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Table S1. The ratio of the initial components used to prepare composites. 

Name Bentonite 

(g) 

Resorcinol 

(g) 

Formaldehyde 

(g) 

Water 

(g) 

The yield of 

RFC after 

pyrolysis 

(%) 

Polymer 

content 

(%) 

 

RFR-75 10.02 10.04 15.00 ‒ 55.55 52.44 

RFR-76 10.00 6.00 9.02 6.05 54.15 40.08 

RFR-77 10.00 3.00 4.53 11.32 50.82 28.01 

RFR-78 10.00 10.03 15.03 ‒ 66.50 55.74 

RFR-79 10.00 6.00 15.01 ‒ 67.88 46.3 

RFR-80 10.00 3.01 15.26 ‒ 71.26 32.36 

Polymer  ‒ 10.00 15.01 10.01 50.86  

 

 

Small-angle X-ray scattering (SAXS) 

The differential pore size distribution (PSD) functions f(r) based on the small-angle X-ray 

scattering (SAXS) data (Fig. S1) were calculated (Fig. S2) using Fredholm integral equation of the 

first kind for scattering intensity I(q) [1] 
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where C is a constant, q = 4𝜋sin(θ)/λ the scattering vector value, 2θ is the scattering angle λ is the 

wavelength of incident X-ray, V(r) is the volume of a pore with radius r (proportional to r3), and 

f(r)dr represents the probability of having pores with radius r to r + dr. The values of 

rmin (= π/qmax) and rmax (= π/qmin) correspond to lower and upper limits of the resolvable real space 

due to instrument resolution. This equation was solved using the CONTIN algorithm [2]. The f(r) 

function could be converted into incremental PSD (IPSD)Φ(ri) = (f(ri+1) + fV(ri))(ri+1 - ri )/2  for better 

view of the PSD at larger r values. 



The chord size distribution, G(r) as a geometrical statistic description of a multiphase 

medium, was calculated from the SAXS data [3,4] 
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where K is the Porod constant (corresponding to scattering intensity  𝐼(𝑞)~ 𝐾𝑞-4  in the Porod 

range). 

 

Figure S1. Normalized SAXS curves for initial RFR and related carbonized samples RFC. 

 

 The specific surface area from the SAXS data was calculated (in m2/g) using equation 
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where ϕ = ρα/ρ0 is the solid fraction of adsorbent, and Q is the invariant  
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The Q value is sensitive to the range used on integration of Eq. (S4) (since experimental q values 

are measured between the qmin and qmax values different from 0 and ∞ ). Therefore, the invariant 

value Q was calculated using equation [5] 
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where b is a constant determined using equation  

I(q)q4 = K + bq4     (S6) 

valid in the Porod range.  



 To calculate the particle size distribution (PaSD) functions (Fig. S3), several models of 

particles (e.g. spherical, cylindrical, lamellar ones and various blends of them) could be used. For 

spherical particles, integral equation similar to eq. (S1) could be written as follows 
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where C is a constant, R is the radius of particles, f(R) is the distribution function (differential 

PaSD), and P(R) is the form factor for spherical particles [6] (the kernel of the integral equation 

S7): P(q,R) = (4πR3/3)2[Φ(q)]2 and Φ(q,R) = (3/(qR)3)[sin(qR) – qRcos(qR)].  

The PaSD with respect to the volume of particles (as abundance in vol%) could be 

calculated as follows abundance 

(vol%) = 3 3( ) / ( )R f R R f R dR .   (S8) 

For cylindrical particles, there are two variable parameters, such as the radius (R) and 

length (H) of cylinders  
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where, J1(x) is the first-order Bessel function, V = πR2H is the cylinder volume, and C is a constant 

[6].  

For lamellar particles [6] 
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, L is the lamellar thickness, and the prefactor (1/q2) is the 

so-called Lorentz factor required to randomize the orientation of the lamellar particle [6]. In the 

case of complex systems, several models with various blends of spherical, cylindrical and lamellar 

particles could be used with certain weight coefficients (Table S2), which were determined using 

self-consistent regularization procedure described elsewhere [7].  

 Note that the SAXS treatments described above were successfully used for carbon, silica, 

and polymeric materials in comparison with the results of various methods used to analyze the 

nitrogen adsorption and 1H NMR cryoporometry data [8-11].   

 



Table S2. Weight coefficients in the PaSD (model with lamellar(lam), cylindrical (cyl) and 

spherical (sph) particles) calculated using the self-consistent regularization procedure 

 

Sample clam ccyl csph 

RFR-75 0.036 0.085 0.879 

RFR-76 0.225 0.383 0.392 

RFR-77 0.481 0.170 0.349 

RFR-78 0.475 0.317 0.208 

RFR-79 0.188 0.308 0.505 

RFR-80 0.001 0.061 0.938 

RFC-75 0.654 0.133 0.213 

RFC-76 0.907 0.007 0.086 

RFC-77 0.468 0.224 0.308 

RFC-78 0.088 0.118 0.794 

RFC-79 0.171 0.262 0.567 

RFC-80 0.588 0.199 0.213 

 



 

Figure S2. Incremental pore size distributions calculated using the SAXS data. 

 



 

Figure S3. Particle size distributions (with a complex model of lamellar, spherical and cylindrical 

nanoparticles) calculated using the SAXS data: curves 1 – RFR75, 2 - RFRC75, 3 – RFR76, 4 – 

RFC76, 5 -RFR77, 6 – RFC76, 7 – RFR77, 8 – RFC78, 9 – RFR79, 10 – RFC79, 11 – RFR80, 12 – RFC80. 
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Figure S4. SEM images of nanocomposites. 

  

 

Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze the gaseous 

products of sample combustion in order to understand the effects of weight loss and gas 

evolution during thermal destruction. Gram Schmidt curves illustrate the presence of gases that 

are released during thermal decomposition processes. As seen from the Figure S4, these curves 

contain peaks in the range of 200-600 ° C, which represent the amount of gas emitted during 



carbon combustion. It is worth noting that the position and change in their intensity coincide with 

the DTG curves (Figure S5). 
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Figure S5. Gram-Schmidt curves for the combustion of samples of first (a) and second (b) 

series. 
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