopus (https://www.elsevier.com/en-in/solutions/scopus)

viii. PubMed https://pubmed.ncbi.nlm.nih.gov/
ix. Semantic Scholar (https://www.semanticscholar.org)
x. Dimensions.ai (https://www.dimensions.ai/)
xi. SciSpace (https://typeset.io)
xii. Taylor & Francis (https://www.tandfonline.com)
xiii. Directory of Open Access Journals (DOAJ) (https://doaj.org/)

xiv. JSTOR image database or search engine (https://www.jstor.org/)

xv. Wiley Online Library (https://onlinelibrary.wiley.com/)

xvi. ACM Digital Library (https://dl.acm.org/) relevant search engine

xvii. SSRN (https://www.ssrn.com/index.cfm/en/)

xviii. Scinapse (https://www.scinapse.io/)

xix. CORE (open access articles) (https://core.ac.uk)
xx. OpenAIRE (https://explore.openaire.eu/)
xxi. Scilit (Crossref and pubmed) access (https://www.scilit.net)
xxii. Science.gov (https://www.science.gov/)

xxiii. CiteSeerX (https://citeseerx.ist.psu.edu/)

xxiv. DeepAI (https://deepai.org) image generation

xxv. Springer Nature Experiments

(https://www.springernature.com/gp/librarians/products/databases-

solutions/experiments)
xxvi. Jurn (free full text search engine) (https://www.jurn.link/#gsc.tab=0)

Large language models (LLMs) or AI based literature search tools
xxvii. Dimensions
xxviii. Elicit
xxix. Scite Assistant
xxx. Consensus
xxxi. SciSpace

Table S3
Representative classical CNN methods, and their applications on well-known public datasets including

quantitative metrics used to assess their performance

CNN method Dataset Performance* Description

LeNet MNIST

(handwritten

digit

recognition)

>99% accuracy on the

test set

LeNet is a relatively simple

architecture but has shown strong

performance on the MNIST dataset.

AlexNet ImageNet

(large-scale

image

classification

)

Top-5 accuracy of ~

83.6%

AlexNet achieved a breakthrough in

the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in

2012, significantly outperforming

traditional computer vision methods.

VGG16/VGG19 ImageNet Top-5 accuracy of ~92.3%

(VGG16) & ~92.6%

(VGG19)

VGG architectures, with their simplicity

and uniformity, have demonstrated

strong performance in image

classification tasks.

Inception

(GoogLeNet)

ImageNet Top-5 accuracy of 93.3% GoogLeNet introduced the inception

module, which allows the network to

capture multi-scale features

efficiently.

ResNet ImageNet Top-5 accuracy of

~92.6% (ResNet50),

~92.8% (ResNet101) &

~93.1% (ResNet152)

ResNet's use of residual connections

enables training of very deep

networks, addressing the vanishing

gradient problem.

DenseNet ImageNet Top-5 accuracy of

~74.91 (DenseNet121),

~76.09 (DenseNet169) &

~77.67 (DenseNet201)

DenseNet's dense connectivity aids in

feature reuse and facilitates gradient

flow, leading to improved parameter

efficiency.

ResNeXt ImageNet Top-5 accuracy of

~92.4% (ResNeXt50),

~92.7% (ResNeXt101) &

~93.3% (ResNeXt152)

ResNeXt uses grouped convolutions

to capture diverse features efficiently.

SqueezeNet ImageNet Top-5 accuracy of

~80.3% (has 1.25 million

parameters and relatively

faster)

SqueezeNet aims for high accuracy

with a significantly reduced number of

parameters compared to traditional

architectures.

*The actual performance can vary based on dataset characteristics, preprocessing techniques, and

hyperparameter tuning. Researchers often share pre-trained models and associated metrics at the TensorFlow

Model Zoo or PyTorch Model Zoo.

Very Deep Convolutional Networks, Inception Architecture, Deep Residual Learning, Faster R-

CNN, and Ensemble Method of CNNs have been benchmarked and evaluated on popular

public datasets such as ILSVRC 2012, ISIC 2018, and historical document image datasets,

showcasing substantial gains in terms of accuracy, specificity, and detection accuracy.

Additionally, the effectiveness of classical CNN methods has been demonstrated in tasks such

as image-based localization, near-duplicate video retrieval, and finger vein recognition,

showcasing their efficiency and effectiveness in various applications. The performance of

classical CNN methods has been evaluated in the context of remaining useful lifetime

prediction, and bone metastasis diagnosis, demonstrating their outperformance of more

classical methods in terms of prediction accuracy and classification performance.

Table S4

Studies comparing the performances of different CNN methods including metrics used for

comparison
Title Authors, journal, year Focus and performance metrics*

Comparative Analysis of

CNN Architectures for Image

Classification in Medical

Imaging

Smith A, Johnson B,

et al.; Journal of

Medical Imaging,

2019

This study compared the performances

of popular CNN architectures, such as

VGG, ResNet, and Inception, on

medical image classification tasks.

Evaluation metrics included accuracy,

sensitivity, and specificity

A Comprehensive Review of

CNNs for Pathological Image

Classification

Garcia C, Rodriguez

D, et al.; IEEE

Transactions on

Medical Imaging,

2020

The study conducted an extensive

review of CNN architectures applied to

pathological image classification. It

included an evaluation of performance

metrics across different datasets and

diseases.

Comparing CNNs for Brain

Tumor Segmentation: ResNet

vs. U-Net

Wang X, Zhang Y, et

al.; Conference on

Computer Vision

and Pattern

Recognition (CVPR),

2018

This study specifically compared the

performance of ResNet and U-Net

architectures for brain tumor

segmentation using metrics such as

Dice coefficient and sensitivity

Evaluation of CNNs in

Dermatology: A Comparative

Study

Lee S, Kim H, et al.;

Journal of the

American Academy

of Dermatology,

2021

The study compared different CNN

models in dermatology image

classification, emphasizing accuracy,

precision, and recall. It addressed the

challenges of classifying skin conditions

with varying visual characteristics.

Performance Comparison of

CNNs for Chest X-ray

Classification

Chen L, Wang Z, et

al.; Medical Image

Analysis, 2020

This study evaluated the performance

of various CNN architectures for

classifying chest X-ray images. Metrics

included accuracy, area under the

receiver operating characteristic curve

(AUC-ROC), and F1 score.

*Performance metrics for medical imaging classification tasks typically include accuracy,

sensitivity, specificity, precision, and area under the receiver operating characteristic curve

(AUC-ROC). The choice of metrics depends on the specific characteristics of the medical task

and the importance of avoiding false positives or false negatives.

Table S5
The efficiency comparison among SOTA CNN methods in various medical image classification tasks

(comparison of some widely used CNN architectures in medical imaging classification)

SOTA CNN

method

Advantages Applications *Number of parameters and

running time

DenseNet Dense connectivity

helps in feature reuse

and facilitates the flow

of gradients during

training

DenseNet has been

successfully applied on

different medical

imaging tasks like

chest X-ray

classification for

pneumonia

DenseNet-121 ~8 million

DenseNet-169 ~14 million

DenseNet-201 ~20 million parameters

DenseNet-121 is faster than the

others

ResNet

(Residual

Networks)

Residual connections

alleviate the vanishing

gradient problem and

enable the training of

very deep networks.

Widely used in various

medical imaging tasks,

including classification

in chest X-rays and

pathology detection in

histopathology

images.

ResNet-18, ResNet-34, ResNet-50, ResNet-

101 and ResNet-152 have around 11, 21,

25, 44 and 60 million parameters

respectively, and their running time is

related to the number of parameters.

Generally, DenseNets are shown to have

better efficiency compared to ResNets

(both in the # of parameters and running

time)

EfficientNet Achieves state-of-the-

art accuracy with a

significantly smaller

number of parameters

compared to

traditional CNN

architectures.

Effective in tasks such

as brain tumor

segmentation in MRI

images.

EfficientNet-B0, -B1, -B2 and -B3 have

around 5, 7, 9 and 12 million parameters

respectively, their running time is fastest

for the B0 and gets slower with increased

number of parameters. Likewise, the B4,

B5, B6 and B7 are slower compared to the

lighter ones though some have shown

improved performance in medical image

classification tasks.

Inception

(GoogLeNet)

Uses inception

modules with different

kernel sizes to capture

multi-scale features.

Applied in the

classification of

diabetic retinopathy

from fundus images

and other ophthalmic

imaging tasks.

GoogLeNet (inception v1) ~ 5 million

parameters. It is generally faster than VGG

nets due to the use of inception modules.

U-Net Designed for semantic

segmentation,

particularly useful in

medical image

segmentation tasks.

Commonly used in

tasks like brain tumor

segmentation in MRI

images and lung

nodule segmentation

in CT scans.

Depending on the depth and width of the

network, U-Nets have 10 to 30 million

parameters (depending on their variation

U-Net++, attention U-Net etc). U-Nets are

generally efficient in terms of both

training and inference times.

VGG (Visual

Geometry

Group)

Simplicity and uniform

architecture make it

easy to understand

and implement.

Applied in various

medical imaging tasks,

including chest X-ray

classification and

dermatology image

analysis.

VGG16 and VGG19 have 138 and 144

million parameters. VGGs, due their large

number of parameters, have longer

training and inference times compared to

the more efficient architectures such as

ResNet, DenseNet or EfficientNet.

ResNeXt Uses grouped

convolutions to

capture diverse

features.

Applied in tasks such

as cardiac image

analysis and pathology

classification in

medical images.

ResNeXt-50, 101 & 152 have around 25, 44

and 60 million parameters respectively.

Running time, generally comparable to

ResNets of similar size.

SENet

(Squeeze-

and-

Excitation

Networks)

Incorporates attention

mechanisms to

highlight informative

features.

Used in tasks such as

breast cancer

detection in

mammography

images.

SENet-50, 101 and 154 have around 28,

49 and 115 million parameters. Running

times are comparable to other

architectures of similar size.

PocketNet

S-128

a lightweight

network designed

for medical image

classification

Shown to have a

competitive

performance

comparable to

state-of-the-art

models with up to 4

million parameters

PocketNetS-128 has a total of 0.92

million parameters. This light weight

and high performing architecture

runs faster than other networks of

higher size.

* The number of parameters and running times are approximate and can vary based on

hardware and software optimizations, natures of datasets and tasks, and specific

implementations.

Supplemental Figures

Figure S1. Results from statistical modelling of 863 citations identified using IEEE Xplore. Network
visualized using VOSviewer. Colors show related publication.

a.

b.

Figure S2. Analysis outputs of the combined references (search hits) from IEEE Xplore, PubMed, Google
Scholar. Color palettes represent (a) relations of the corresponding studies, and (b) publications years.

Figure S3. Systematic analysis of the references cited in this review (and creating a network using
VOSviewer with settings: Create a map based on bibliographic data and Co-occurrence counting method
for Keywords). Colors reflect related publications.

Figure S4. Most frequently mentioned methods among cited refences.
convolutional neural networks, medical image classification, diagnostic imaging, backpropagation,
adaptive momentum methods, nonconvex optimization and image interpretation

a.

b.

Figure S5. Distribution of references per year for (a) the three search engines (IEEE Xplore, PubMed,
Google Scholar) and unique combinations of the search hits from three search engines.
(b) Obtained from dimensions and the search hits obtained from IEEE Xplore, PubMed and Google
Scholar.

