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Abstract: The creeping flow of a viscous fluid around a soft colloidal sphere rotating about a diameter
normal to two planar walls at an arbitrary position between them is theoretically investigated in
the steady limit of small Reynolds numbers. The fluid velocity outside the particle consists of the
general solutions of the Stokes equation in circular cylindrical and spherical coordinates, while the
fluid velocity inside the porous surface layer of the particle is expressed by the general solution of the
Brinkman equation in spherical coordinates. The boundary conditions are implemented first on the
planar walls by means of the Hankel transforms and then at the particle and hard-core surfaces by
a collocation technique. The torque exerted on the particle by the fluid is calculated as a function
of the ratio of the core-to-particle radii, ratio of the particle radius to the flow penetration length
of the porous layer, and relative particle-to-wall spacings over the entire range. The wall effect on
the rotating soft particle can be significant. The hydrodynamic torque exerted on the confined soft
sphere increases as the relative particle-to-wall spacings decrease and stays finite even when the soft
sphere contacts the plane walls. It is smaller than the torque on a hard sphere (or soft one with a
reduced thickness or penetration length of the porous layer), holding the other parameters constant.
For a given relative wall-to-wall spacing, this torque is minimal when the particle is situated midway
between the walls and rises as it locates closer to either wall.

Keywords: rotation of soft particle; boundary effect in slit; creeping flow; hydrodynamic torque

1. Introduction

The low-Reynolds-number translational and rotational motions of colloidal particles
in incompressible Newtonian fluids have attracted wide attention from researchers in the
fields of chemical, biomedical, mechanical, civil, and environmental engineering. These
motions are practical and fundamental in numerous processes such as agglomeration, sedi-
mentation, centrifugation, microfluidics, aerosol technology, and rheology of suspensions.
The theoretical investigation of this topic began with Stokes’ studies [1,2] on the creeping
motions of hard spherical particles in unbounded viscous fluids. Masliyah et al. [3] and
Keh and Chou [4] extended this analysis to the translation and rotation, respectively, of a
soft sphere.

A soft particle of radius b has a hard core of radius a, covered by a permeable porous
layer of thickness b − a. Polystyrene latices with surface layers [5] and biological cells
with surface attachments [6] are examples of soft particles. To sterically stabilize colloidal
dispersions, polymers are deliberately adsorbed by particles to form permeable layers [7].
When the porous layers of soft spheres disappear, the particles revert to hard spheres. When
the hard cores of soft spheres vanish, they become fully porous spheres (like permeable
colloid flocs and polymer coils) [8].

The hydrodynamic torque on a soft sphere of radius b (a hard core of radius a covered
by a porous layer of thickness b− a) rotating with an angular velocity of Ω about a diameter
in an unbounded fluid of viscosity η at low Reynolds numbers is [4]
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T0 =
8πηλ−2bΩR

λa cosh(λb− λa) + sinh(λb− λa)
, (1)

where,

R = (λ3ab2 − 3λb + 3λa) cosh(λb− λa) + (λ2b2 − 3λ2ab + 3)sinh(λb− λa), (2)

and 1/λ is the penetration length (square root of permeability) of fluid flow within the
surface layer of the soft particle (T0 and Ω are in opposite directions). In the limiting case
λb→ ∞ , Equation (1) degenerates to the Stokes result for a hard sphere of radius b.

In real situations of the rotation of particles, the surrounding fluid is bounded by
solid walls [9–12]. Thus, it is necessary to know whether the proximity of boundary walls
meaningfully affects particle rotation. The slow rotations of a hard sphere confined by
adjacent boundaries, such as in a spherical cavity [13–17], in a circular cylinder [18–20], and
near one or two planar walls [13,21–23], were analyzed. Alternatively, the low-Reynolds-
number rotations of a soft or porous spherical particle in a spherical cavity [4,24–27] and in
a cylinder [28] were also theoretically investigated. These studies show that the effect of
boundaries on the rotation of particles can be very substantial and interesting.

In the general theories of stirred vessels and rotational viscometers for highly viscous
liquids, it is important to understand the variation of torque as the confinement boundary
approaches. The objective of this paper is to analyze the rotation of a soft colloidal sphere
(having a porous layer of arbitrary thickness and permeability) about its diameter normal to
one or two plane walls at an arbitrary position between them at a low Reynolds number. The
fluid velocity was found by solving the Stokes and Brinkman equations using the boundary
collocation method, and semianalytical results were obtained for the hydrodynamic torque
acting on the particle for various values of the relevant parameters (the core-to-particle
radius ratio, shielding parameter of the porous surface layer, and relative separation
distances from the walls), with excellent convergence over the entire range.

2. Analysis

As illustrated in Figure 1, we studied the creeping flow of a constant-property fluid
around a soft spherical particle of radius b rotating steadily with a constant angular velocity
Ω about a diameter perpendicular to two large planar walls whose distances from the
particle center are c and d, respectively (c ≤ d is taken without loss of generality), and
(r, θ, ϕ) and (ρ, ϕ, z) represent the spherical and cylindrical coordinate systems, respectively,
originating from the particle center. The soft sphere comprises a permeable porous surface
layer of thickness b− a. Thus, the radius of its hard core is a. The fluid velocity inside the
porous layer is finite, while the external fluid far from the particle is at rest. The objective
is to find the correction to Equation (1) for the particle rotation caused by the confining
plane walls.
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Figure 1. Geometrical sketch of a soft spherical particle rotating about a diameter normal to two
planar walls.
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The creeping flow is governed by the Stokes and Brinkman equations, yielding

[∇2 − ρ−2 − h(r)λ2]vφ =
1
r2

∂

∂r
(r2 ∂vφ

∂r
) +

1
r2

∂

∂θ
[

1
sin θ

∂

∂θ
(vφ sin θ)]− h(r)λ2vφ = 0, (3)

where vφ(ρ, z) in cylindrical coordinates or vφ(r, θ) in spherical coordinates is the φ (only
nontrivial) component of the fluid velocity distribution, the continuity equation is satisfied,
the dynamic pressure is constant everywhere, λ−1 is the penetration length (square root of
permeability) of fluid flow within the surface layer, and h(r) equals unity as a < r < b and
zero otherwise. The boundary conditions require that the fluid is no slip at the hard-core
surface and plane walls, and that both velocity and stress are continuous at the particle
surface. Thus,

r = a: vφ = 0, (4)

r = b: vφ and τrφ are continuous, (5)

z = −c, d: vφ = −Ωρ, (6)

ρ→ ∞ and− c < z < d: vφ = −Ωρ, (7)

where τrφ is the nontrivial shear stress at the particle surface. Equations (3)–(7) take the
reference frame rotating with the particle.

The fluid velocity can be expressed in the form [23,27]

vφ =
∞

∑
n=1

(λr)−1/2[Cn In+1/2(λr) + DnKn+1/2(λr)]P1
n(cos θ) if a ≤ r ≤ b, (8)

vφ = −Ωρ + λ−2
∫ ∞

0
[X(ω)eωz + Y(ω)e−ωz]ω J1(ωρ)dω +

∞

∑
n=1

An(λr)−n−1P1
n(cos θ)

if r ≥ b and− c ≤ z ≤ d, (9)

where P1
n is the associated Legendre function of the first kind of order n and degree 1, Jn is

the Bessel function of the first kind of order n, In and Kn are the modified Bessel functions
of the first and second kinds, respectively, of order n, X(ω), Y(ω), An, Cn, and Dn (all
having the dimension of velocity) are the unknown functions and constants, respectively,
to be determined. The parts of vφ involving P1

n in the previous equations are separable
solutions to Equation (3) in spherical coordinates that represent the disturbance generated
by the particle and the part of vφ involving Jn in Equation (9) is a Fourier-Bessel integral
solution to Equation (3) in cylindrical coordinates representing the disturbance produced
by the planar walls. Note that Equation (9), which is a superposition of the general
solutions in cylindrical and spherical coordinates due to the linearity of Equation (3),
satisfies Equation (7) immediately.

Substitution of boundary condition (6) into Equation (9) leads to

∫ ∞

0
[X(ω)e−ωc + Y(ω)eωc]ω J1(ωρ)dω = −λ2

∞

∑
n=1

Anαn(ρ,−c), (10)

∫ ∞

0
[X(ω)eωd + Y(ω)e−ωd]ω J1(ωρ)dω = −λ2

∞

∑
n=1

Anαn(ρ, d), (11)

where
αn(ρ, z) = [λ2(ρ2 + z2)]

−(n+1)/2
P1

n [
z

(ρ2 + z2)1/2 ]. (12)

The application of the Hankel transform on the variable ρ to Equations (10) and (11) yields

X(ω)e−ωc + Y(ω)eωc = −λ2
∞

∑
n=1

An

∫ ∞

0
αn(ρ,−c)ρJ1(ωρ)dρ, (13)
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X(ω)eωd + Y(ω)e−ωd = −λ2
∞

∑
n=1

An

∫ ∞

0
αn(ρ, d)ρJ1(ωρ)dρ. (14)

The solution of Equations (13) and (14) leads to

X(ω) =
∞

∑
n=1

AnXn(ω), (15)

Y(ω) =
∞

∑
n=1

AnYn(ω), (16)

where

Xn(ω) =
eωc[−Bn(ω,−c) + eω(c+d)Bn(ω, d)]

−1 + e2ω(c+d)
, (17)

Yn(ω) =
eωd[e ω(c+d)Bn(ω,−c)− Bn(ω, d)]

−1 + e2ω(c+d)
, (18)

and

Bn(ω, z) =
e−ω|z|

(n− 1)!
(

ω|z|
λz

)
n−1

. (19)

Substitution of Equations (15) and (16) back into Equation (9) results in

vφ = −Ωρ +
∞

∑
n=1

Anγn(r, θ) if r ≥ b and− c ≤ z ≤ d, (20)

where

γn(r, θ) = λ−2
∫ ∞

0
[Xn(ω)eωr cos θ + Yn(ω)e−ωr cos θ ]ω J1(ωr sin θ)dω + (λr)−n−1P1

n(cos θ), (21)

in which the integral can be calculated numerically.
The remaining boundary conditions to be fulfilled are those at the particle and hard

core surfaces. Substituting Equations (8) and (20) into Equations (4) and (5) yields

∞

∑
n=1

[Cn In+1/2(λa) + DnKn+1/2(λa)] (λa)−1/2P1
n(cos θ) = 0, (22)

∞

∑
n=1
{[Cn In+1/2(λb) + DnKn+1/2(λb)](λb)−1/2P1

n(cos θ)− Anγn(b, θ)} = −Ωb sin θ, (23)

∞

∑
n=1
{[Cn{λbIn−1/2(λb) + λbIn+3/2(λb)− 3In+1/2(λb)} − Dn{λbKn−1/2(λb)

+λbKn+3/2(λb) + 3Kn+1/2(λb)}](λb)−1/2P1
n(cos θ)− 2Anγ∗n(b, θ)

}
= 0, (24)

where

γ∗n(r, θ) = r2 ∂

∂r
[
γn(r, θ)

r
] = λ−2r

∫ ∞

0

{
[Xn(ω)eωr cos θ −Yn(ω)e−ωr cos θ ] J1(ωr sin θ) cos θ

−[Xn(ω)eωr cos θ + Yn(ω)e−ωr cos θ ]J2(ωr sin θ) sin θ
}

ω2dω− (n + 2)(λr)−n−1P1
n(cos θ) (25)

The satisfaction of boundary conditions (22)–(24) at the inner and outer surfaces of
the porous layer of the soft sphere requires solutions of the constants An, Cn, and Dn. The
collocation technique [29] permits these boundary conditions to be imposed at N points on
the meridian semicircle of each surface and the infinite series in Equations (8) and (20) to
be truncated after N terms, leading to 3N simultaneous linear algebraic equations. These
algebraic equations can be numerically solved for sufficiently large N to result in the 3N
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constants An, Cn, and Dn. The details of the boundary collocation scheme were given in an
early paper [30] for a hard sphere translating perpendicular to two parallel plane walls.

The hydrodynamic torque acting on the soft sphere is [27]

T = 8πηλ−2 A1, (26)

where η is the viscosity of the fluid and only the lowest-order constant A1 makes a contribution.
When the surface layer of the soft sphere vanishes, it degenerates to a hard sphere of

radius b = a, the constants Cn = Dn = 0, Equations (5), (8), (22), (24), and (25) are trivial,
and just Equation (23) is required to be solved for the N constants An. When the hard core
vanishes, the soft sphere reduces to an entirely porous sphere of radius b, the constants
Dn = 0, Equations (4) and (22) become trivial, and only Equations (23) and (24) need to be
solved for the 2N constants An and Cn.

3. Results and Discussion

The numerical solutions for the hydrodynamic torque T acting on a soft spherical par-
ticle rotating about its diameter perpendicular to two plane walls as a function of the ratio
of the particle radius to the porous layer penetration length λb, ratio of the core-to-particle
radii a/b, particle-wall spacing parameter b/c, and relative position parameter c/(c + d)
obtained from the boundary collocation method, are provided in Tables A1 and A2 in
Appendix A for the distinct case of a = 0 (a fully porous sphere) and the general case,
respectively. The torque T0, given by Equation (1) for the soft sphere in the unbounded
fluid is used to normalize T. The accuracy and convergence behavior of the collocation
technique depends upon the relevant parameters. All the results obtained converge to at
least six significant figures. For the most difficult case, the number of collocation points,
N = 46, is sufficiently large to achieve this convergence. These results are the same as
those obtained for a hard sphere [23] in the limiting case of λb→ ∞ or a = b. Obviously,
T/T0 = 1 is the limit b/c = 0, regardless of other parameters. The wall effects on the
rotational motion of the soft sphere can be significant.

The normalized torque T/T0 for a fully porous sphere rotating about its diameter
perpendicular to two planar walls is plotted against the parameters λb, b/c, c/(c + d) in
Figures 2–4, respectively, over the entire range. For fixed values of b/c and c/(c + d), as
expected and shown in Table A1 and Figures 2a,b, 3a and 4b, T/T0 is a monotonically
increasing function of the shielding parameter λb (decreasing function of the permeability)
for the fluid in the porous particle from unity (with T = T0 = 0) at λb = 0 to a larger
finite value as λb→ ∞ . When λb is smaller than unity, the variation of T/T0 with b/c and
c/(c + d) is weak (<1.4%). T/T0 of a porous sphere with low permeability (say, λb > 100)
in general is close to that of a hard one (with λb→ ∞ ), though their difference can be
noticeable when the particle is very close to a wall ( b/c→ 1).

For the given values of λb and c/(c + d), as indicated in Table A1 and Figures 2b, 3a,b
and 4a, the normalized torque T/T0, acting on the confined porous sphere, is an increasing
function of the particle-to-wall spacing parameter b/c from unity at b/c = 0 to a greater
finite value at b/c = 1 (note that T/T0 is still finite even for the limit that the particle touches
the plane walls), since the hydrodynamic hindrance caused by the plane walls is stronger
when they locate closer to the particle. The dependence of T/T0 on b/c is robust when λb
is large but vanishes in the limit λb = 0. The supposition that the two-wall effect on the
rotation of a particle can be viewed as a sum of single-wall effects will overestimate the
hydrodynamic torque exerted on the particle. That is, the increase in T/T0 from unity for
the two-equidistant-wall case c/(c + d) = 1/2 is less than twice that for the corresponding
single-wall case c/(c + d) = 0, which can be seen in Table A1 and Figures 2a, 3b and 4a,b.

For specified values of λb and b/c, the normalized torque T/T0 of the porous sphere
increases with an increase in the parameter c/(c + d) (denoting the relative position of the
porous sphere between the walls) from a finite value at c/(c + d) = 0 (the case of a single
wall) to a greater one at c/(c + d) = 1/2 (the case of two equally distant walls). Namely,
the nearness of a second wall will enhance the torque acting on the particle close to the first
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wall. The variation of T/T0 with c/(c + d) can be significant when the value of λb is large,
though it disappears in the limits λb = 0 and b/c = 0. For a given value of 2b/(c + d)
(the ratio of the particle diameter to the wall-to-wall distance), as revealed by the dashed
curves in Figure 4a, the torque is minimum when the particle locates in the middle between
the two walls [c/(c + d) = 1/2] and increases monotonically as the particle approaches
either wall.
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Figure 2. Normalized torque 0/TT  for a porous sphere ( 0a  ) rotating about a diameter per-

pendicular to two planar walls vs. the shielding parameter b : (a) / 9 /10b c  ; (b) 

/ ( ) 1/ 2c c d  . 

Figure 2. Normalized torque T/T0 for a porous sphere (a = 0) rotating about a diameter perpendicu-
lar to two planar walls vs. the shielding parameter λb: (a) b/c = 9/10; (b) c/(c + d) = 1/2.
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After understanding the hydrodynamic effect of two parallel plane walls on the axially
symmetric rotation of a porous particle, we study the general case of that on a rotating
soft particle. The results of the normalized torque T/T0 on a soft sphere rotating about its
diameter perpendicular to two planar walls for different values of the core-to-particle radius
ratio a/b, shielding parameter in the porous layer λb, dimensionless spacing parameter
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b/c, and relative position parameter c/(c + d) are presented in Figures 5–8 (together with
Table A2), respectively, over the entire ranges. Again, T/T0 increases as b/c increases from
unity at b/c = 0 to a finite value at b/c = 1 and increases as c/(c + d) increases from a
finite value at c/(c + d) = 0 to another at c/(c + d) = 1/2, keeping the other parameters
unchanged. Also, T/T0 is a monotonic increasing function of λb from a constant (equal to
zero for the entirely porous limit a/b = 0) at λb = 0 (the porous surface layer is completely
permeable) to a great one as λb→ ∞ (the surface layer is impermeable).
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distance); (b) b/c = 9/10.
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Figure 5. Normalized torque T/T0 for a soft sphere rotating about a diameter perpendicular to two
planar walls vs. the ratio of the core-to-particle radii a/b: (a) b/c = 9/10; (b) λb = 1. The solid and
dashed curves denote cases c/(c + d) = 1/2 and c/(c + d) = 0, respectively.
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Figure 6. Normalized torque T/T0 for a soft sphere rotating about a diameter perpendicular to two
planar walls vs. the shielding parameter λb with b/c = 9/10. The solid and dashed curves denote
cases of c/(c + d) = 1/2 and c/(c + d) = 0, respectively.
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Figure 7. Normalized torque T/T0 for a soft sphere rotating about a diameter perpendicular to two
planar walls vs. the spacing parameter b/c with c/(c + d) = 1/2. The solid and dashed curves
denote cases of λb = 1 and λb = 3, respectively.

For fixed values of λb, b/c, and c/(c + d), Table A2 and Figures 5–8 show that the nor-
malized torque T/T0 for the confined soft spherical particle undergoing rotation increases
monotonically with an increase in the ratio of the core-to-particle radii a/b, where the limits
a/b = 0 and a/b = 1 denote a porous sphere and an impermeable sphere, respectively.
That is, if the porous layer is thicker for specified permeability, particle size, and separation
from walls, the torque exerted on the particle will be less. All results for the soft spherical
particle fall between the upper and lower bounds of a/b = 1 and a/b = 0, respectively. For
the circumstance where the surface layer has low to mediate permeability (e.g., λb ≥ 10),
as shown in Figures 5a and 8, T/T0 on the particle with a/b smaller than about 0.8 can
be well approximated by that for a fully porous particle of the same size, permeability,
and distances from walls. In this case, the relative motion of the fluid is barely felt by the
hard core of the soft sphere, and its hindrance to the flow is negligible. However, this
approximation is not valid for the porous layer with high permeability.
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Figure 8. Normalized torque T/T0 for a soft sphere rotating about a diameter perpendicular to two
planar walls vs. the relative position parameter c/(c + d) with λb = 1. The solid and dashed curves
denote cases of b/c = 7/10 and b/c = 9/10, respectively.

Recently, collocation results were obtained for the normalized hydrodynamic torque
T/T0 of a soft sphere of radius b rotating about a diameter on the axis of a circular cylinder
of radius c [28]. Similar to the currently considered case of axisymmetric rotation of the
particle perpendicular to two equidistant plane walls (i.e., at the center of a slit), T/T0 is a
monotonically growing function of the shielding parameter λb (from a value at λb = 0 to a
higher one at λb→ ∞ ), particle-wall spacing parameter b/c (from unity at b/c = 0 to a
greater constant at b/c = 1), and core-to-particle radius ratio a/b, holding other parameters
constant. The particle in the circular cylinder bears much more torque than the particle in
the slit does. This result manifests that the retardation to the particle rotation caused by the
confinement walls is freed in both principal lateral directions of the slit, though only in an
axial direction of the cylinder.

4. Concluding Remarks

The slow rotational motion of a soft spherical particle in a viscous fluid about its
diameter perpendicular to one or two planar walls is semianalytically studied using the
method of boundary collocation. Convergent numerical results for the torque exerted on
the particle by the fluid were obtained for various values of the ratio of the particle radius
to the flow penetration length of the porous layer λb, the ratio of the core-to-particle radii
a/b, particle-wall spacing parameter b/c, and relative position parameter c/(c + d). The
wall effect on the rotating soft particle can be significant. The normalized torque, T/T0,
acting on the confined particle increases with an increase in b/c from unity as b/c = 0 (the
particle is far from the walls) and remains finite even at the contact limit b/c = 1. This
torque is smaller than that on a hard sphere (or soft one with larger a/b or λb), keeping
the other parameters’ constant. For a given ratio of the particle diameter to the wall-
to-wall distance 2b/(c + d), T/T0 is minimal when the particle is midway between the
two walls [c/(c + d) = 1/2] and increases as it locates closer to either wall [the value of
c/(c + d) decreases]. Experimental data of the normalized torque for the slow rotation of a
soft particle near one or two plane walls would be needed to confirm the validity of our
semianalytical collocation results at various ranges of λb, a/b, b/c, and c/(c + d).

Section three provides results for a resistance problem, where the hydrodynamic torque T
on a particle rotating normal to two planar walls is considered for a given angular velocity Ω
[equal to (T0/8πηλ−2bR)[λa cosh(λb− λa) + sinh(λb− λa)] according to Equation (1)]. In a
mobility problem, the torque, T (equal to 8πηλ−2bΩ0R/[λa cosh(λb− λa) + sinh(λb− λa)]),
imposed to the particle is assumed and the boundary-corrected angular velocity, Ω, is
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considered. For a soft sphere rotating normal to two plane walls dealt with here, the
normalized angular velocity Ω/Ω0 for the mobility problem is equal to (T/T0)

−1, as given
in Tables A1 and A2 and Figures 2–8 for the resistance problem.
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Appendix A

The collocation solutions for the normalized torque T/T0 acting on a soft sphere
rotating about its diameter perpendicular to two plane walls as a function of the ratio of
the particle radius to the porous layer penetration length λb, ratio of the core-to-particle
radii a/b, particle-wall spacing parameter b/c, and relative position parameter c/(c + d)
are presented in Tables A1 and A2 for the limiting case of a = 0 (a fully porous sphere) and
general case, respectively.

Table A1. Normalized torque T/T0 for a porous sphere (a = 0) rotating about a diameter perpendic-
ular to two parallel planar walls.

c/(c+d) b/c
T/T0

λb=1 λb=10 λb=100 λb=600

0 0.1 1.00001 1.00009 1.00012 1.00012
0.3 1.00021 1.00247 1.00329 1.00337
0.5 1.00095 1.01156 1.01544 1.01585
0.6 1.00165 1.02021 1.02714 1.02786
0.7 1.00262 1.03270 1.04432 1.04554
0.8 1.00392 1.05031 1.06937 1.07144
0.9 1.00559 1.07526 1.10766 1.11143

0.95 1.00659 1.09183 1.13641 1.14210
0.99 1.00746 1.10804 1.17065 1.18075
0.995 1.00758 1.11031 1.17647 1.18807
0.999 1.00767 1.11218 1.18165 1.19516

1/4 0.1 1.00001 1.00009 1.00012 1.00013
0.3 1.00021 1.00251 1.00333 1.00342
0.5 1.00097 1.01173 1.01567 1.01607
0.6 1.00167 1.02050 1.02753 1.02826
0.7 1.00266 1.03317 1.04495 1.04619
0.8 1.00397 1.05103 1.07034 1.07243
0.9 1.00567 1.07631 1.10907 1.11289

0.95 1.00668 1.09307 1.13811 1.14386
0.99 1.00757 1.10946 1.17261 1.18280
0.995 1.00769 1.11175 1.17849 1.19017
0.999 1.00778 1.11363 1.18371 1.19734
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Table A1. Cont.

c/(c+d) b/c
T/T0

λb=1 λb=10 λb=100 λb=600

1/2 0.1 1.00001 1.00016 1.00022 1.00022
0.3 1.00037 1.00446 1.00594 1.00609
0.5 1.00172 1.02101 1.02813 1.02886
0.6 1.00297 1.03690 1.04972 1.05106
0.7 1.00473 1.06007 1.08180 1.08410
0.8 1.00708 1.09308 1.12918 1.13312
0.9 1.01011 1.14040 1.20263 1.20992

0.95 1.01192 1.17212 1.25847 1.26959
0.99 1.01352 1.20337 1.32558 1.34554
0.995 1.01373 1.20775 1.33710 1.36004
0.999 1.01389 1.21135 1.34733 1.37420

Table A2. Normalized torque T/T0 for a soft sphere with λb = 1 rotating about a diameter perpen-
dicular to two parallel planar walls.

c/(c+d) b/c
T/T0

a/b=0.5 a/b=0.8 a/b=0.95

0 0.1 1.00002 1.00006 1.00011
0.3 1.00055 1.00175 1.00290
0.5 1.00253 1.00816 1.01362
0.6 1.00438 1.01420 1.02387
0.7 1.00698 1.02282 1.03880
0.8 1.01046 1.03469 1.06020
0.9 1.01498 1.05079 1.09159
0.95 1.01769 1.06088 1.11354
0.99 1.02009 1.07019 1.13645

0.995 1.02041 1.07145 1.13982
0.999 1.02066 1.07246 1.14263

1/4 0.1 1.00002 1.00007 1.00011
0.3 1.00055 1.00177 1.00294
0.5 1.00256 1.00827 1.01381
0.6 1.00444 1.01440 1.02421
0.7 1.00708 1.02315 1.03935
0.8 1.01061 1.03519 1.06104
0.9 1.01520 1.05151 1.09283
0.95 1.01794 1.06173 1.11501
0.99 1.02038 1.07117 1.13814

0.995 1.02070 1.07244 1.14154
0.999 1.02096 1.07347 1.14437

1/2 0.1 1.00004 1.00012 1.00019
0.3 1.00098 1.00316 1.00525
0.5 1.00457 1.01479 1.02477
0.6 1.00792 1.02584 1.04365
0.7 1.01264 1.04172 1.07145
0.8 1.01899 1.06378 1.11175
0.9 1.02727 1.09397 1.17167
0.95 1.03225 1.11304 1.21400
0.99 1.03667 1.13074 1.25853

0.995 1.03725 1.13313 1.26511
0.999 1.03772 1.13507 1.27059



Colloids Interfaces 2023, 7, 18 12 of 12

References
1. Stokes, G.G. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans.

Camb. Phil. Soc. 1845, 8, 287–319.
2. Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 1851, 9, 8–106.
3. Masliyah, J.H.; Neale, G.; Malysa, K.; van de Ven, T.G.M. Creeping flow over a composite sphere: Solid core with porous shell.

Chem. Eng. Sci. 1987, 42, 245–253. [CrossRef]
4. Keh, H.J.; Chou, J. Creeping motion of a composite sphere in a concentric spherical cavity. Chem. Eng. Sci. 2004, 59, 407–415.

[CrossRef]
5. Anderson, J.L.; Solomentsev, Y. Hydrodynamic effects of surface layer on colloidal particles. Chem. Eng. Commun. 1996, 148–150,

291–314. [CrossRef]
6. Wunderlich, R.W. The effects of surface structure on the electrophoretic mobilities of large particles. J. Colloid Interface Sci. 1982,

88, 385–397. [CrossRef]
7. Napper, D.H. Polymeric Stabilization of Colloidal Dispersions; Academic Press: London, UK, 1983.
8. Neale, G.; Epstein, N.; Nader, W. Creeping flow relative to permeable spheres. Chem. Eng. Sci. 1973, 28, 1865–1874. [CrossRef]
9. Malysa, K.; van de Ven, T.G.M. Rotational and translational motion of a sphere parallel to a wall. Int. J. Multiph. Flow 1986, 12,

459–468. [CrossRef]
10. Liu, Q.; Prosperetti, A. Wall effects on a rotating sphere. J. Fluid Mech. 2010, 657, 1–21. [CrossRef]
11. Daddi-Moussa-Ider, A.; Lisicki, M.; Gekle, S. Slow rotation of a spherical particle inside an elastic tube. Acta Mech. 2018, 229,

149–171. [CrossRef]
12. Romanò, F.; des Boscs, P.-E.; Kuhlmann, H.C. Forces and torques on a sphere moving near a dihedral corner in creeping flow. Eur.

J. Mech. B Fluids 2020, 84, 110–121. [CrossRef]
13. Jeffery, G.B. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 1915, 14, 327–338. [CrossRef]
14. Keh, H.J.; Chang, J.H. Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical

cavity. Chem. Eng. Sci. 1998, 53, 2365–2377. [CrossRef]
15. Lee, T.C.; Keh, H.J. Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int. J. Eng. Sci. 2013, 69, 1–15.

[CrossRef]
16. Papavassiliou, D.; Alexander, G.P. Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 2017,

813, 618–646. [CrossRef]
17. Chou, C.Y.; Keh, H.J. Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces. Eur. J. Mech. B Fluids

2021, 86, 150–156. [CrossRef]
18. Brenner, H.; Sonshine, R.M. Slow viscous rotation of a sphere in a circular cylinder. Quart. J. Mech. Appl. Math. 1964, 17, 55–63.

[CrossRef]
19. Greenstein, T.; Schiavina, G.L. Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long

circular cylinder. Int. J. Multiph. Flow 1975, 2, 353–355. [CrossRef]
20. Lee, M.C.; Keh, H.J. Slow axisymmetric rotation of a sphere in a circular tube with slip surfaces. Fluid Dyn. Res. 2021, 53, 065502.

[CrossRef]
21. Dean, W.R.; O’Neill, M.E. A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 1963, 10, 13–24.

[CrossRef]
22. Chen, P.Y.; Keh, H.J. Slow motion of a slip spherical particle parallel to one or two plane walls. J. Chin. Inst. Chem. Eng. 2003, 34, 123–133.
23. Liao, J.C.; Keh, H.J. Slow rotation of a sphere about its diameter normal to two planes with slip surfaces. Fluid Dyn. Res. 2022,

54, 035502. [CrossRef]
24. Srinivasacharya, D.; Krishna Prasad, M. Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech. Sin.

2012, 28, 653–658. [CrossRef]
25. Prakash, J.; Raja Sekhar, G.P. Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica

2017, 52, 91–105. [CrossRef]
26. Sherief, H.H.; Faltas, M.S.; Saad, E.I. Stokes resistance of a porous spherical particle in a spherical cavity. Acta Mech. 2016, 227,

1075–1093. [CrossRef]
27. Chou, C.Y.; Keh, H.J. Low-Reynolds-number rotation of a soft particle inside an eccentric cavity. Eur. J. Mech. B Fluids 2022, 91,

194–201. [CrossRef]
28. Jhuang, L.J.; Keh, H.J. Slow axisymmetric rotation of a soft sphere in a circular cylinder. Eur. J. Mech. B Fluids 2022, 95, 205–211.

[CrossRef]
29. Ganatos, P.; Weinbaum, S.; Pfeffer, R. A strong interaction theory for the creeping motion of a sphere between plane parallel

boundaries Part 2 Parallel motion. J. Fluid Mech. 1980, 99, 755–783. [CrossRef]
30. Chang, Y.C.; Keh, H.J. Slow motion of a slip spherical particle perpendicular to two plane walls. J. Fluids Struct. 2006, 22, 647–661.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0009-2509(87)85054-6
http://doi.org/10.1016/j.ces.2003.10.006
http://doi.org/10.1080/00986449608936521
http://doi.org/10.1016/0021-9797(82)90267-3
http://doi.org/10.1016/0009-2509(73)85070-5
http://doi.org/10.1016/0301-9322(86)90018-2
http://doi.org/10.1017/S002211201000128X
http://doi.org/10.1007/s00707-017-1965-6
http://doi.org/10.1016/j.euromechflu.2020.04.010
http://doi.org/10.1112/plms/s2_14.1.327
http://doi.org/10.1016/S0009-2509(98)00066-9
http://doi.org/10.1016/j.ijengsci.2013.03.010
http://doi.org/10.1017/jfm.2016.837
http://doi.org/10.1016/j.euromechflu.2020.12.007
http://doi.org/10.1093/qjmam/17.1.55
http://doi.org/10.1016/0301-9322(75)90019-1
http://doi.org/10.1088/1873-7005/ac39f9
http://doi.org/10.1112/S0025579300003314
http://doi.org/10.1088/1873-7005/ac734c
http://doi.org/10.1007/s10409-012-0057-z
http://doi.org/10.1007/s11012-016-0391-5
http://doi.org/10.1007/s00707-015-1506-0
http://doi.org/10.1016/j.euromechflu.2021.10.009
http://doi.org/10.1016/j.euromechflu.2022.05.001
http://doi.org/10.1017/S0022112080000882
http://doi.org/10.1016/j.jfluidstructs.2006.02.006

	Introduction 
	Analysis 
	Results and Discussion 
	Concluding Remarks 
	Appendix A
	References

