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Supplemental Tables 
 
Table S1 
 
List of Hyperparameters 
 Learning rate 

 Number of epochs 

 Batch size 

 Activation function 

 Optimizer 

 Dropout rate 

 Number of filters 

 Kernel size 

 Stride 

 Padding 

 Pooling type 

 Number of hidden layers 

 Learning rate decay 

 Weight initialization 

 Regularization 

 Filter size 

 Pooling size 

 Number of neurons in each hidden layer 

 Bias initialization 

 Early stopping 

 Momentum 

 Gradient clipping 

 Loss function 

 Input size 

 Output size 

 Number of classes 

 Data augmentation 

 Transfer learning 

 Fine-tuning 

 Freeze layers 

 Preprocessing 

 Normalization 

Learning rate 

Number of epochs 



Batch size 

Optimizer (e.g., Adam, SGD) 

Loss function (e.g., categorical cross-entropy, mean squared error) 

Activation function (e.g., ReLU, sigmoid) 

Dropout rate 

Weight initialization strategy 

Number of layers 

Number of filters per layer 

Filter/kernel size 

Pooling type (e.g., max pooling, average pooling) 

Pooling size 

Stride 

Padding 

Spatial normalization (e.g., batch normalization) 

L1 regularization 

L2 regularization 

Learning rate decay 

Momentum 

Early stopping criteria 

Data augmentation techniques (e.g., rotation, flip, zoom) 

Input image size 

Input normalization/scaling 

Transfer learning (pre-trained models) 

Fine-tuning layers 

Freezing layers 

Gradient clipping 

Architecture design (e.g., VGG, ResNet, Inception) 

Dilated convolutions 

Spatial pyramid pooling 

ImageNet pretraining 

Stochastic depth 

Batch normalization momentum 

Attention mechanisms 

Skip connections 

Learning rate scheduling 

Warm-up steps 

Label smoothing 

Mixup augmentation 

CutMix augmentation 

Gradient accumulation 

DropBlock regularization 



Group normalization 

Weighted loss function 

Filter/channel-wise pruning 

Knowledge distillation 

Spatial transformer networks 

Self-attention layers 

Regularization strength (for weight decay, dropout, etc.) 

Learning rate warm-up 

Learning rate annealing 

Mini-batch sampling strategy 

Class imbalance handling (e.g., oversampling, undersampling) 

Network depth 

Network width 

Number of residual blocks 

Pooling stride 

Dropout placement (e.g., before or after pooling) 

Training data size 

Test/validation data size 

Random seed for reproducibility 

Label smoothing factor 

Loss function weightings (for multi-task learning) 

Learning rate schedule patience 

Learning rate schedule factor 

Number of trainable parameters 

Gradient accumulation steps 

Image normalization method 

Image preprocessing techniques (e.g., cropping, resizing) 

Ensemble size (for model averaging) 

Hyperparameter search method (e.g., grid search, random search) 

Early stopping patience 

Image augmentation probability 

Learning rate warm-up duration 

Activation function for output layer 

Number of output classes 

Input channel normalization method 

Number of feature maps 

Pooling operation (e.g., max pooling, min pooling) 

Pooling kernel size 

Pooling stride size 

Spatial dropout rate 

Learning rate decay rate 



Learning rate decay schedule 

Weight decay (L2 regularization) rate 

Momentum rate for optimizer 

Image random rotation range 

Image random zoom range 

Image random flip probability 

Dropout placement in the network 

Learning rate warm-up schedule 

L1 regularization rate 

Loss function reduction method (e.g., mean, sum) 

Model depth regularization 

Model width regularization 

Number of trainable layers 

Group normalization group size 

Gradient norm clipping value 

Loss function focal loss parameters 

 Image resizing 

 Image cropping 

 Image rotation 

 Image flipping 

 Image shearing 

 Image zooming 

 Image translation 

 Image brightness adjustment 

 Image contrast adjustment 

 Image saturation adjustment 

 Image hue adjustment 

 Image normalization 

 Image standardization 

 Image whitening 

 Image denoising 

 Image sharpening 

 Image blurring 

 Image filtering 

 Image segmentation 

 Activation function for hidden layers 

 Activation function for output layer 

 Activation function in each layer 

 Activation function used in each convolutional layer 

 Activation function used in each fully connected layer 

 Activity regularizer 



 Adversarial training 

 Architecture of the network 

 Architecture type 

 Attention mechanism 

 Attention mechanisms 

 Autoencoders 

 Batch normalization 

 Batch normalization centering 

 Batch normalization epsilon 

 Batch normalization fused 

 Batch normalization momentum 

 Batch normalization renorm 

 Batch normalization renorm_center 

 Batch normalization renorm_clipping 

 Batch normalization renorm_clipping_alpha 

 Batch normalization renorm_clipping_beta 

 Batch normalization renorm_clipping_chi 

 Batch normalization renorm_clipping_decay 

 Batch normalization renorm_clipping_delta 

 Batch normalization renorm_clipping_eta 

 Batch normalization renorm_clipping_gamma 

 Batch normalization renorm_clipping_iterations 

 Batch normalization renorm_clipping_kappa 

 Batch normalization renorm_clipping_lambda 

 Batch normalization renorm_clipping_omega 

 Batch normalization renorm_clipping_phi 

 Batch normalization renorm_clipping_psi 

 Batch normalization renorm_clipping_rho 

 Batch normalization renorm_clipping_sigma 

 Batch normalization renorm_clipping_theta 

 Batch normalization renorm_clipping_type 

 Batch normalization renorm_clipping_value 

 Batch normalization renorm_clipping_xi 

 Batch normalization renorm_clipping_zeta 

 Batch normalization renorm_epsilon 

 Batch normalization renorm_fused 

 Batch normalization renorm_momentum 

 Batch normalization renorm_scale 

 Batch normalization renorm_trainable 

 Batch normalization scaling 

 Batch normalization trainable 



 Bias regularizer 

 Bidirectional 

 Capsule networks 

 Class weights 

 Color space used 

 Compression ratio 

 Convolutional GRU 

 Convolutional kernel size 

 Convolutional layer type 

 Convolutional LSTM 

 Convolutional padding 

 Convolutional stride 

 Data augmentation techniques 

 Data augmentation techniques used 

 Data balancing techniques used 

 Decay rate 

 Deconvolutions 

 DenseNet blocks 

 Depth 

 Depthwise convolutions 

 Dilated convolutions 

 Dropout rate for hidden layers 

 Dropout rate for output layer 

 Early stopping criteria 

 GANs 

 Grouped convolutions 

 Hyperparameter optimization techniques used 

 Inception modules 

 Initialization method 

 Initialization method for biases 

 Initialization method for weights 

 Input image size 

 Input normalization 

 Input shape 

 Kernel regularizer 

 L1 regularization 

 L2 regularization 

 Label smoothing 

 Learning rate (LR) 

 Learning rate schedule 

 Loss function used 



 MobileNet blocks 

 Normalization method 

 Normalization method used 

 Number of attention heads 

 Number of attention layers 

 Number of blocks in the network 

 Number of channels 

 Number of convolutional layers 

 Number of dense layers 

 Number of feature channels 

 Number of feature channels in each layer 

 Number of feature detectors 

 Number of feature detectors in each layer 

 Number of feature dimensions 

 Number of feature dimensions in each layer 

 Number of feature maps 

 Number of feature maps in each layer 

 Number of feature vectors 

 Number of feature vectors in each layer 

 Number of filters in each attention layer 

 Number of filters in each convolutional layer 

 Number of filters in each dense layer 

 Number of filters in each fully connected layer 

 Number of filters in each inception module 

 Number of filters in each layer 

 Number of filters in each pooling layer 

 Number of filters in each recurrent layer 

 Number of filters in each residual block 

 Number of filters in each transformer layer 

 Number of fully connected layers 

 Number of heads 

 Number of hidden units 

 Number of inception modules 

 Number of input units 

 Number of layers 

 Number of layers in each block 

 Number of max pooling layers 

 Number of neurons 

 Number of neurons in each attention layer 

 Number of neurons in each dense layer 

 Number of neurons in each fully connected layer 



 Number of neurons in each inception module 

 Number of neurons in each layer 

 Number of neurons in each recurrent layer 

 Number of neurons in each residual block 

 Number of neurons in each transformer layer 

 Number of neurons in hidden layers 

 Number of neurons per layer 

 Number of nodes in each layer 

 Number of output units 

 Number of recurrent layers 

 Number of residual blocks 

 Number of skip connections 

 Number of strides 

 Number of transformer layers 

 One-hot encoding 

 Optimizer type 

 Optimizer used 

 Output shape 

 Padding of filters in each convolutional layer 

 Padding type in each layer 

 Pointwise convolutions 

 Pooling padding 

 Pooling stride 

 Pooling type and size 

 Preprocessing techniques used 

 Recurrent activation function 

 Recurrent connections 

 Recurrent dropout rate 

 Recurrent layer size 

 Recurrent layer type 

 Recurrent neural network (RNN) type (LSTM, GRU, etc 

 Regularization (L1, L2, or both) 

 Regularization method 

 Residual connections 

 RNN bidirectionality 

 RNN hidden size 

 RNN number of layers 

 Separable convolutions 

 Shuffle 

 Size of filters in each convolutional layer 

 Size of filters in each layer 



 Size of the attention layer 

 Size of the dense layer 

 Size of the dropout rate 

 Size of the feature channel 

 Size of the feature detector 

 Size of the feature dimension 

 Size of the feature map 

 Size of the feature vector 

 Size of the filter in each attention layer 

 Size of the filter in each convolutional layer 

 Size of the filter in each dense layer 

 Size of the filter in each fully connected layer 

 Size of the filter in each inception module 

 Size of the filter in each pooling layer 

 Size of the filter in each recurrent layer 

 Size of the filter in each residual block 

 Size of the filter in each transformer layer 

 Size of the fully connected layer 

 Size of the hidden layer 

 Size of the inception module 

 Size of the input layer 

 Size of the kernel in each convolutional layer 

 Size of the output layer 

 Size of the padding in each convolutional layer 

 Size of the pooling in each pooling layer 

 Size of the recurrent layer 

 Size of the residual block 

 Size of the stride in each convolutional layer 

 Size of the transformer layer 

 Skip connections 

 Spatial dropout rate 

 Spatial transformer networks 

 Squeeze-and-Excitation blocks 

 Stride of filters in each convolutional layer 

 Stride size in each layer 

 Strided convolutions 

 Time distributed 

 Transformer activation function 

 Transformer annealing rate 

 Transformer architecture 

 Transformer attention dropout rate 



 Transformer beam search width 

 Transformer coverage penalty 

 Transformer dropout rate 

 Transformer early stopping 

 Transformer feedforward dimension 

 Transformer gradient clipping 

 Transformer input normalization 

 Transformer label smoothing 

 Transformer learning rate 

 Transformer learning rate schedule 

 Transformer length penalty 

 Transformer maximum sequence length 

 Transformer number of attention heads 

 Transformer number of layers 

 Transformer optimizer 

 Transformer positional encoding 

 Transformer regularization 

 Transformer residual connection 

 Transformer warmup steps 

 Transformer weight decay 

 Transformer weight initialization 

 Transposed convolutions 

 Type of activation function 

 Type of activation function in attention layers 

 Type of activation function in batch normalization layers 

 Type of activation function in convolutional gated layers 

 Type of activation function in convolutional layers 

 Type of activation function in convolutional transpose layers 

 Type of activation function in deconvolutional layers 

 Type of activation function in dropout layers 

 Type of activation function in fully connected layers 

 Type of activation function in gating layers 

 Type of activation function in group normalization layers 

 Type of activation function in hidden layers 

 Type of activation function in input layer 

 Type of activation function in instance normalization layers 

 Type of activation function in layer normalization layers 

 Type of activation function in multi-head attention layers 

 Type of activation function in normalization layers 

 Type of activation function in output layer 

 Type of activation function in pooling layers 



 Type of activation function in recurrent layers 

 Type of activation function in residual layers 

 Type of activation function in self-attention layers 

 Type of activation function in skip connections 

 Type of activation function in spectral normalization layers 

 Type of activation function in transformer layers 

 Type of activation function in upsampling layers 

 Type of activation function in weight normalization layers 

 Type of initialization 

 Type of loss function 

 Type of normalization 

 Type of optimizer 

 Type of pooling 

 Type of regularization 

 Type of skip connections 

 Upsampling 

 Variational autoencoders 

 Weight decay 

 Width 

  

 

Table S2 
 
List of search engines 

i. Google Scholar https://scholar.google.com/ (general) 
ii. Refseek (https://www.refseek.com/) (general) 
iii. IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp) 
iv. Science.gov (https://www.science.gov/) 
v. Web of Science (https://www.webofscience.com/wos) 

vi. SpringerLink (https://link.springer.com/) 

vii. Scopus (https://www.elsevier.com/en-in/solutions/scopus) 

viii. PubMed https://pubmed.ncbi.nlm.nih.gov/ 
ix. Semantic Scholar (https://www.semanticscholar.org) 
x. Dimensions.ai (https://www.dimensions.ai/) 
xi. SciSpace (https://typeset.io) 
xii. Taylor & Francis (https://www.tandfonline.com) 
xiii. Directory of Open Access Journals (DOAJ) (https://doaj.org/) 

xiv. JSTOR image database or search engine (https://www.jstor.org/) 

xv. Wiley Online Library (https://onlinelibrary.wiley.com/) 

xvi. ACM Digital Library (https://dl.acm.org/) relevant search engine 

xvii. SSRN (https://www.ssrn.com/index.cfm/en/) 

xviii. Scinapse (https://www.scinapse.io/) 



xix. CORE (open access articles) (https://core.ac.uk) 
xx. OpenAIRE (https://explore.openaire.eu/) 
xxi. Scilit (Crossref and pubmed) access (https://www.scilit.net) 
xxii. Science.gov (https://www.science.gov/) 

xxiii. CiteSeerX (https://citeseerx.ist.psu.edu/) 

xxiv. DeepAI (https://deepai.org) image generation 

xxv. Springer Nature Experiments 

(https://www.springernature.com/gp/librarians/products/databases-

solutions/experiments) 
xxvi. Jurn (free full text search engine) (https://www.jurn.link/#gsc.tab=0) 

 

Large language models (LLMs) or AI based literature search tools  
xxvii. Dimensions 
xxviii. Elicit 
xxix. Scite Assistant 
xxx. Consensus 
xxxi. SciSpace 

 
 
  



Table S3 
Representative classical CNN methods, and their applications on well-known public datasets including 

quantitative metrics used to assess their performance 

CNN method Dataset Performance*  Description 

   

LeNet MNIST 

(handwritten 

digit 

recognition) 

>99% accuracy on the 

test set  

LeNet is a relatively simple 

architecture but has shown strong 

performance on the MNIST dataset. 

AlexNet ImageNet 

(large-scale 

image 

classification

) 

Top-5 accuracy of ~ 

83.6% 

AlexNet achieved a breakthrough in 

the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 

2012, significantly outperforming 

traditional computer vision methods. 

VGG16/VGG19 ImageNet Top-5 accuracy of ~92.3% 

(VGG16) &  ~92.6% 

(VGG19) 

VGG architectures, with their simplicity 

and uniformity, have demonstrated 

strong performance in image 

classification tasks. 

Inception 

(GoogLeNet) 

ImageNet Top-5 accuracy of 93.3% GoogLeNet introduced the inception 

module, which allows the network to 

capture multi-scale features 

efficiently. 

ResNet ImageNet Top-5 accuracy of 

~92.6% (ResNet50), 

~92.8% (ResNet101) & 

~93.1% (ResNet152) 

ResNet's use of residual connections 

enables training of very deep 

networks, addressing the vanishing 

gradient problem. 

DenseNet ImageNet Top-5 accuracy of  

~74.91 (DenseNet121),  

~76.09 (DenseNet169) & 

~77.67 (DenseNet201) 

DenseNet's dense connectivity aids in 

feature reuse and facilitates gradient 

flow, leading to improved parameter 

efficiency. 

ResNeXt ImageNet  Top-5 accuracy of  

~92.4% (ResNeXt50), 

~92.7% (ResNeXt101) & 

~93.3% (ResNeXt152) 

ResNeXt uses grouped convolutions 

to capture diverse features efficiently. 

SqueezeNet ImageNet Top-5 accuracy of 

~80.3% (has 1.25 million 

parameters and relatively 

faster) 

SqueezeNet aims for high accuracy 

with a significantly reduced number of 

parameters compared to traditional 

architectures. 

 

*The actual performance can vary based on dataset characteristics, preprocessing techniques, and 

hyperparameter tuning. Researchers often share pre-trained models and associated metrics at the TensorFlow 

Model Zoo or PyTorch Model Zoo. 

 



Very Deep Convolutional Networks, Inception Architecture, Deep Residual Learning, Faster R-

CNN, and Ensemble Method of CNNs have been benchmarked and evaluated on popular 

public datasets such as ILSVRC 2012, ISIC 2018, and historical document image datasets, 

showcasing substantial gains in terms of accuracy, specificity, and detection accuracy. 

 

Additionally, the effectiveness of classical CNN methods has been demonstrated in tasks such 

as image-based localization, near-duplicate video retrieval, and finger vein recognition, 

showcasing their efficiency and effectiveness in various applications. The performance of 

classical CNN methods has been evaluated in the context of remaining useful lifetime 

prediction, and bone metastasis diagnosis, demonstrating their outperformance of more 

classical methods in terms of prediction accuracy and classification performance. 
 
 
  



Table S4 

Studies comparing the performances of different CNN methods including metrics used for 

comparison 
Title Authors, journal, year Focus and performance metrics* 

  

Comparative Analysis of 

CNN Architectures for Image 

Classification in Medical 

Imaging 

Smith A, Johnson B, 

et al.; Journal of 

Medical Imaging, 

2019 

This study compared the performances 

of popular CNN architectures, such as 

VGG, ResNet, and Inception, on 

medical image classification tasks. 

Evaluation metrics included accuracy, 

sensitivity, and specificity 

A Comprehensive Review of 

CNNs for Pathological Image 

Classification 

Garcia C, Rodriguez 

D, et al.; IEEE 

Transactions on 

Medical Imaging, 

2020 

The study conducted an extensive 

review of CNN architectures applied to 

pathological image classification. It 

included an evaluation of performance 

metrics across different datasets and 

diseases. 

Comparing CNNs for Brain 

Tumor Segmentation: ResNet 

vs. U-Net 

Wang X, Zhang Y, et 

al.; Conference on 

Computer Vision 

and Pattern 

Recognition (CVPR), 

2018 

This study specifically compared the 

performance of ResNet and U-Net 

architectures for brain tumor 

segmentation using metrics such as 

Dice coefficient and sensitivity 

Evaluation of CNNs in 

Dermatology: A Comparative 

Study 

Lee S, Kim H, et al.; 

Journal of the 

American Academy 

of Dermatology, 

2021 

The study compared different CNN 

models in dermatology image 

classification, emphasizing accuracy, 

precision, and recall. It addressed the 

challenges of classifying skin conditions 

with varying visual characteristics. 

Performance Comparison of 

CNNs for Chest X-ray 

Classification 

Chen L, Wang Z, et 

al.; Medical Image 

Analysis, 2020 

This study evaluated the performance 

of various CNN architectures for 

classifying chest X-ray images. Metrics 

included accuracy, area under the 

receiver operating characteristic curve 

(AUC-ROC), and F1 score. 

*Performance metrics for medical imaging classification tasks typically include accuracy, 

sensitivity, specificity, precision, and area under the receiver operating characteristic curve 

(AUC-ROC). The choice of metrics depends on the specific characteristics of the medical task 

and the importance of avoiding false positives or false negatives. 
 



Table S5 
The efficiency comparison among SOTA CNN methods in various medical image classification tasks 

(comparison of some widely used CNN architectures in medical imaging classification) 

SOTA CNN 

method        

Advantages Applications *Number of parameters and 

running time 

   

DenseNet Dense connectivity 

helps in feature reuse 

and facilitates the flow 

of gradients during 

training 

DenseNet has been 

successfully applied on 

different medical 

imaging tasks like 

chest X-ray 

classification for 

pneumonia 

DenseNet-121 ~8 million  

DenseNet-169 ~14 million 

DenseNet-201 ~20 million parameters 

DenseNet-121 is faster than the 

others 

ResNet 

(Residual 

Networks) 

Residual connections 

alleviate the vanishing 

gradient problem and 

enable the training of 

very deep networks. 

Widely used in various 

medical imaging tasks, 

including classification 

in chest X-rays and 

pathology detection in 

histopathology 

images. 

ResNet-18, ResNet-34, ResNet-50, ResNet-

101 and ResNet-152 have around 11, 21, 

25, 44 and 60 million parameters 

respectively, and their running time is 

related to the number of parameters. 

Generally, DenseNets are shown to have 

better efficiency compared to ResNets 

(both in the # of parameters and running 

time)  

EfficientNet Achieves state-of-the-

art accuracy with a 

significantly smaller 

number of parameters 

compared to 

traditional CNN 

architectures. 

Effective in tasks such 

as brain tumor 

segmentation in MRI 

images. 

EfficientNet-B0, -B1, -B2 and -B3 have 

around 5, 7, 9 and 12 million parameters 

respectively, their running time is fastest 

for the B0 and gets slower with increased 

number of parameters. Likewise, the B4, 

B5, B6 and B7 are slower compared to the 

lighter ones though some have shown 

improved performance in medical image 

classification tasks. 

Inception 

(GoogLeNet) 

Uses inception 

modules with different 

kernel sizes to capture 

multi-scale features. 

Applied in the 

classification of 

diabetic retinopathy 

from fundus images 

and other ophthalmic 

imaging tasks. 

GoogLeNet (inception v1) ~ 5 million 

parameters. It is generally faster than VGG 

nets due to the use of inception modules. 

U-Net Designed for semantic 

segmentation, 

particularly useful in 

medical image 

segmentation tasks. 

Commonly used in 

tasks like brain tumor 

segmentation in MRI 

images and lung 

nodule segmentation 

in CT scans. 

Depending on the depth and width of the 

network, U-Nets have 10 to 30 million 

parameters (depending on their variation 

U-Net++, attention U-Net etc). U-Nets are 

generally efficient in terms of both 

training and inference times. 



VGG (Visual 

Geometry 

Group) 

Simplicity and uniform 

architecture make it 

easy to understand 

and implement. 

Applied in various 

medical imaging tasks, 

including chest X-ray 

classification and 

dermatology image 

analysis. 

VGG16 and VGG19 have 138 and 144 

million parameters.  VGGs, due their large 

number of parameters, have longer 

training and inference times compared to 

the more efficient architectures such as 

ResNet, DenseNet or EfficientNet.   

ResNeXt Uses grouped 

convolutions to 

capture diverse 

features. 

 

Applied in tasks such 

as cardiac image 

analysis and pathology 

classification in 

medical images. 

ResNeXt-50, 101 & 152 have around 25, 44 

and 60 million parameters respectively. 

Running time, generally comparable to 

ResNets of similar size. 

SENet 

(Squeeze-

and-

Excitation 

Networks) 

Incorporates attention 

mechanisms to 

highlight informative 

features. 

Used in tasks such as 

breast cancer 

detection in 

mammography 

images. 

SENet-50, 101 and 154 have around 28, 

49 and 115 million parameters. Running 

times are comparable to other 

architectures of similar size. 

PocketNet

S-128 

 
 

a lightweight 

network designed 

for medical image 

classification 

Shown to have a 

competitive 

performance 

comparable to 

state-of-the-art 

models with up to 4 

million parameters 

PocketNetS-128 has a total of 0.92 

million parameters. This light weight 

and high performing architecture 

runs faster than other networks of 

higher size. 

* The number of parameters and running times are approximate and can vary based on 

hardware and software optimizations, natures of datasets and tasks, and specific 

implementations.  

 

 

 

 

  



Supplemental Figures 
 
 

 
Figure S1. Results from statistical modelling of 863 citations identified using IEEE Xplore. Network 
visualized using VOSviewer. Colors show related publication. 
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b.  

 
 
Figure S2. Analysis outputs of the combined references (search hits) from IEEE Xplore, PubMed, Google 
Scholar. Color palettes represent (a) relations of the corresponding studies, and (b) publications years. 
 
 
 



 
 
Figure S3. Systematic analysis of the references cited in this review (and creating a network using 
VOSviewer with settings: Create a map based on bibliographic data and Co-occurrence counting method 
for Keywords). Colors reflect related publications. 
 
 

 
 
Figure S4. Most frequently mentioned methods among cited refences. 
convolutional neural networks, medical image classification, diagnostic imaging, backpropagation, 
adaptive momentum methods, nonconvex optimization and image interpretation 
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Figure S5. Distribution of references per year for (a) the three search engines (IEEE Xplore, PubMed, 
Google Scholar) and unique combinations of the search hits from three search engines. 
(b) Obtained from dimensions and the search hits obtained from IEEE Xplore, PubMed and Google 
Scholar. 
 


