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Abstract: Wind comfort is an important factor when new buildings in existing urban areas are
planned. It is common practice to use computational fluid dynamics (CFD) simulations to model
wind comfort. These simulations are usually time-consuming, making it impossible to explore a high
number of different design choices for a new urban development with wind simulations. Data-driven
approaches based on simulations have shown great promise, and have recently been used to predict
wind comfort in urban areas. These surrogate models could be used in generative design software
and would enable the planner to explore a large number of options for a new design. In this paper,
we propose a novel machine learning workflow (MLW) for direct wind comfort prediction. The MLW
incorporates a regression and a classification U-Net, trained based on CFD simulations. Furthermore,
we present an augmentation strategy focusing on generating more training data independent of
the underlying wind statistics needed to calculate the wind comfort criterion. We train the models
based on different sets of training data and compare the results. All trained models (regression and
classification) yield an F1-score greater than 80% and can be combined with any wind rose statistic.

Keywords: wind comfort; Lawson LDDC criterion; classification; regression; image-to-image; deep
learning; U-Net; convolutional neural network

1. Introduction

Wind conditions can be unpleasant or even dangerous for pedestrians and residents of
urban areas [1]. Construction of a new building in an existing urban area has a significant
impact on wind behavior [2]. High velocities can occur at street level due to tall buildings
and Venturi or wind tunnel effects between buildings. Therefore, wind velocities are
considered an important issue by many municipal authorities when planning new buildings
in a city, and it is important to perform wind simulations before construction to study the
effects on wind behavior.

It is common practice to use computational fluid dynamics (CFD) simulations to
model wind comfort in urban areas. Many different studies address this issue: [3–7] are
just a few examples. CFD simulations provide a good prediction of wind comfort, but they
are time-consuming, which makes it impossible to use them as a wind prediction tool in
generative design software that requires fast feedback in the early planning stages of urban

Mach. Learn. Knowl. Extr. 2024, 6, 98–125. https://doi.org/10.3390/make6010006 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6010006
https://doi.org/10.3390/make6010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-4513-5035
https://orcid.org/0000-0002-3837-9461
https://orcid.org/0000-0003-2375-1328
https://orcid.org/0000-0003-4472-5700
https://orcid.org/0000-0003-0038-3307
https://orcid.org/0009-0008-3530-2208
https://orcid.org/0000-0003-3894-1837
https://doi.org/10.3390/make6010006
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6010006?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2024, 6 99

areas. However, performance feedback is still one of the critical factors preventing the
integration of such software in the early design process (see [8,9]).

Instead of CFD simulations, a surrogate model based on a data-driven approach is
used to predict wind comfort. Although a surrogate model may not be as accurate as
a CFD simulation, it can provide an initial and good idea of wind comfort for different
building designs in an urban area. It also allows the designer to explore a large number
of designs, as opposed to using computationally expensive CFD simulations. The use
of machine learning (ML) models to predict wind behavior and/or comfort is an active
area of research in the community (see [10]). The U-Net for example is a special type
of convolutional neural network (CNN) and was introduced in 2015 by [11]. The first
application to fluid dynamics was performed by Farimani et al. [12] in a cGAN model that
implements the generator as a U-Net. The first application to airfoils in an open-source
project implemented by Thuerey et al. [13] provided a good basis for similar studies of
wind simulations. Moving to realistic urban models in Low et al. [14], U-nets have been
trained on data from existing urban topologies [14]. Based on the cGAN implementation
by Isola et al. [15], where U-Nets have been further developed as a generator in generative
adversarial networks, in [16] wind approximation for different urban layouts at the pedes-
trian level is explored. The above studies use deep learning models, where the training
data consist of matrices. The prediction is also a matrix, meaning the wind pattern in a 2D
plane can be predicted. These types of models are called image-to-image models. Another
approach could be to use simpler models like the k-nearest neighbors method described
in [17] or the random forest classifier described in [18]. Further models used in this context
are, for example, artificial neural networks, Gaussian regression processes, support vector
machines, ensemble methods (like gradient boosting regression trees), and fuzzy neural
networks (see [19]).

In this work, we focus on image-to-image models, namely the U-Net (see [11]), and aim
to predict wind comfort for a specific urban layout. Originally, the U-Net was developed
for biomedical image segmentation tasks and shows the ability to generalize based on very
few training data (see [11]). Since the U-Net in this work is trained on CFD simulations,
this is an advantageous property. The U-Net has shown promising results in previous
studies in the context of wind predictions (see [13,14]), and outperformed a GAN approach
in a recent study (see [20]). We apply the Lawson LDDC (London Docklands Develop-
ment Corporation) criterion (LLC) to estimate wind comfort, as perceived by pedestrians.
The study area considered in this work is GoCo, an area in the process of developing into
a health innovation area, in the city of Mölndal, Sweden. In the real-world planning pro-
cess, the block of the GoCo area we consider in this study has been optimized concerning
daylight. This block was also analyzed with respect to wind comfort (the results of the
daylight optimization and analysis of wind comfort were an internal investigation and are
not publicly available), but performing a wind comfort optimization was too time- and
resource-consuming, as one simulation for this case takes about 26 h. This motivated our
work, where the capability of data-driven deep learning models to predict wind comfort in
this particular area is investigated. This data-driven model could then be used in a wind
comfort optimization instead of a CFD solver as it can make fast predictions. Of course,
the data-driven model will not be able to make as accurate predictions as a CFD solver,
but it could provide the designer with a good initial idea about wind comfort that is close
to the results of the CFD solver.

We propose a novel machine learning workflow (MLW) that implements either a
regression or a classification U-Net. Predicting wind comfort by using an image-to-image
classification model is a novel use case, which to the best of our knowledge has not been
addressed in the literature before. A scenario-based augmentation strategy is used to
generate a sufficient amount of data for the training of the U-Nets. Scenario-based training
allows the wind rose statistic to be changed in the prediction phase without additional
effort. To the best of our knowledge, such an augmentation strategy has not yet been
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addressed in the literature. Both U-Nets are trained on different data sizes and compared
in terms of the best prediction of LLC.

We organized the paper as follows. In Section 2, we describe the study area considered
in this work. Section 3 describes the architecture of the CNN (regression and classification).
We describe the inputs and outputs we used for training and how the data are post-
processed from the CFD simulation. Furthermore, we describe the MLW for the regression
and classification models in detail. In Section 4, we analyze the training results of the
regression and classification models. Moreover, we analyze the performance of the models
concerning LLC predictions in detail. Section 5 ends with a conclusion.

2. Setup
2.1. Study Area

This study is performed using a study area that was mainly constructed during 2023 in
the city of Mölndal, Sweden. The entire study area is shown in Figure 1a. Figure 1b shows
the location of the computational volume of 2000× 2000× 142 m3 (width× length×height),
consisting of roughly 6 million computational cells. We consider only a small part of the
computational volume for CNN training, indicated by the square blue area in Figure 1c.
The width and length of the blue area are 200 m each, and we include the full height of the
computational volume.

In this paper, we focus on a single building block placed as a new design in the study
area. A sample building setup is shown in Figure 1d by the red marked blocks. The
building block consists of nine individual segments. Each segment is fixed in its position,
as well as in its width and length. The only free parameters are the heights. The dimensions
and positions of each segment are listed in Table 1. The wind comfort is influenced by the
heights of the segments.

Figure 1. The study area studied in this paper; (a) shows the entire study area, and the smaller
blue square box is the area we are considering for the ML model; (b) shows the location of the
computational box; (c) shows an enlargement of the area we are considering for the ML model (blue
square box); and (d) shows an example of a building design for the new building (red boxes).
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Table 1. Dimensions and positions for each segment of the new building block.

Segment Width Length x Position y Position z Position Rotation about z-Axis

1 22.15 m 13.0 m 92.98 m −46.07 m 9.0 m 25.8°
2 9.0 m 12.0 m 109.23 m −40.44 m 9.0 m 115.8°
3 19.25 m 12.0 m 103.08 m −27.73 m 9.0 m 115.8°
4 22.85 m 12.6 m 74.67 m −59.89 m 9.0 m 25.8°
5 25.1 m 12.0 m 61.58 m −42.28 m 9.0 m 115.8°
6 10.0 m 12.0 m 59.52 m −20.34 m 9.0 m 25.8°
7 10.0 m 12.0 m 50.52 m −24.69 m 9.0 m 25.8°
8 20.1 m 11.6 m −94.7 m −9.92 m 9.0 m 115.8°
9 25.4 m 12.0 m 74.92 m −11.51 m 9.0 m 25.8°

2.2. Wind Rose Statistic and Wind Comfort

Wind roses are the usual way to describe winds and wind directions graphically.
All measured wind speeds and directions in a given time interval, usually on an hourly
basis, are considered to derive the statistical distribution of the wind speed and direction
over this time interval. It enables a comprehensive way to, e.g., determine predominant
wind conditions in a given area. Wind data are commonly measured at weather stations.
The wind data in this study are taken from Sweden’s Meteorological and Hydrological
Institute (SMHI) at the location Göteborg A (71420) at a height of 10 m above the ground as
historical data from 1961 to 2021 (see [21]). The corresponding wind rose statistic for the
study area is defined as follows:

W =



0.059 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.035 0.053 0.026 0.035 0.033 0.022 0.017 0.018
0.024 0.048 0.035 0.054 0.061 0.074 0.045 0.024
0.009 0.018 0.013 0.02 0.04 0.053 0.043 0.015
0.004 0.005 0.004 0.005 0.017 0.018 0.023 0.006
0.002 0.002 0.002 0.001 0.006 0.006 0.01 0.002

0.0 0.0 0.0 0.001 0.003 0.002 0.004 0.001
0.0 0.0 0.0 0.0 0.001 0.0 0.001 0.0


(1)

where i = 1, . . . , 8 is the row-index of wind rose speeds and j = 1, . . . , 8 is the column-index
of wind directions. The wind rose speeds are defined in m/s as

V =
(
0.5 2.0 4.0 6.0 8.0 10.0 12.0 14.0

)
(2)

and the wind directions are defined in ° as

A =
(
0.0 45.0 90.0 135.0 180.0 225.0 270.0 315.0

)
(3)

The corresponding wind rose can be seen in Figure 2a.
We follow the standard approach, considering the historical meteorological data and

the local wind conditions obtained from simulations for wind comfort evaluation. Therefore,
we run CFD simulations for 8 discrete wind directions. We use the well-established Lawson
LDDC criterion (LLC) as required by the wind microclimate guidelines for the city of
London [22] and described in more detail in [23]. The LLC defines wind comfort classes
based on the wind speed and the statistical exceedance of the upper wind speed for each
class. Exceedance is the statistical probability that a given observation will be higher than a
certain threshold. The classes that we use are listed in Table 2.
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Table 2. Lawson LDDC criterion.

Class Upper Velocity Limit in m/s Exceedance Threshold Comfort Level

A-0 2.5 <5 Frequent sitting
B-1 4 <5 Occasional sitting
C-2 6 <5 Standing
D-3 8 <5 Walking
E-4 8 >5% Uncomfortable
S-5 15 >0.022% Unsafe

This comfort criterion is conveniently applied at a pedestrian level of 1.5 m above the
ground, resulting in a 2D non-planar surface. The resulting LLC for the example setting
of the new building complex (see Section 2.1) can be seen in Figure 2b. The new building
block, which consists of nine segments, is colored red, and all other fixed buildings are
colored gray.

Figure 2. (a) illustrates the corresponding wind rose of the study area; and (b) displays the LLC for a
sample simulation.

Extreme Case Scenarios

For the data augmentation strategy explained in the following, we use “extreme case
LLC”. We define such an extreme case scenario, e, as follows:

e = (Vi, Aj) ∈ E = {Vi, Aj|i, j = 1, . . . , 8}, (4)

where E is the set of all extreme case scenarios. The corresponding wind rose statistic for
the extreme case scenario e = (V1 = 0.5 m/s, A1 = 0.0°) is defined, for example, as follows:

We =


1.0 0.0 . . . 0.0
0.0 0.0 . . . 0.0
...

...
. . .

...
0.0 0.0 . . . 0.0

. (5)

The wind rose statistic, We, is 1.0 at the position of the extreme case scenario e = (V1 =
0.5 m/s, A1 = 0.0°) and 0.0 for all other cases. Therefore, we assume that, for an extreme
case scenario, the wind blows from one direction at a specific strength with a probability
of 100%. The wind speed for all other scenarios is set to 0.0. In Figure 3, this is illustrated
for an example building setup. Figure 3a shows the LLC based on the wind statistics
defined in Section 2.2. Two extreme case LLCs are shown in Figure 3b,c. The scenario
in Figure 3b corresponds to a wind rose speed of V1 = 0.5 m/s and a wind direction of
A1 = 0.0°, leading to low wind comfort. In contrast to this, the scenario in Figure 3c leads
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to a rather high wind comfort, because the extreme case corresponds to a wind rose speed
of V8 = 14.0 m/s and a wind direction of A8 = 315.0 °.

Figure 3. Example of LLC for (a) the wind rose statistic in Equation (2), (b) extreme case LLC based
on wind rose statistics W(0.5 m/s,0.0°) and leads to a low wind comfort, and (c) the extreme case LLC
based on W(14 m/s,315°) and leads to a high wind comfort.

2.3. CFD Simulation

Wind simulations are performed using the Immersed Boundary Flow Solver
IBOFlow® [24] (IBOFlow CitySimulation 0.12.2.1), which has been validated for ur-
ban wind simulations in [25,26] and has previously been used for simulation-based
optimization in [27–29]. The inlet profiles of velocity and turbulence properties are
generated following the approach described in [30]. As the site is located in the city
of Mölndal and surrounded by a mixture of homogeneous city, vegetation, and forest
clumps, an aerodynamic roughness length z0 = 0.5 m is chosen for all directions follow-
ing the Davenport–Wieringa roughness classification [31]. Simulations are performed
in eight discrete wind directions, with a reference inlet velocity of 5 m/s. The simula-
tion domain consists of a circular area with a radius of ca. 700 m where the buildings
are explicitly modeled, while the surrounding area without explicitly modeled build-
ings is of the dimension 1 km times 1 km as shown in Figure 1a,b). The mesh consists
of roughly 6 million grid cells in the fluid regime and has a local resolution of 0.6 m
in the vertical direction and 1.2 m in the horizontal direction. Facilitating the sim-
ulation of the different wind directions, we use a fixed Cartesian domain, and the
geometries are rotated depending on the discrete wind direction. At the outlet, a total
pressure boundary condition is set. On the sides and at the top of the domain, sym-
metry conditions are imposed. The ground and the buildings are treated as walls,
using standard wall functions with sand-grain modification following [32]. We then
solve the steady-state Reynolds-averaged Navier–Stokes equations, including the k-g
SST model [33], a variant of the well-known k-ω SST model [34,35]. A grid study is
performed, and the results of the velocity distribution for three different meshes are shown
in Figure 4. The three meshes contain 2.7 million cells with a local resolution of 1.2 m in the
vertical direction, 6 million cells with a local resolution of 0.6 m in the vertical direction,
and 21 million cells with a local resolution of 0.3 m in the vertical direction, respectively.
The corresponding simulation times for a single directional run are 1.75 h, 3.25 h, and 31 h,
respectively. The large difference in computational time between the middle and the finest
mesh stems from both the larger number of cells and the increase in required iterations until
convergence is reached. It can be seen that grid convergence is not yet established with
the middle mesh. However, for the sake of restricting computational time in this feasibility
study, we chose the mesh containing 6 million cells, as the important flow properties are
captured properly. Running a complete simulation including all eight wind directions (see
Section 2.2) therefore takes about 26 h.
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Figure 4. Velocity distribution of three different grids; from left to right: 2.7 million cells with a
local resolution of 1.2 m in the vertical direction, 6 million cells with a local resolution of 0.6 m in
the vertical direction, and 21 million cells with a local resolution of 0.3 m in the vertical direction,
indicating visually the differences in the velocity magnitude when applying different meshes, needed
to evaluate grid convergence.

2.4. Performed Simulations

To create the training data for the CNNs, we performed 200 simulations with the CFD
solver. Simulations were run on a cluster of dual Intel Xeon Gold 6240R CPU cores in
parallel in groups of 30 to 40 simulations each.

We set the heights of the individual nine segments of the new building (see Table 1) of
these 200 simulations randomly using Sobol sequences [36], to make sure that the training
space was distributed evenly. For these 200 simulations, the height of each segment of the
new building is different and is allowed to be in the range of 3 to 15 floors, corresponding
to a range of 10 to 46 m. The first floor has a height of 4 m and the floors above the first floor
each have a height of 3 m. In addition to the 200 simulations, we performed 13 simulations,
where the height of the nine segments is the same, ranging from 3 floors to 15 floors. These
simulations are incorporated into each training data set (see Section 4) to ensure that the
network captures these extreme cases where segments have the same height.

We performed another 25 simulations not included in the training set for testing
purposes.

3. Machine Learning Models

In this Section, the ML model is described. We analyze two different models in this
work: a regression model and a classification model. For both models, we use a CNN
architecture described in the following.

3.1. Architecture of the CNN

We use a convolutional neural network (CNN) to predict wind velocity and LLC.
The U-Net was first introduced to the ML community in 2015 by [11]. It was originally
developed for biomedical image segmentation tasks but has also become popular in other
research areas such as audio source separation, road extraction, and speech enhance-
ment/speech de-noising (see [37–39]). In this work, adapt the U-Net architecture from [13],
where the U-Net predicts the wind velocities and pressure around two-dimensional airfoil
sections, and therewith follow-up on the work in [29]. The U-Net can generalize based on
relatively few training data (see [11]). This property is advantageous for training an ML
model based on time-consuming CFD simulations.

The architecture of the U-Net is visualized in Figure 5a. It consists of a contracting
path (encoder) and an expanding path (decoder).
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Figure 5. (a) Architecture of the CNN; and (b) outputs of the CNN depending on the regression or
classification task.

The encoder (left side, highlighted in blue) consists of the repeated application of
encoding blocks downsampling the input. More specifically, this is achieved by applying
4 × 4 and 2 × 2 convolutions in combination with a stride of 2, and a padding of 1 for the
4 × 4 convolution and a padding of 0 for the 2 × 2 convolution, respectively. The number
of inputs defines the number of starting channels, which in our case is 3. The number of
channels is doubled repeatedly on the way down so that at the deepest layer there is a
1 × 1 data point across the number of channels. The number of channels, C, is given by

C = 2L, (6)

where L is the channel exponent.
The decoder (right side, highlighted in orange) consists of the repeated application of

decoding blocks upsampling the data point to the desired output resolution. This is done
by applying 3 × 3 and 1 × 1 convolutions in combination with a stride of 1, and a padding
of 1 for the 3 × 3 convolution and a padding of 0 for the 1 × 1 convolution. The number of
channels decreases on the way up so that the desired number of outputs, M, is reached on
the output layer (typically the number of channels is divided by two).

Each encoding and decoding block consists of a convolutional layer, a batch normal-
ization layer, and a non-linear activation function. As proposed in [13], we use leaky- ReLU
activation functions with α = 0.2 for the encoding blocks and ReLU activation functions
for the decoding blocks. In this case, the encoder consists of four 4 × 4 and three 2 × 2
convolutions, and the deepest layer is a 1 × 1 data point over 256 channels. The decoder
consists of three 1 × 1 convolutions and four 3 × 3 convolutions for resizing.

The regression model has one output (M = 1) and is trained on velocity. We use L1
loss for training.

We train the classification model on the LLC consisting of 6 classes, and thus the
number of outputs M = 6, one for each class. This results in a 6 × 256 × 256 tensor. Then,
we apply the softmax function implemented in the Python package PyTorch [40], which is
defined as

softmax(xi) =
exp xi

∑j exp xj
. (7)

The softmax function is commonly used in machine learning and deep learning for
multi-class classification tasks [41]. It rescales the elements of the 6 × 256 × 256 tensor,
such that the output probabilities are non-negative and sum up to 1. This property is
important for interpreting the output as probabilities. After this, we apply the argmax
function implemented in PyTorch [40], which is used to find the class with the highest
probability of becoming the predicted class in the input tensor across one dimension. This
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yields one output, i.e., a 1 × 256 × 256 tensor containing LLC classes. For the classification
model, we use the cross-entropy loss for training. This process is visualized in Figure 5b.

3.2. Inputs and Outputs

The following aspects are described using a specific building setup.
The CNN input for both the classifier and the regression model consists of three

matrices representing the town mask with building height information (1) in m, the wind
rose speed (2) in m/s, and the wind direction (3) in °. Each matrix consists of a set of pixels
P. In our case, all matrices are resolved with 256 × 256 pixels, p ∈ P.

The indices of input (1) contain zero if there is no building. Otherwise, they are set
to the corresponding building height. The indices of inputs (2) and (3) are set to zero if
there is a building at that position. Otherwise, they are set to the wind rose speed and
wind direction, respectively. Therefore, inputs (2) and (3) correspond to an extreme case
scenario e = (Vi, Aj). For an extreme case LLC, e, we assume the entry of the wind rose
statistic corresponding to the wind rose speed and wind direction to be 1.0, while all the
other entries are 0.0 (see Section 2.2).

The CNN output for the regression model consists of one matrix with the correspond-
ing speed, i.e., magnitude of the velocity vector in m/s for e. The CNN output for the
classification model consists of one matrix containing the extreme case LLC for e. Each
pixel of the matrix contains a class label in the range of 0 to 5 for the six LLC classes. An
example of an unnormalized training sample for the CNN is shown in Figure 6. The output
for the regression model is shown on the left side in the lower row, and the output for the
classification model is shown on the right side in the lower row of the picture.

Figure 6. Example of an unnormalized training sample with the inputs (1)–(3) and the output
for regression and classification; the regression output is the velocity magnitude in m/s, and the
classification output is the extreme case LLC (see Section 2.2).

We use normalized training samples for CNN training. Input (1) is normalized with
respect to the tallest building in the area, while inputs (2) and (3) are normalized with respect
to the highest wind rose speed and the highest wind direction, respectively. The output
is normalized to the [0, 1] range. We use the maximum absolute value for the velocity
computed over the entire training data set to normalize the data. The classification model
output is class labels, where normalization is unnecessary.
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3.3. Decision Tree Classifier

Since the classification model predicts the extreme case LLC, a “data accumulator”
is necessary to predict the LLC for the wind rose statistic, W. Data accumulation (DA) is
performed utilizing a simple additional classification model.

Decision tree classification (DTC) uses a decision tree to predict discrete values. A de-
cision tree is constructed by recursively generating decision rules and splitting the training
data set into smaller subsets according to that rule (see [42]).

In this work, we are using the DTC implementations of the Sklearn library [43].

Data Accumulation

For each pixel, p ∈ P, we calculate the probability that the LLC for wind rose statistic
W for this pixel equals class k, defined as follows:

Prob(LLC(p) == k) = ∑
e∈E

f (e, p, k), (8)

where f : E × P × K → [0, 1], with P the set of all pixels, and K := {0, . . . , 5} the set of class
labels, defined as follows:

f ((Vi, Aj), p, k) =

{
Wij, if LLC(e, p) = k
0, otherwise

(9)

for each scenario, e = (Vi, Aj), i, j = 1, . . . , 8, where W is the wind rose statistic defined in
Equation (2). This results in the vector, sp, of probabilities for the class labels, K, for each
pixel, p, defined as follows:

sp =
(

Prob(LLC(p) == 0) . . . Prob(LLC(p) == 5)
)

(10)

This process is visualized in Figure 7 for one pixel, p. Repeating this process for every
pixel, p ∈ P, leads to set S:

S = {sp |p ∈ P} (11)

Regarding numerous simulations, the DTC is trained on multiple sets of S and for
each pixel, p ∈ P, it predicts the LLC label, k, for the wind rose statistic, W:

DTC : sp → k. (12)

Figure 7. Training data for decision tree classifier for predicting LLC for the wind rose statistic, W,
based on the extreme case LLC of the classification model, illustrated for the post-processed/predicted
data of one simulation.
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3.4. Post-Processing and Augmenting CFD Simulations for Training

For a simulation setting, i.e., a specific setup of the new building, the CFD solver
performs an individual simulation with 8 different sub-simulations, 1 for each wind di-
rection. For each of those sub-simulations, the inlet velocity is constructed as described
in Section 2.3, with a reference velocity of u⃗ = (ux, uy, uz) = (5 m/s, 0 m/s, 0 m/s) at refer-
ence height 10 m. For each sub-simulation, the geometry is rotated around the z-axis by
the wind direction. When all sub-simulations are finished, the LLC is calculated using the
wind rose statistic (see Section 2.2).

To post-process the training data for CNN from the CFD simulations, we can take
advantage of the fact that the fluid data are available for each of the eight wind directions
per simulation, i.e., we have access to the velocity fields for each wind direction, Aj. Fur-
thermore, we take advantage of the fact that the velocity fields are in the Reynolds-similar
regime and thus can be linearly scaled with the reference inlet velocity, see e.g., [26]. In this
way, we can generate even more training data for each wind rose speed, Vi. In principle,
this means that we can post-process one training sample for each entry of the wind statistic
(2), i.e., for each extreme case scenario, e (see Section 2.2).

There is a slight difference between post-processing for the regression and classification
models. On the one hand, the regression model is trained on the velocity magnitude for
each extreme case scenario, e. The goal is to predict the magnitude of the velocity for the
reference velocity of 5 m/s for each wind direction. From this, we can calculate the LLC.
We, therefore, include the reference velocity of 5 m/s in the training data, resulting in the
wind rose speed vector for training in m/s:

Ṽ =
(
0.5 2.0 4.0 5.0 6.0 8.0 10.0 12.0 14.0

)
. (13)

Thus, we can post-process 72 training samples from each simulation—64 training
samples from the wind statistic and another 8 training samples for each wind direction
with respect to the reference velocity.

The classification model is trained on the extreme case LLC, on the other hand.
From this, we predict the LLC for the wind rose statistic, W, for a specific setting of
the new building (see Section 3.5). In this case, we do not include the reference velocity,
and thus we can post-process 64 training samples from each simulation. We obtain the
velocity magnitude information for the corresponding extreme case scenario, e, from the
simulation, and from this we calculate the extreme case LLC.

3.5. Machine Learning Workflow

The first step of the MLW is training the regression and classification models. During
the training step, the CNN is trained with the training data consisting of three inputs and
one output, as described in Section 3.2. This step is the same for the regression and the
classification models, except that the architecture of the U-Net is different, and we use
different losses for regression and classification (see Section 3.1). Furthermore, depending
on whether the regression or the classification model is trained, different training data are
used, as described in Section 3.4.

The MLW for the prediction step is visualized in Figure 8 and is described in more
detail for regression and classification in the following.
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Figure 8. ML workflow (MLW) for prediction: Step 1a illustrates the MLW for the regression model;
and Step 1b shows the MLW for the classification model.

3.5.1. Prediction Workflow for Regression Model

The trained CNN predicts the velocity for a given input sample. To predict the LLC,
we feed the CNN eight input samples, where inputs (1) (town mask) and (2) (wind rose
speed) are fixed to a specific setting of the new building and the reference wind rose speed
Ṽ5 = 5 m/s, respectively. Input 3 includes the eight different wind directions, Aj. We
obtain a velocity prediction from the trained CNN for each input sample. Before calculating
the LLC, we perform a data completion (DC) step, where the prediction for each wind
direction, Aj, is scaled to each wind rose speed, Vi, resulting in 64 matrices. From this, we
can then calculate the LLC. This process is illustrated in step 1a of Figure 8.

3.5.2. Prediction Workflow for Classification Model

In the case of the classification model, the trained CNN predicts the extreme case LLC
for a given input sample. The MLW for classification is illustrated in step 1b of Figure 8.

To predict the LLC, we feed the CNN 64 input samples, one input for each extreme
case scenario, e. Input (1) (town mask) is fixed to a specific setting of the new building.
Inputs (2) and (3) (wind rose speed, Vi, and wind direction, Aj) include the 64 extreme case
scenarios, e (see Section 2.2). In the first step, we obtain an extreme case LLC prediction for
this specific scenario of the new building for each of these 64 test samples. In a second step,
the data accumulation (DA) step is performed, which is described in Section 3.3, resulting
in set S containing all vectors, sp, of probabilities for the class labels, K, for each pixel, p, of
the LLC for the wind rose statistic, W. The LLC is determined pixel-wise in a third step by
feeding the DTC each probability, sp. The DTC in turn predicts the class label, k, for each
pixel of the LLC for the wind rose statistic, W.

3.6. Error Metrics

The following standard metrics are considered to measure the performance of the
trained CNN. Absolute error (AE) measures the absolute difference between the predicted
and actual values. It gives the magnitude of the error without considering the direction.
AE is useful in evaluating the overall accuracy of a prediction model. Mean absolute error
(MAE) provides a measure of the average magnitude of the errors. MAE is commonly
used to compare the performance of different models or algorithms, as it indicates how
close the predictions are to the actual values on average. Relative absolute error (RAE) is a
normalized version of MAE that takes into account the scale of the data. RAE is useful when
comparing models on data sets with different scales, as it allows for a fairer comparison by
considering the baseline performance.
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For the target with the corresponding prediction, the absolute error for a specific pixel,
p, in the output matrix is defined as

AEp =
∣∣∣targetp − predp

∣∣∣. (14)

For any given test sample, the mean absolute error between the prediction and the
target is defined as

MAE =
1
|P| ∑

p∈P

∣∣∣targetp − predp

∣∣∣. (15)

The absolute target average of the target is defined as

ATA =
1
|P| ∑

p∈P

∣∣∣targeti,j

∣∣∣. (16)

The relative average error of the prediction compared with the target is

RAE =
MAE
ATA

. (17)

To measure the performance for the entire test set, the mean of RAE is calculated as,

RAE =
1
N

N

∑
n=1

RAE, (18)

where N is the number of test samples.
Furthermore, we consider the F1-score metric (see [44]) to measure the accuracy of the

predicted LLC. The F1-score for a class k is defined as follows

F1(class = k) = 2
precision(class = k) · recall(class = k)

precision(class = k) + recall(class = k)
, (19)

with precision for class k defined as

precision(class = k) =
TP(class = k)

TP(class = k) + FP(class = k)
. (20)

Recall for class k is defined as

recall(class = k) =
TP(class = k)

TP(class = k) + FN(class = k)
. (21)

TP, FP, and FN correspond to “true positive”, “false positive”, and “false negative”.
More specifically, TP(class = k) indicates how many pixels, p, with the true label k are
predicted correctly by the model, i.e., the model also predicts class k. FP(class = k) gives
the amount of pixels, p, that are predicted with label k, but belong to a different class,
and FN(class = k) indicates the amount of pixels, p, that are incorrectly predicted with a
class different from k.

In our case, the LLC consists of six classes. The F1-score is calculated for each class
individually, resulting in six scalar values. To receive a single scalar value, we use the
averaging method macro, taking the average of the F1-score of each class. The macro-
averaging method gives equal weight to each class, independent of the number of instances.
Thus, the overall F1-score is defined as follows:

F1 =
∑k∈K F1(class = k)

|K| (22)
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We use the F1 metric to measure the performance of the classification model, and we
also consider this metric for evaluating the performance of both models (regression and
classification) on the LLC test set. Furthermore, we consider the recall metric for each class.
This is appropriate here because the LLC consists of classes.

4. Training Results

Three different training data sets were used for training the CNNs. Each of these
training data sets included 13 simulations with an equal number of floors for each segment
(ranging from 3 to 15 floors). Then we randomly added 50 and 100 simulations from the
200 performed simulations (see Section 2.4), resulting in the first two training data sets.
Thus, the third training data set included 200 simulations plus 13 simulations. The resulting
number of training samples for the regression and classification models after applying the
augmentation strategy described in Section 3.4 are listed in following tables.

Before training the models on each data set, we performed hyperparameter optimiza-
tion using Optuna (see [45]). The corresponding hyperparameters are listed in Table 3.
After training, we tested the networks with respect to 25 separate simulations.

Table 3. Hyperparameters of CNN. * was solely used for the regression model.

Hyperparameter Range/Set

channel exponent {2, 3, 4, 5, 6, 7, 8} *
dropout probability [0.0, 1.0]

batch size {1, 6, 11, . . . , 46}
maximum learning rate [0.0001, 0.01]
decaying learning rate {True, False}

4.1. Regression Model
4.1.1. Hyperparameter Optimization

The best-performing hyperparameters are displayed in Table 4. In almost all our
models, we observe the highest number of channels because the problem at hand is
complex. A higher number of channels was not possible for memory reasons. This may
indicate an overfitting effect. However, as the validation loss curves in Figure 9 decrease
over time, they reach a plateau, suggesting that there is no overfitting. The optimal batch
size of 6 is small compared with typical batch sizes. The reason for this is that we are
working with smaller data sizes and that the network is deep and complex. However, this
also affects the training of the model, so the model can skip the local minima of the loss
function more easily. The optimal dropout probability is close to zero, specifically for a
larger number of simulations. That indicates sufficiently diverse data. Also, since we make
use of a decaying learning rate, that is enough regularization for the model. The optimal
learning rate is neither too low nor too high, leading to the fastest convergence.

Table 4. Optimal hyperparameters for training of the regression models.

Setting 50 Simulations 100 Simulations 200 Simulations

channel exponent L in Equation (6) 7 8 8
dropout probability 0.07002 0.02510 0.06860

batch size 6 6 6
maximum learning rate 0.00108 0.00076 0.00077
decaying learning rate True True True

trainable parameters 36,668,929 146,607,105 146,607,105
number of training samples 4536 8136 15,336
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Figure 9. Validation loss for the regression model trained on three different training sets.

4.1.2. Training

We trained three individual regression models based on the different training sets and
optimal parameters in Table 5. The number of training samples was obtained by the aug-
mentation strategy for the regression, described in Section 3.4. For each one of the 64 entries
of the wind rose statistic and for each simulation, we generated one training sample. Also,
for each one of the eight wind directions, the reference wind rose speed, and for each
simulation, we generated one training sample. Thus, for example, for 50 + 13 simulations,
this results in 63 × (64 + 8) = 4536 training samples.

The models were trained for 400 epochs. Figure 9 shows the validation loss curve
for each model. Training the regression model based on 50 and 100 simulations leads to
a comparably higher validation loss after 400 epochs than training based on 200 simula-
tions. Furthermore, the oscillations in the validation loss are the smallest for the model
“200 Simulations”.

4.1.3. Performance on Test Set

The performance on the test set for each of the models is shown in Figure 10. As ex-
pected, the more data that were used for training, the better the performance on the test set
was. Figure 10 shows different quantiles of the test set. Analyzing, for example, the mean,
one notices that the mean is highest for the “50 Simulations” model. This is true for all the
other quantiles, except for the maximum value, which is highest for the “100 Simulations”
model. The “200 Simulations” model performs best on the test set. The mean of the RAE
of the velocity equals 0.0610. This corresponds to a value of 1.22 m/s. Also, 95% of the test
samples result in a RAE of less than 0.1281, which equals about 2.56 m/s.

The distribution of the test set for each model is shown in the form of a box plot
in Figure 10b. The box represents the data lying within the 25% and the 75% quantile.
The horizontal line within the box corresponds to the median of the data. There are a few
outliers present, which are marked by the dots above the upper whiskers. Here, it is also
clear that the “200 Simulations” model performs best on the test set. The median is the
smallest for this box plot (see Figure 10). Furthermore, there are fewer outliers present than
there are for the other two models. Compared with the other models, most outliers can
be seen in the “100 Simulations” model. The reason for that could lie in the comparably
higher validation loss of the “100 Simulations” model (see Figure 9).
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Figure 10. Performance on test set of the three trained regression models; (a) shows a line plot for
different quantiles of the test set; and (b) shows the distribution of the test set in the form of a box plot.

4.1.4. Discussion

In summary, the “200 Simulation” model performs the best on the test set, with a
mean relative absolute error (RAE) of 0.0610. However, when compared with the best-
performing models in [13,14], these errors are higher. For example, [13] achieved a relative
error of approximately 0.03. One main difference is that [13] had access to many more data,
with up to 25,600 individual simulations for training. They also trained a network with
only 200 individual simulations, which resulted in an error similar to ours of about 0.06.
However, they did not perform any data augmentation. Another significant difference
is that [13] investigated a different use case—an airfoil with no surrounding geometries.
In our case, we are dealing with a building consisting of multiple segments surrounded by
other buildings. This leads to more complicated wind profiles, which could explain the
higher errors and outliers in the data. This observation is also consistent with the findings
of [14], who observed that including more buildings in the training samples resulted in
higher errors due to more complicated wind profiles.

4.2. Classification Model
4.2.1. Hyperparameter Optimization

For the classification model, optimal hyperparameters are displayed in Table 5. The
overall behavior is very similar to the regression models in Section 4.1.1. Also, here the
number of channels is at the maximum. An additional increase in the number would
improve the model even further. However, that requires additional memory allocation.
One difference is the increase in the batch size. However, it is not that significant and
considerably small, thus leading to the same interpretation.

Table 5. Optimal hyperparameters for training of the classification models.

Setting 50 Simulations 100 Simulations 200 Simulations

channel exponent 7 7 7
dropout probability 0.02185 0.03889 0.00087

batch size 6 16 11
maximum learning rate 0.00013 0.005155 0.00328
decaying learning rate True True True

trainable parameters 36,689,414 36,668,929 36,689,414
number of training samples 4032 7232 13,632
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4.2.2. Training

We trained three classification models based on the three training data sets and optimal
parameters in Table 5.

Each model was again trained for 400 epochs. Figure 11 shows the corresponding
validation loss curves for each model. Here, training the “200 Simulations” model leads to
a comparably smaller loss after 400 epochs of 0.03917, than training the other two models.

Figure 11. Validation loss for the classification model trained on three different training sets.

4.2.3. Decision Tree Classifier Training

The training data for the DTC were obtained from the training sets, as described in
Section 3.3. A total of 25% of these data were set aside for testing. The training data set is
imbalanced because there are significantly fewer samples of class 5 present than there are
of the other classes (see [46]). For this reason, we performed oversampling before training
the DTC on each training data set (50, 100, and 200 simulations). We used the Synthetic
Minority Oversampling Technique (SMOTE) implemented in the Python package imblearn
(see [47]) to balance our data sets. The SMOTE algorithm adds new artificial samples to
the data set by first selecting a minority class instance. It finds its k nearest minority class
neighbors and randomly selects one of those. A new point is then added by interpolating
between the selected point and the selected neighboring point (see [46]).

Before training, we also performed hyperparameter optimization to tune the hyperpa-
rameters. Tuned hyperparameters for the DTC are the maximum depth of the tree and the
minimum number of samples a leaf must have. The parameter ranges are given in Table 6.
The hyperparameter optimization was performed by using grid search with 5-fold cross-
validation (implementation of the Sklearn library [43]). The resulting hyperparameters are
also given in Table 6.

Table 6. Hyperparameters of DTC.

Hyperparameter Range/Set

maximum depth of the tree {5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35}
min. number of samples leaf {2, 4, 6, . . . , 16, 18, 20}

Optimal Hyperparameters

maximum depth of the tree 35
min. number of samples leaf 2

The performance on the test set of the DTC classifier for each training set is given in Table 7.
For all three training sets, the accuracy on the corresponding test set is greater than 96%.
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Table 7. Accuracy of DTC for each training set.

Setting 50 Simulations 100 Simulations 200 Simulations

Accuracy in % 96.76 96.52 96.12

4.2.4. Performance on Test Set

The performance on the test set for each model is shown in Figure 12. We consider the
deviation of each sample from the ideal F1-score of 1 as a metric. In Figure 12a, different
quantiles of the test set are plotted. For example, analyzing the 95% quantile, one notices
that the deviation of 95% of the data from the ideal F1-score for the “200 Simulations” model
equals 0.1832. In other words, 95% of the data yield an F1-score of at least 81.68%.

Figure 12. Performance on test set of the three trained regression models with respect to the deviation
from the ideal F1-score; (a) shows a line plot for different quantiles of the test set; and (b) shows the
distribution of the test set in the form of a box plot.

Due to the augmentation strategy we used for the classification model (see
Sections 3.4 and 3.5), there are a few samples where the entire output matrix equals class 0.
These samples are always predicted correctly and yield an F1-score of 1. The higher the
wind rose speed is, the more classes there are that appear in the output matrix (the extreme
case LLC). Those samples yield lower F1-scores. An example is shown in Figure 13. This
test sample is predicted with model “200 Simulations” and yields an F1-score of 91.27%.
The figure shows the prediction on the left side and the expectation on the right side.
The extreme case LLC is predicted well for this test sample, except for a few details.

Overall, the three classification models yield a mean of the deviation from the ideal
F1-score of 0.0849, 0.0784, and 0.0692, for the “50 Simulations”, “100 Simulations”, and the
“200 Simulations”models. This corresponds to an average F1-score of 91.51%, 92.16%,
and 92.08%, respectively. The distribution of the deviation from the ideal F1-score is shown
in the form of box plots in Figure 12b.
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Figure 13. Example of an test sample predicted with model “200 Simulations”; on the left side the
prediction of the extreme case LLC is shown and on the right side the expectation is shown.

4.2.5. Discussion

The best-performing model on the test set is once again the “200 Simulations” model,
achieving an average F1-score of 92.08%. This outperforms the results of [18], who achieved
a maximum F1-score of 89%. There are several key differences between our approach
and theirs. Firstly, while they predict three wind comfort classes, our model is capable
of predicting six classes. Additionally, the use case in their study differs from ours. They
consider multiple geometries without surrounding buildings, whereas our classification
model predicts the extreme case LLC for entire areas, resulting in a matrix instead of a
single value.

4.3. Wind Comfort Predictions with Regression and Classification Models

In both MLWs (see Section 3.5), we calculate the LLC as a post-processing step resulting
from the model predictions. For the regression model, the LLC is calculated based on the
prediction of the reference wind rose speed magnitude of 5 m/s for each wind direction of
the wind rose statistic. The better the velocity prediction is, the better the LLC prediction
can be expected to be. It is important that the model reflects the overall velocity behavior
well and that the maximum velocities occurring in each scenario are predicted as accurately
as possible, as these contribute to the highest class in the LLC criterion, which is concerned
with pedestrian safety. Therefore, we analyze the models with respect to the overall LLC as
well as with high attention to the performance of the highest LLC class.

The LLC based on the classification model is predicted using a decision tree classifier
(DTC) trained on the same post-processed simulation data as the classification model itself
(see Section 3.5). Here, it is important to have a well-performing classification model to
predict the LLC based on the extreme case LLC.

4.3.1. Regression Model

The performance of the regression model on the LLC test set is summarized in Table 8
under “Regression”. The average F1-score per sample is >80% for all three models. It is best
for the “200 Simulations” model, with an F1-score of 84.48%. However, it is important not
only to represent the overall behavior of the wind well in the LLC, but also the highest class
5 especially. Therefore, the average of the recall metric on the test set is given separately for
each class in Table 8. Note that class 4 is not listed in Table 8. This is due to the fact that, in
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the calculation of the LLC, class 4 is very unlikely and thus rarely occurs. For the test set,
class 4 indeed never occurs.

Table 8. Performance of the regression and classification models on the LLC test set.

Metric 50 Simulations 100 Simulations 200 Simulations

Regression

Average F1-score Regression 0.8347 0.8406 0.8448
Recall class 0 0.9740 0.9760 0.9774
Recall class 1 0.7990 0.8173 0.7950
Recall class 2 0.6772 0.6946 0.7188
Recall class 3 0.6634 0.6252 0.6824
Recall class 5 0.2659 0.1222 0.1984

Classification

Average F1-score Classification 0.8085 0.8270 0.8256
Recall class 0 0.9756 0.9777 0.9792
Recall class 1 0.7571 0.7759 0.7854
Recall class 2 0.6149 0.6896 0.6519
Recall class 3 0.6518 0.5799 0.6403
Recall class 5 0.1191 0.0092 0.0183

Class 0 (“Recall class 0” in Table 8) yields a high recall of over 95% for each model.
This is not surprising, because class 0 mostly occurs at pixels, where buildings are present,
meaning the total velocity is 0 m · s−1. Class 1 is also predicted with high certainty and
yields a recall of up to 81.73%. Classes 2 and 3 are predicted correctly slightly less often.
Here, the model “200 Simulations” performs best, with a recall of 79.50% for class 2 and
with a recall of 68.24% for class 3. The recall for class 5 (”Recall class 5” in Table 8) is best
for the model “50 Simulations”, with a value of 26.59%.

Comparing the average recall for class 5 to this metric for the other classes in Table 8,
one notices that these values are significantly smaller. We observe in the test set that
the regression model often underestimates and sometimes overestimates the velocity
magnitude. Therefore, class 5 of the LLC is underestimated or overestimated as well. Since
the threshold for class 5 is only 0.022% (see Section 2.2), a slight over- or underestimation
of the velocity magnitude results in poor predictions for class 5.

For further analysis, we consider the “200 Simulations” model to be the best model,
because the performance for all classes (except classes 1 and 5) is better than for the other
classes and it yields the highest F1-score.

Test sample 4 is shown in Figure 14. The prediction of the LLC is shown on the left
side, and, on the right side, the expected LLC from the CFD solver is shown. This sample
scores an F1-score of 83.84% and a recall of 31.31% for class 5. Classes 0, 1, and 2 yield a
recall of 98.63%, 79.08%, and 72.26%. The recall of class 3 equals 61.89%. The overall LLC is
predicted well. Here, the behaviour of overestimating the velocity magnitude can be seen,
for example, in the upper region of the prediction, where the red area is much larger than
expected. Furthermore, the green area in the left region of the prediction is smaller than
expected. The comparison of prediction and expectation for the other samples of the test
set are shown in Appendix A, in Figures A1 and A2.
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Figure 14. LLC prediction (left) of regression model for test sample 4 compared with the expected
LLC from the CFD solver (right).

4.3.2. Classification Model

The performance of the classification model on the LLC test set is summarized in
Table 8 under “Classification”. As for the regression model, the average F1-score per sample
is again >80% for all models and is best for the “100 Simulations” model, with an F1-score of
82.75%. It is only slightly higher than the average F1-score for the model “200 Simulations”,
with a value of 82.15%. The LLC was predicted with the trained decision tree classifier (see
Section 3.5), which for the four different training data sets always yielded a score of at least
96% (see Section 4.2.3).

Again, the recall for each class is given separately in Table 8 under “Classification”.
Comparing these results with the regression model, one notices that classes 3 and 5 espe-

cially are worse for the classification model. The average recall for class 5 predictions decreased
by 14.68, 11.30, and 18.01 percentage points for the “50 Simulations”, “100 Simulations”, and the
“200 Simulations” models, respectively.

Training the DTC is an imbalanced data problem because there are significantly
fewer data points of class 5 than of any other class. We summarize the number of pixels
for each class, k, for the LLC test set in Appendix A, in Table A1. Because of this, we
perform oversampling before training the DTC (see Section 4.2.3). For the training data
of the classification model, on the other hand, this is not the case, because of the data
augmentation strategy using the extreme case LLC (see Section 3.4). By using these extreme
case LLCs, the higher the wind rose speed is, the higher the LLC is in the extreme case
scenario. In this way, we can generate a data set that is not imbalanced.

Since the score on the test set of the decision tree classifier is, with more than 96%,
high (see Table 7), the poorer predictions of class 5 therefore root in prediction errors of the
classification model. In the test set, we observe that, as the wind rose speed of the extreme
case scenario increases, the F1-score decreases. We observe a maximum deviation from the
optimal F1-score of 36.65% in the test set (see Figure 12). Since all 64 predictions for the
extreme case scenarios are used for LLC prediction (some with a high F1-score, some with
a comparably lower F1-score), this leads to the poorer predictions of class 5.

The comparison between prediction and expectation for test sample 4 is shown in
Figure 15. On the left side, the prediction of the LLC by the “200 Simulations” model is
shown, and, on the right side, the expected LLC calculated with the CFD solver is shown.
This sample scores an F1-score of 83.14%. The overall LLC is therefore predicted well.
Classes 0, 1, and 2 yield a recall of 98.89%, 79.40%, and 68.83%. The recall for class 3 equals
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62.15%, and the recall for class 5 equals 1.85%. The other LLC test set samples are shown in
Appendix A, in Figures A3 and A4.

Figure 15. LLC prediction (left) of classification model for test sample 4 compared with the expected
LLC from the CFD solver (right).

4.3.3. Summary

Overall, both the regression and the classification models yield promising results for
LLC prediction. The regression model performs slightly better with respect to the average
F1-score than the classification model. For both models, it is possible to predict the LLC
with an F1-score of >80.0%, independent of the number of simulations used for the training
set. However, our observation is that the more training data used for the regression model,
the better is the prediction of the highest LLC class concerned with pedestrian safety. The
models are trained independent of the wind statistic. Therefore, the LLC test step can
be performed for different wind statistics. Furthermore, the regression model is even
independent of the LLC calculation rule because it is trained on velocity magnitude.

Even though the models provide overall good predictions of the LLC, the highest
class 5 of the LLC, which is concerned with pedestrian safety, is not predicted that well.
Here, the recall for class 5 on average equals 19.84% and 1.83% for the regression and
classification models, respectively. The regression model therefore performs better in
predicting class 5, but neither model can make a reliable prediction for class 5. The
prediction performance of class 5 could be improved by weighing the higher velocities
more heavily in the regression model or by penalizing the inaccuracy of predicting class 5
by the classification model, but this was out of the scope of this paper.

The trained surrogate models have some limitations. Firstly, these models are trained
on a specific use case and thus may not be applicable to a different topology. Using the
surrogate models in an optimization process to enhance wind comfort for this specific use
case would result in a significant speed-up per optimization step. The CFD solver takes
approximately 26 h for a complete simulation, whereas the surrogate models only require
seconds to predict wind comfort. However, it is important to note that there are limitations
in terms of accuracy when utilizing the surrogate models, and a validating simulation
would be necessary.
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5. Conclusions

In this study, we have considered a specific building site and compared two different
machine learning workflows (MLWs) predicting wind comfort (LLC). The first MLW
implements a U-Net regression model predicting wind velocity for extreme case scenarios.
From these extreme case results, the LLC is directly computed for a specific wind rose
statistic. The second MLW is based on a U-Net classification model predicting extreme case
LLCs. For a specific wind rose statistic, a decision tree classifier predicts the LLC from these
extreme case LLCs. Overall, the proposed MLWs produce positive results, with both models
demonstrating good predictive capabilities. Independent of the training size, both models
yield an F1-score of over 80%. The regression model with an F1-score of 84.48% has proven
to be more accurate, which increases our confidence in its predictive ability. Although both
models performed well in general, there is a need for improvement in the prediction of
class 5, which is concerned with pedestrian safety. To address this, the loss function can be
adjusted by either weighting the higher velocities more heavily in the regression model or
penalizing the inaccuracy of predicting class 5 by the classification model. Compared with
the wind comfort prediction using a CFD solver, the trained regression and classification
models yield a result within seconds instead of 26 h. This leads to a significant speed-up in
terms of wind comfort optimization.

An important feature of our methodology is the scenario-based data augmentation,
which has allowed us to generate additional training data from existing simulations by a
factor of 72 at most per simulation, leading to a maximum of 15,336 training samples. It is
also worth noting that, thanks to this scenario-based approach, both models stand out for
their independence from wind rose data. This quality takes us a step closer to achieving a
higher degree of generalizability.

Overall, this study has provided valuable insights. Our study is limited to the use case
we investigated in this work, and, as of now, it is not immediately possible to apply the
trained model to different building sites. To extend the model’s utility to various building
sites, a process of additional simulations and retraining would be necessary. In a real-world
application, this procedure is not practical because it would require a large amount of
computational resources and time. Also, our models do not incorporate the underlying
physics of the processes we are modeling. Integrating physics into our models is a potential
avenue for further improving predictive accuracy. While the current model’s application to
different building sites may not be readily possible, it is essential to note that our research
lays the foundation for potential future advancements.
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Appendix A. LLC Test Set

Table A1. Number of pixels per class for each test sample in the LLC test set.

Sample No. Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

1 27,929 21,018 14,805 2391 0 30
2 27,311 21,936 13,095 3171 0 23
3 27,162 20,424 14,131 3808 0 11
4 26,207 19,537 12,753 6877 0 162
5 27,158 20,216 14,056 3887 0 219
6 26,988 20,630 14,158 3760 0 0
7 27,116 19,294 14,328 4692 0 106
8 27,115 21,864 13,800 2728 0 29
9 27,208 19,976 14,660 3668 0 24

10 26,889 19,810 14,884 3852 0 101
11 26,402 19,053 14,406 5464 0 211
12 26,486 18,940 13,695 6188 0 227
13 27,199 20,143 14,624 3447 0 123
14 26,640 19,541 14,695 4579 0 81
15 27,251 20,558 13,943 3784 0 0
16 27,260 19,905 14,345 373 0 53
17 26,964 19,656 14,975 3813 0 128
18 27,243 20,661 14,775 2851 0 6
19 27,592 19,111 13,104 5537 0 192
20 27,318 20,716 14,737 265 0 0
21 27,941 21,926 13,478 2191 0 0
22 26,836 19,527 13,173 5735 0 265
23 27,080 19,942 13,874 4610 0 30
24 26,588 19,114 13,964 5676 0 194
25 27,652 20,894 13,846 3144 0 0

Figure A1. LLC prediction by regression model for the test samples in LLC test set; on the left side of
each column is the prediction and on the right side of each column the expectation is shown; part 1.
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Figure A2. LLC prediction by regression model for the test samples in LLC test set; on the left side of
each column is the prediction and on the right side of each column the expectation is shown; part 2.

Figure A3. LLC prediction by classification model for the test samples in LLC test set; on the left side
of each column is the prediction and on the right side of each column the expectation is shown; part 1.
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Figure A4. LLC prediction by classification model for the test samples in LLC test set; on the left side
of each column is the prediction and on the right side of each column the expectation is shown; part 2.
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