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Abstract: The progress of cancer genome sequencing projects yields unprecedented information of
mutations for numerous patients. However, the complexity of mutation profiles of cancer patients
hinders the further understanding to mechanisms of oncogenesis. One basic question is how to find
mutations with functional impacts. In this work, we introduce a computational method to predict
functional somatic mutations of each patient by integrating mutation recurrence with expression
profile similarity. With this method, the functional mutations are determined by checking the
mutation enrichment among a group of patients with similar expression profiles. We applied this
method to three cancer types and identified the functional mutations. Comparison of the predictions
for three cancer types suggested that most of the functional mutations were cancer-type-specific
with one exception to p53. By checking predicted results, we found that our method effectively
filtered non-functional mutations resulting from large protein sizes. In addition, this method can also
perform functional annotation to each patient to describe their association with signalling pathways or
biological processes. In breast cancer, we predicted “cell adhesion” and other terms to be significantly
associated with oncogenesis.
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1. Introduction

Cancer arises from accumulations of somatic mutations and other genetic alterations, which
leads to abnormal cell proliferation [1]. With the progress of cancer genome sequencing projects,
such as the Cancer Genome Atlas (TCGA) project, mutation information for numerous patients
are becoming publicly available [2–4], which provides the foundation to uncover mechanisms of
oncogenesis. However, cancer patients usually carry an average of 33 to 66 mutations in the protein
coding regions and those mutations are supposed to take unequal roles in oncogenesis [5,6]. It remains
a great challenge to distinguish the functional mutations that give cells with growth advantages [7],
from the ones with non-crucial roles to oncogenesis.

Many computational tools have been developed to predict the functional mutations. One popular
strategy is to find recurrently mutated genes. Genes with higher mutation frequency are supposed
to take an essential role in oncogenesis [6,8–11]. To improve the accuracy, most computational tools
also consider background mutation rates and protein sizes in discovery of recurrent mutations [12–14].
Another strategy is mutual exclusivity, which is based on an assumption that if one gene is mutated
in a patient, other members acting in the same signaling pathway are less likely to be mutated [15].
Using mutual exclusivity, members of signalling pathways are investigated for their coverage across
a large number of patients while not co-mutated in the same patients [16–19]. HotNet2, a network
approach is applied to identify significantly mutated groups of interacting genes across pathways and
protein complexes [20]. Besides of functional annotations, expression information is also used in driver
mutation discovery. One popular application is to find functional copy number variations (CNVs) by
identifying the differentially expressed genes located in the CNV regions [21]. For somatic mutations,
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correlation of gene expression profiles is also used to identify the functional mutations based on the
assumption that somatic mutations will result in altered expression of their downstream targets [22].

Somatic mutations in coding regions are usually supposed to involve oncogenesis by affecting the
activities of proteins associated with cell proliferation [23]. However, somatic mutations at different
sites have different effects on protein activities. One solution is to study the stability of protein
structures after mutations. Amino acid changes in the protein sequences can either stabilize, destabilize
or have no effect on protein structures. Methods based on this strategy calculate the protein folding
free energy, which is used to evaluate the protein structural stability [24–26]. However, those methods
still face the problems of establishing the direct connections between protein structures and activities.

In this work, we introduce a method to recover functional somatic mutations for each of the
studied patients by integrating mutation recurrence and expression profile similarity among patients.
This method is based on two assumptions: (1) functional mutations will lead to altered gene expression
which reflects consequences of somatic gene mutations; (2) patients with similar expression profiles
are more likely to carry functional mutations to the same genes. For each patient, we can find a
group of patients that have similar expression profiles to him/her and those patients are called
neighboring patients. Mutations of the studied patient are evaluated for their enrichment among all
the neighboring patients. Mutations with enough enrichment are predicted to be functional mutations.
The functional mutations of all patients can be recovered by repeating this process. This method also
performs function annotation analysis to mutated genes in neighboring patients so that each patient
can be assigned with some functional terms to indicate the association with signalling pathways or
biological processes. As applications, we applied this method to three cancer data sets and identified
the functional mutations for three types of cancers respectively.

2. Materials and Methods

2.1. Dataset and Their Pre-processing

In this work, we focus on prediction of functional somatic mutations, including missense mutation,
nonsense mutation and frame-shift. All the mutation and expression data are downloaded from TCGA
project (by May 2013) at level two, with which the expression data have been normalized within
samples and that the somatic mutations have also been annotated in protein coding genes by the pilot
of TCGA project. We filtered those patients with only mutation or expression data for next-step analysis.

2.2. Expression Biomarkers

To describe the expression profile similarity of patients, we firstly determine a group of genes or
probes as expression biomarkers by selecting the top 2000 genes or probes with the most expression
variances among all the patients. These biomarkers are supposed to better reflect the expression
consequences of gene mutations. The expression profile of one patient is described as a vector with the
expression values of biomarkers as the elements.

2.3. Neighboring Patients: Patients with Similar Expression Profiles

The similarity of expression profiles of the patients was measured by using Pearson’s correlation
r. Conversely, the distances between patients could be described by 1− r. For each patient, we could
find his/her neighboring patients by selecting n patients with most significant positive correlation
values at a minimum r cutoff ( e.g., r > 0.6), where n ranged from 5 to 30.

2.4. Mutation Network

The synergy of functional mutated genes were evaluated by checking their cooccurence in the
patients. We calculated the synergy score for gene a and b as:
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sA,B =
||A ∪ B||

max(||A||, ||B||) ,

where ||A|| and ||B|| are the set sizes of mutated patients for gene a and b.
The functional mutated genes with co-occurrence were connected by weighted edges to build a

mutation network, where synery scores defined the connection strength. We also used node sizes to
indicate the functional mutation frequency in the breast cancer patients.

3. Results

3.1. Association of Mutation and Expression Profiles

As an exemplary illustration, we checked the association between somatic mutations and
the expression profile similarity by investigating 516 breast invasive cancer patients. We selected
2000 probes with most expression variances as the biomarkers and performed hierarchical clustering to
the patients. Then we checked the distribution of mutated genes on the hierarchical tree. One example
is CDH1 gene, which is mutated in 35 out of 516 patients. As showed in Figure 1, patients with
CDH1 gene mutation were not randomly distributed but preferentially clustered together. To quantify
this, we classified the patients into six groups based on the structure of hierarchical clustering tree.
Among groups, the frequency of CHD1 mutations varied greatly. In Cluster IV, we observed 22 out of
120 patients to carry CDH1 mutations, which was also the most enriched group. Fisher’s exact test
indicated the significance of this enrichment to be p < 4.4× 10−8. In cluster VI, there were 6 out of
70 patients to carry CDH1 mutation without statistical significance. For cluster I and V, there was
even no patient with CDH1 mutation. We also checked the mutation distribution of other genes and
observed non-random distribution in the expression subclusters in nearly all the test cases.

These results suggest that patients with a similar set of mutated genes are more likely to have
similar expression profiles, which can be explained by the fact that gene mutations would directly
or indirectly affect transcription of their downstream targets [22,27]. Based on this observation, we
propose that genes affected by functional mutations can be identified by checking their enrichment in
patients with similar expression profiles.
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Figure 1. Hierarchical clustering and the mutation distribution of gene.

3.2. Pipeline to Find Functional Mutations

In this work, we propose a computational method to infer the functional mutations for each
studied patient. This method is based on two assumptions that, (1) genes carrying functional mutations
directly or indirectly lead to altered expression of their downstream target genes; (2) patients with the
same functional mutations will share similar expression profiles. Thus, for each mutated gene from
one patient, we can check its mutation enrichment in the neighboring patients. The impact of gene
mutation to studied patients can be described by a p-value based on statistical frameworks.
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The whole process is described in Figure 2. This method requires two matrices as input: one
expression matrix and one binary mutation matrix. As described in Section 2, the expression matrix
is explored to determine the neighbor patients by checking its expression similarity. For patient
P1 with a mutation to gene gi, his/her neighboring patients are selected by choosing n patients
(including P1) with the most similar expression profiles with P1, where n ranged from 5 to 30 (Figure 2a).
Then, the patient number with mutation to gene gi is counted in all the neighbors of P1 (Figure 2b).
Based on randomly simulation, in which the neighbor patients are randomly selected, the enrichment of
mutations to gi among neighbor patients is evaluated by Fisher’s exactly test. A p-value is assigned to
studied patient to describe its mutation enrichment to gi (Figure 2c), which also indicates its functional
importance. If the p-value is significant enough (e.g., 0.01), mutation to gene gi in patient P1 will be
treated as functional mutation of only patient P1. The same process can be repeated for other mutated
genes and patients one by one (Figure 2f).

With our method, we also check the functional annotation for each studied patient by enrichment
analysis to all the mutated genes in neighboring patients. The functional annotation is described by
Gene ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. In this step, all the
mutated genes from patient P1 and his/her neighboring patients (Figure 2d) are checked for enriched
functional terms by comparing to the background occurrences with Fisher’s exact test (Figure 2e). If a
term is significantly enriched (e.g., p < 0.01), it will be assigned to patient P1 as functional annotation.
This term indicates the functional consequences of gene mutations in patient P1. For the other patients,
the same process can be repeated to find their associated functional terms (Figure 2f).

Expression Matrix
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...
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P 2
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Figure 2. Pipeline to predict functional mutations and terms (see main text for detailed description).

3.3. Application to Breast Cancer

As an illustration, we applied our method to 516 breast cancer patients from the TCGA project.
The functional mutations were chosen at a cutoff of p < 0.01. In Table 1, we show 10 genes with the
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most functional mutation recurrences in breast cancer. For all the genes, only part of their mutations is
predicted to be functional. Among them, PIK3CA and TP53 genes were especially recurrently mutated
based on our prediction. PIK3CA gene was observed to be mutated in 175 breast cancer patients and
123 of them were confirmed to be functional (about 70.3%), which made PIK3CA to be the gene with
the most confirmed mutations, even though it was not the most somatic mutated genes in breast cancer.
Another gene was TP53 with functional mutations in 107 patients, about 56.9% of observed somatic
mutations. There were also other functional mutated genes, such as MAP3K1 [28], CDH1 [29] and
GATA3 genes. Compared to PIK3CA and TP53, relatively fewer functional mutations were observed.
However, many of them have been widely reported for their critical roles in cancer, which indicated
their important roles but in fewer patients. To sum up, we observed 408 of 516 breast cancer patients
to carry at least one of these 10 predicted driver mutations, covering about 79% of all the patients.

In Table 1, we also show the driver cancer genes predicted by MutSigCV [10], MUSIC [30] and
drGAP [31]. We found that 8 out of 10 functional mutated genes were predicted to be driver cancer
genes by at least one of three tools at a cutoff of p < 0.05. Two transcriptional regulators, including
RUNX1 and CTCF, were not identified as driver cancer genes. By checking the published literatures,
we found both genes to be related with breast cancer. RUNX1 is implicated in proliferation control
of breast cancer [32,33]. CTCF is reported to be associated with resistance to apoptosis in breast
cancer [34]. Overall, the predicted functional cancer genes are all related with breast cancer.

Further, we tested whether the predicted mutations were functional. We checked the genes with
recurrent somatic mutations while less predicted to be functional. One example was the TTN gene.
It is mutated in 90 patients, ranked as the third most recurrent mutated gene in breast cancer. However,
we only predicted three of them to be functional. TTN protein is a component of vertebrate striated
muscle [35]. By searching literature, we did not find any reports to support TTN to take critical role
in cancer. By checking its protein sequence, we found that it was very long with a length of 27,000
to 33,000 amino acids [36], indicating a recurrence bias of its mutations. This prediction was also
confirmed by the analysis results with MutSig, which considers both the protein size and background
mutation rates into evaluation [12]. Similar results are observed with other genes, such as MUC6
with mutations in 57 patients while predicted to be functional in only two patients. Even though our
pipeline did not consider the protein size, it successfully identified fake recurrent mutations resulting
from large protein sizes. These results provide evidence to support the specificity of our method to
recover functional mutations.

Table 1. Top 10 of functional mutations in breast cancer

Mutated
gene

No. somatic
mutation

No. functional
mutation Percentage p(MutSig) p(MUSIC) p(drGAP)

PIK3CA 175 123 70.3% 7.47× 10−12 0 4.87× 10−100

TP53 188 107 56.9% 0 0 8.50× 10−169

MAP3K1 40 30 75.0% 3× 10−7 0 2.39× 10−35

CDH1 35 29 82.6% 8.73× 10−9 0 1.26× 10−22

GATA3 56 19 33.9% 9.8× 10−12 0 3.50× 10−56

RUNX1 19 13 68.4% 1 2.3× 10−1 2.8× 10−1

CTCF 15 10 66.7% 1 1 4.2× 10−1

CACNA1B 14 9 64.2% 1 5× 10−2 5.14× 10−4

DNAH17 14 8 57.1% 1 2.3× 10−1 2× 10−2

MAP2K4 21 8 38.1% 3.2× 10−4 6.0× 10−4 3.8× 1011

3.4. Mutation Types

Based on mutation types, somatic mutation can be categorized into missense mutation, nonsense
mutation, silent mutation, frame shift insertion and frame shift deletion. Taking TP53 as an example,
we checked the mutation types between two groups of TP53 mutations: (1) functional TP53 mutation
as identified by our method and (2) non-functional TP53 mutations. As showed in Figure 3, most
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of the mutations were missense mutations (∼65 %). Statistical test did not support any significance
difference between two groups of patients. However, nonsense mutation and frame shift insert types
had great ratio differences between two groups. 16% of functional TP53 mutations were observed to
be nonsense mutations while only 7% of non-functional TP53 mutations. The significance based on
Fisher’s exact test was at p < 0.03. A similar result was observed with frame shift insertion, which was
6% of functional mutations and 1% of non-functional mutations (p < 0.12). The enrichment of those
types of mutations can be explained by the fact that nonsense mutations and frame shift insertions are
more likely to disrupt protein function than missense mutation. We also checked other recurrently
mutated genes and similar results were observed. These results suggest that predicted functional
mutations are more likely to influence the protein function.

nonsense mutation 16%

Frame Shift Del 16%

Missense Mutation 62%

Frame Shift Ins 6%

(a)

nonsense mutation 7%

Frame Shift Del 19%

Missense Mutation 72%

Frame Shift Ins 1%

(b)

Figure 3. Mutation type differences between functional (a) and non-functional TP53 mutations (b).

3.5. Functional Mutated Genes in Other Cancers

Besides breast cancer, we also applied our method to ovarian serous cystadenocarcinoma (OV)
and glioblastoma multiforme (GBM) using data from the TCGA project. Figure 4 shows the predicted
genes carrying functional mutations in three cancers. By checking the published literature, we found
that most of the genes have been implicated for important roles in oncogenesis [6]. However, there are
mutation preferences among three cancer types. As showed in Figure 4, only TP53 gene is shared by
all three cancer types and NF1 gene is shared by OV and GBM. Other genes are preferentially mutated
in one cancer type, which can be called cancer type-specific mutations. These cancer type-specific
mutations had higher mutation recurrences and were supposed to take more essential roles in the
oncogenesis of a specific cancer type.

Cancer-specific mutations are not necessary to indicate non-function in other cancers.
One example is BRCA1 gene. BRCA1 was predicted to be mutated in 17 out of 441 patients for
OV, ranking as the third most recurrently mutated gene. Based on our definition, BRCA1 is supposed
to be OV-specific. However, we also observed functional mutations to BRCA1 in breast cancer. The roles
of BRCA1 in the oncogenesis of breast cancer have been widely reported [37] and researches even
suggest that patients with BRCA1 mutations have a possibility of 50%–80% to develop breast cancer
before the age of 70 [38]. However, mutations to BRCA1 is not supposed to be the most important
causal mutation only due to the relatively low mutation recurrence in breast cancers, which was at 6
out of 516 patients.
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Breast cancer
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PIK3CA 
MAP3K1

 CDH1
GATA3 
RUNX1

 CTCF
CACNA1B 
DNAH17
MAP2K4

BRCA1
MT-DN5
MLL
SYNE2
IL21R
HYDIN
SYNE2
BRCA2

EGFR
ATRX
IDH1
F5
TAF1L
ABCA13
TAF1L

TP53

NF1
-

-

Figure 4. Predicted genes with recurrent functional mutation for three cancers. OV: Ovarian serous
cystadenocarcinoma; GBM: Glioblastoma multiforme

3.6. Functional Association of Functional Mutations

The patients with the similar expression profiles are supposed to carry the mutations to the same
pathway. Consistent with the concept of mutual exclusivity, the affected pathways can be recovered by
enrichment analysis to patients with similar expression profiles. Therefore, we performed functional
annotations for each of studied patients by functional enrichment analysis to all the mutated genes
of neighboring patients. At a cutoff of p < 0.01, we observed some terms associated with a large
proportion of breast cancer patients (see Figure 5a). One example was the term “cell adhesion”, which
was associated with 99.4% of patients. Similarly, other extracellular matrix (ECM) related terms such as
“extracellular structure organization” and “cell–matrix adhesion”, were also associated with 34.1% and
22.1% of patients respectively. These observations are consistent with reports about ECM for its critical
roles in cancer [39,40]. This result also suggests ECM to be one potential target to develop anticancer
drugs. Above, we reported recurrently mutated genes, such as PIK3CA and MAP3K1. Functional
annotation supported their roles by enriched GO terms, such as “phosphoinositide 3-kinase (PI3K)
cascade” (30.6% of patients) and “MAPKKK cascade” (34.5% of the patients). Considering the fact that
PIK3CA and MAP3K1 were ranked as the most recurrently mutated genes, PI3K signalling pathway
and MAPKKK cascade pathway were supposed to be essential pathways during the oncogenesis of
breast cancer. Besides these pathways, we also observed enriched terms such as “JNK cascade” and
“cell cycle phase”, which had been reported to be related to oncogenesis of cancers [1].

Based on textbook knowledge and published literature, we could assign some genes to some
well-studied pathways or biological processes. For example, TP53 is involved in the p53 mediated DNA
damage response [41]; MAP3K1 in the MAPKKK cascade pathway [42]. These terms could be used
to evaluate functional differences between patients predicted with or without functional mutations.
Taking TP53 mutation of breast cancer as an example, we checked the number of patients with p53
associated term “DNA damage response, signal transduction by p53 class mediator”. As showed in
Figure 5b, we observed 6 out of 107 patients with predicted functional TP53 mutation to be annotated
with this term while 12 out of 81 non-functional TP53 mutation carriers were annotated with this
term. Fisher’s exact test indicated a significant ratio difference at p < 0.03. Besides of breast cancer,
we also performed the same evaluation with OV and GBM. Similar results were observed with TP53
mutations in OV. In GBM, we did not observe significant differences, which might be due to the
limited number of patients with TP53 mutations, which was only 65 patients. In a way, these results
suggest that patients with functional TP53 mutations are less likely to carry other mutations to the
members of TP53 associated pathways. In breast cancer, we also checked MAP3K1 mutation with the
similar methods for “MAPKKK cascade” term (see Figure 5c). Like TP53, we observed that patients
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with functional MAP3K1 mutations were less likely to carry the mutations to other components of
MAPKKK cascade pathways (p < 0.01). In GBM, we checked another well-known gene EGFR for that
it involved in “epidermal growth factor receptor signaling pathway” (see Figure 5d). Similarly, other
genes from EGFR signaling pathways were less likely to be mutated in patients with functional EGFR
mutations (p < 0.08). In summary, all above examples were consistent with the popular assumption of
mutual exclusivity [15]. However, one contrary example was also observed with predicted PIK3CA
mutations in breast cancer (see Figure 5e). By checking PIK3CA associated term “phosphoinositide
3-kinase cascade”, more members of PI3K cascade pathway were observed with predicted functional
PIK3CA mutation carriers (p < 0.02), which was consistent with previous reports about interactions of
PIK3CA with other oncogenes [43,44]. This result indicates that mutual exclusivity is not applicable to
PIK3CA mutations.
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Figure 5. Functional enrichment to functional mutations. (a) Gene ontology (GO) terms
enriched with breast cancer patients; (b-e) differences between patients with or without predicted
functional mutations.
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3.7. Mutation Network

Based on predicted functional mutations, we computed the synergy of mutated genes in breast
cancer. We connected the genes with functional mutations in shared patients and displayed those
genes as a network (see Figure 6). Each node was one mutated gene, with node size to indicate its
mutation recurrences. We also displayed the synergy strength by colored edges and dark red indicated
stronger synergy. In this network, we observe genes, such as TP53, PIK3CA1, MAP3K1 and CDH1, to
take hub roles by connecting to other genes. By checking number of connection, we find different genes
to take unequal synergy with other genes. For example, 149 genes are connected to TP53 while only
seven genes connect to PIK3CA and five genes connect to MAPK3K1. This observation suggests that
TP53 can easily have synergy with many other genes. This may explain why TP53 mutation is always
functional in multiple cancer types. For other recurrently mutated genes, such as PIK3A, MAP3K1 and
CDH1, they nearly have no connection with TP53, indicating their functional independence to TP53.
However, interplays are observed among themselves. This is especially true for PIK3CA, which has
strong synergy with both MAP3K1 (p < 9.1× 10−22) and CDH1 (p < 3.7× 10−15).

In this network, we find some sub-networks, where their nodes are intensively connected with
each other but less or no connection to the hub genes. One example was a sub-cluster of 10 genes,
including WNK3, SCN1A, PTPRD, TAOK3, NPAS4, SLC10A3, DPEP1, RAB3GAIP2, MGAT5B and
KIF26B. By searching published reports, we found the potential interactions between WNK3 and
SLC10A3 [45]. For other genes, we are still not clear their interactions. However, their synergy is
supposed to be necessary for some breast cancer patients.
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Figure 6. Synergistic network of functional mutated genes.

4. Discussion

In this work, we propose a computational method for discovery of functional mutation for
each studied cancer patient. One basic question is what are functional mutations to cancer. Indeed,
different tools have quite different definitions. In the context of this work, functional mutations
are mutations that directly or indirectly lead to altered expression of many genes; they are the
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main causal reasons for observed expression patterns of patients. Thus, patients with the same
functional mutations are supposed to have similar expression profiles. Following this definition, we
transfer identification of functional mutations of one patient to enrichment analysis to mutations
in its neighboring patients. This strategy can be called “guilt by association”, as we have done in
our previous work [46]. By checking the published literature, we can find evidence to support this
definition. For example, Lengerod et al [47,48] observed characteristic gene expression patterns in
patients carrying TP53 mutations. Similar results are available for other cancer genes, such as BRAF in
melanoma [27], BRCA1 [49] and PIK3CA in breast cancer [50]. In this work, we also observed patients
carrying the same mutation to be clustered together.

The functional mutations are identified by checking their mutation recurrence in patients with
similar expression profiles. The complexity of mutation profiles in cancer patients makes it impossible
to cluster all the patients with the same mutation into one cluster. Most of the pattern classification
methods, such as k-means, support vector machine (SVM), do not consider the sub-structure of
samples, which cannot ensure each patient to have the optimal neighbors. With our method, we used
a simple method to find neighbors for every patient one by one, which makes it good at discovering
the patterns of inner cliques. Utilization of statistical significance also makes this method more robust.

With our prediction, some somatic mutations are not predicted to be functional. It is natural to
raise the questions what those non-functional mutations are. One explanation is that non-functional
mutations fail to affect the protein function. As an evaluation, we checked protein structure stability
between mutated genes with or without predicted function. The folding free energy was calculated for
each mutation by PoPMuSic2.1 [51]. The energy differences were further evaluated for four examples:
TP53, PIK3CA, MAP3K1 and EGFR. However, we only observed a significant difference in case of
TP53 at p < 0.03, which suggested functional mutations to TP53 were more affect its protein structure.
For others, no significant differences were observed, which may result from the low accuracy of
computational prediction and complexity of mutation to protein function.

For non-functional mutations, another explanation is due to the existence of other stronger
functional mutations, which veil the effects of other mutations. It is possible that mutations to one gene
may provide cells with proliferation advantage but not enough for cancer, e.g., benign tumors. In this
case, other functional mutations are necessary for further oncogenesis and expression patterns of
cancer patients will mainly reflect the consequences of later mutations. Taking TP53 as an example, we
observed that 107 breast cancer patients with functional TP53 mutations also carried 17 PIK3CA somatic
mutations while 79 patients with non-functional TP53 mutations carried 27 PIK3CA somatic mutations.
The significance of ratio differences was at p < 0.018. This observation suggests that patients with
functional TP53 mutation are less likely to carry PIK3CA mutations. If only considering the predicted
functional PIK3CA mutations, no patient with functional TP53 mutations carried functional mutations
to PIK3CA while 16 patients with non-functional TP53 mutations also carried functional mutations to
PIK3CA. By checking other functional mutations, all 79 patients with non-functional TP53 mutations
had at least one functional mutation to other genes. In summary, these results suggest non-functional
TP53 mutations may result from the existence of other functional mutations.

Our method also faces the problem of sensitivity if not enough neighboring patients are available.
Our method requires a minimum number of neighboring patients for enrichment analysis which is not
always available. This is especially true for those mutations with low recurrence. With the progress of
cancer genome sequencing projects, the number of patients with mutation information will increase,
which will provide a better basis for functional mutation discovery.

Mutual exclusivity is one popular strategy used to recover driver mutations [15]. Based on the
functional annotation with GO and KEGG terms, we checked this assumption with some well-known
cancer genes. We observed success with mutual exclusivity in the patients with TP53, MAP3K1 and
EGFR mutations. However, we also noticed one counter case with PIK3CA, which was involved
in the PI3K signalling pathway [52]. Mutations to members of PI3K are more enriched in patients
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with PIK3CA mutations. This result suggests mutual exclusivity to be a good assumption in driver
mutation discovery but also faces the possibility of failure.
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