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Abstract: The current knowledge of the main factors governing livestock, crop and plant quality as
well as yield in different species is incomplete. For example, this can be evidenced by the persistence
of benchmark crop varieties for many decades in spite of the gains achieved over the same period.
In recent years, it has been demonstrated that molecular breeding based on DNA markers has led to
advances in breeding (animal and crops). However, these advances are not in the way that it was
anticipated initially by the researcher in the field. According to several scientists, one of the main
reasons for this was related to the evidence that complex target traits such as grain yield, composition
or nutritional quality depend on multiple factors in addition to genetics. Therefore, some questions
need to be asked: are the current approaches in molecular genetics the most appropriate to deal with
complex traits such as yield or quality? Are the current tools for phenotyping complex traits enough
to differentiate among genotypes? Do we need to change the way that data is collected and analysed?
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1. Introduction

The current knowledge of the main factors regulating and controlling quality and yield in livestock,
crops and plants of economic importance is incomplete. For example, this is reflected by the persistence
of benchmarking crop varieties for many decades in spite of the gains achieved over the same period
of time [1]. For many years, information and data provided by the current phenotyping methods
have enabled breeders to select a few simple quality traits. However, new crop varieties with similar
or the same breeding/phenotyping score cannot be differentiated by the consumers (e.g., rice or
wheat quality) or by their different performance during processing (e.g., malt barley, carcass and meat
quality). In the same way, properties such as yield can be affected by maturity, differences in vegetative
phases, photoperiod, biomass accumulation, but not a single measurement can be associated or used
to explain gains associated with yield [2].

It is well established that molecular breeding based on DNA markers has led to advances in
breeding (crops and livestock); however, not in the way that it was anticipated initially [3]. One of the
main reasons for this was that complex target traits such as grain yield, composition or nutritional
quality depend on multiple factors in addition to genetics [4]. Therefore, some questions need to
be asked to expand our knowledge about crop and plant genetics. Are the current approaches in
molecular genetics the most appropriate to deal with complex traits such as yield and quality? Are the
current tools for phenotyping complex traits enough to differentiate among genotypes? Do we need to
change the way that data is collected and analysed?
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The current knowledge of the main factors governing these important production traits in different
genetic backgrounds is incomplete, and this is reflected by the lack of robust phenotypic information [5].
For many years, data provided by current phenotyping methods have enabled breeders, scientists and
producers to select a few basic traits associated with nutrition or quality and yield [3]. Over the last
century, agricultural and animal research has dramatically enhanced the production of technologies and
methodologies to support the beef, dairy, swine, poultry aquaculture and sheep industries [6]. In the last
20 years, molecular biology has changed the way research is conducted in agricultural, animal and plant
research, supported by the innovations and progresses in genomics and the relatively new offshoot
disciplines of functional genomics, proteomics, transcriptomics, metabolomics and metagenomics [7].
Additionally, improved innovation and supplementary technologies have led to the development of
physical genome maps and the publication of genetic libraries, which in turn have advanced the implicit
understanding of genetics at the molecular level, particularly the different genetic components and the
phenotypic variations associated with these differences [8]. Quantitative geneticists have been able to
improve production traits; however, genomic technology has the potential to create accurate and rapid
animal improvement based upon phenotypic traits typically difficult to measure [9,10].

Recently, different disciplines in the agricultural field have been able to exploit pioneering
research built off the human-genome project by sequencing two of the major livestock genomes (Gallus
domesticus and Bos taurus) [9–11]. This research has brought about new challenges in the agriculture
disciplines associated with animal and plant breeding [9,10]. A number of improvements in efficiency
of production have not come about without some serious adverse effects. These adverse effects
include side-effects on well-being and longevity in the production environment, losses in reproductive
efficiency, increased levels of stress, increased animal wastage and waste issues, as well as increasing
rates of infectious diseases [11].

When production improvement occurs, these improvements can be also related to societal concerns
in areas such as natural resource conservation and protection, animal welfare and food safety [11]. It is
evident that public support for agricultural research must be focused on enhancing the functionality and
wellbeing of livestock and poultry in environmentally neutral production systems for the future [11].
With the expected and rapid increases in knowledge in agriculture research, it is imperative that
methodologies for defining phenotypes are clear and standardized [11]. Furthermore, the detection
of any mutations or altered expressions of genes depends on phenotypic screening methods and the
ability to detect variations from normal [12]. The next challenge will be to develop fast, efficient,
systematic and comprehensive phenotypic screening procedures and tools that will permit comparison
among laboratories [12]. It is well established that molecular breeding based on DNA markers has
led to advances in breeding; however, not in the way that it was anticipated initially [13]. One of the
main reasons for this was that complex target traits such as feed intake, behavior, disease resistance,
composition or nutritional quality depend on multiple factors in addition to genetics [14].

In recent years, most of the scientific literature (research and review papers) concentrates on the
methods or benefits of the omics approach (e.g., proteomics, lipidomics, metabolomics) [15]. However,
the interpretation of the resultant data remains reductionist. Animals/livestock are the sources of
an almost uncountable number of metabolites whose structure, function and usability have been
explored only partially [15]. Recently, the concept of one-gene, one-mRNA, one-protein analysis has
been reduced as methodologies endeavor to measure more complex traits [16,17].

The life science disciplines are addressing a number of complex global biological systems and
systems which are related to the omic technologies. These omic technologies have fast become a
growing area of interest for many researchers [18]. For example, metabolomics are considered to be
the functional part of the omic sciences, being heralded as an effective tool for assessing biochemical
processes relating to complex [19]. In contrast to transcriptome or proteome, the metabolome is
chemically and physically more diverse owing to large variations in atomic arrangements [15].

High throughput and robust analytical techniques are implemented to assess the global
metabolic profile. The use of several analytical techniques based on spectroscopy, mass spectrometry
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(MS), liquid chromatography (LC), inductively coupled plasma (ICP) [20], vibrational spectroscopy
methods [21] (e.g., mid-infrared, near infrared) [22], as well as hyphenated techniques has undoubtedly
strengthened the field of omics, allowing a more holistic analysis of the different biological systems [23].
However, researchers still use the reductionist approach, looking for individual or group of
markers/properties/traits and not using the advantages provided by these holistic techniques.
An essential characteristic of metabolomics research is that the sample preparation remains a critical
issue because, if inconsistent techniques are used, these techniques will generate unreliable results
and large sources of error. It is important to realise that a large depth of understanding of the
physiology of single plant species for practical applications as well as translating this acquired
knowledge into complex natural as well as anthropogenic ecosystems is required when dealing
with metabolomics research [23].

Bioanalytical and biological research developments will lead to paradigm-changing
understanding in trying to appreciate organisms as a level outside of their ecosystem context.
Importantly, the shotgun and next generation genome sequencing, gene reconstruction and gene
annotation as well as genome-scale molecular analysis using some of the omic technologies described
will produce computer-assisted analysis and modelling for biological data [24].

In systems biology, molecular data, genetic evolution, environmental cues and species interactions,
modelling and prediction of active biochemical networks with whole species populations are
combined [24–28]. This combinatory process relies on the development of new technologies and
methods for the analysis of molecular data, especially genomics, metabolomics and proteomics
data [24–28]. By integrating genotyping, pheno/morphotyping and the analysis of the molecular
phenotype using metabolomics, proteomics and transcriptomics, this will reveal a unique understanding
of plant metabolism and its interaction with the environment. In the analysis of single model
systems—plants, fungi, animals and bacteria—a model will finally emerge in the analysis of populations
of plants and other organisms and their adaptation to the ecological niche [24–28]. This understanding
of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and
marker- or genome-assisted breeding approaches [25]. Therefore, a metabolomic study, producing
information-rich, highly reliable and reproducible data-sets in non-targeted or global and multivariate
statistical analysis can be achieved. Metabolomics therefore represents, in a new way, the ability to
dissect and modify plant metabolism, physiology and development [29]. These capabilities will be
essential in breeding more robust plant varieties [29]. Functional genomics, as the name implies, aims
to decipher gene function by establishing a better undertaking of the correlations between genes and
the functional phenotype [29]. Functional genomics will produce smarter genomics rather than simply
gene mapping and sequencing, and the motivation for this research endeavour arises because of the
proportion of open reading frames in a fully sequenced organism that have no known function at the
biochemical and phenotype level [29]. Table 1 shows the applications of metabolomics where a different
approach in terms of the experimental design, sampling protocol and data analysis will be required in
order to further progress in our understanding of biological systems.

Table 1. The application of metabolomics will require a different approach in terms of the experimental
design, sampling protocol and data analysis.

Main Topic Issues to be Addressed

Field trials Robust field trials
Sampling protocol Define a correct protocol, replicates, consistency

Validation Define a validation protocol transfer models,
information, internal and external validation

Pre-processing Consistency, interpretation and validation

Appropriate method bioinformatics/chemometrics Consistency, interpretation and validation

Analytical method Error, repeatability and validation
Education Graduates and users

Multidisciplinary approach Integration of different disciplines
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2. Omics, Metabolomics and Systems Biology

Most of the scientific literature and reviews on the topic concentrate on the methods or benefits of
the omics approach. However, researchers still use the reductionist approach, looking for individual
or groups of markers, and not using the advantages provided by these holistic techniques [26,27].
For example, these methods have been developed and implemented as an important tool for monitoring
and quantifying the number of metabolites induced by the interactions between genotype, terroir,
viticultural/management practices and the winemaking processes in grapes [26,27]. Moreover, some
of the current trends of metabolomics focus on the study of alterations in metabolic pathways
stemming from grapevine diseases or genetically modified cultivars, as well as management practices
in the vineyard [28].

An important characteristic of metabolomics is that sample preparation is an important issue,
mainly because if inconsistent techniques are used they will generate unreliable results and invalid
sources of error [28]. Recently, systems biology has undergone a clear shift to focussing on crop and
plant abiotic stress [30]. While crops and plants are exposed to a myriad of abiotic stresses throughout
their lifetimes, a tangible understanding of the abiotic stress responses and tolerance of economically
valuable crop species are essential for their domestication and to maximize their yield in future
climate scenarios [30]. While crop domestication and abiotic stress research is by no means a recent
phenomenon, recent developments in next-generation genome sequencing platforms and functional
genomics studies have caught the imagination of researchers in the field [30]. Unsurprisingly, this
has resulted in multiple research teams exploiting such platforms to better understand the complex
dynamics of abiotic stress tolerance in plants. These groups to date have emphasized the role of a
number of genetic markers including random amplification of polymorphic DNA (RAPD), restriction
fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple
sequence repeat (SSR), and single nucleotide polymorphisms (SNPs) and have reported the potential of
such research to facilitate the advancement of genomic research, which in turn has led to the discovery
of novel agronomic traits [30]. Moreover, the incorporation of Bayesian models has allowed the
simultaneous discovery of multiple molecular markers, which in turn has provided precise information
about novel quantitative trait loci (QTLs) and epistasis [30]. Thus, in the authors’ opinion, it is evident
that the use of a systems approach has enabled the establishment of comprehensive molecular links
between phenotype and genetic variations [30]. Such studies have further benefited the discipline via
the development of comprehensive datasets and libraries for plant genotype and phenotypic variants,
valuable tools to aid the understanding of abiotic stress related plant phenotypes [30]. In addition,
the coupling of genomics with metabolomics contributes to the potential of metabolic engineering of
favorable agronomic traits. As such, it is not unrealistic to expect that the integration of multiple omics
technologies with cutting edge co-expression interaction analysis of genes will accelerate abiotic stress
tolerance research in the short term [30].

Recently, fluxomes have been incorporated as further lenses to “omics analyses” [31–36]. This
addition is important when considering the dynamic relationships between proteome and metabolome
in plant metabolomics [31–36]. Their interaction can be exploited to determine the rates of growth and
product formation by monitoring the steady state rates of significant cellular phenotypes during their
metabolic inter conversion within living cells [29]. Such analysis requires the determination of the
steady-state flux distribution, which in turn is calculated using flux balance analysis: this approach
relies on the quantification of a set of experimentally measured metabolic fluxes within a network, such
as production excretion or substrate consumption [31–36]. This fluxome process may also be referred to
as metabolic regulon, in which the system’s innate control of metabolite levels through the regulation
of metabolic flux of the biosynthesis and catabolism pathway is impaired [31–36]. Consequently,
a deeper understanding of the modes of regulation within a plant’s metabolic system can be achieved
through a quantitative investigation of its metabolic flux [31,37]. This can be measured using enzyme
assay platforms which allow the quantitative estimation of gene expression levels. [31,38]. Moreover,
the use of enzyme assay platforms more directly elucidate the metabolic pathway than transcriptome
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data [31] (the traditional approach), as it allows the measurement of the “net” activity of each (including
multiple isoenzymes) reaction step. Recent studies have also highlighted that the utilization of dynamic
labeling with the 13C isotope is to be a powerful tool for the elucidation of the metabolic regulon
mechanism [31]. The incorporation of such has resulted in the investigation of various dynamics
aspects of plant metabolism [31].

3. From Reductionist to Omics Approach

Nowadays, in crop and plant science, a new paradigm shift has become a reality: the use of
high throughput methods allowing the collection of hundreds of data points which can be related
to many applications. However, this approach is still focused on measuring single and simple traits
where the focus has been on the reductionist approach. This approach has prompted an “unreal
worldview” where single factors have been analyzed independently of the matrix as a whole [39].
Consequently, this reductionist approach is no longer deemed useful in many research fields [39].
For example, in cereal science, a reductionist approach has led breeders to select varieties based on only
one or few characteristics (e.g., high amylose, protein, bet glucan) [39]. However, more researchers are
considering the hypothesis that the “whole grain” (fingerprint) as a package needs to be considered
instead of targeting specific components. The thought process is based on the fact that complex systems
require complex answers, and many research fields must move towards a more holistic and integrative
approach in order to generate new and novel knowledge [39].

Invariably, the best crop production processes are those grounded in scientific research, as they are,
by nature, continually evolving and improving [40]. This success will depend upon the establishment
of strategic alliances between the plant physiologist, the biochemical researchers, the biostatisticians,
the breeders and the agronomist [41]. Therefore, this holistic approach towards using omics serves as
an invaluable tool in modern plant analysis as the omics methods acquire the broadest overview of a
sample’s metabolic composition [42]. Every metabolic study should establish an unbiased, integrated
strategy that addresses the number of issues of sample preparation, data treatment, metabolite
identification and quantification [43,44].

4. Limitations

Many relationships in data cannot be expressed in quantitative terms, and these links are better
expressed concerning similarity or dissimilarity and among a group of samples (patterns) [45]. A recent
study has highlighted the fact that changes in the metabolite profile of corn (Zea mays) are more closely
related to the agronomic phenotype than any chosen fragment of nucleic acid [46]. Therefore, there is a
need to enhance our knowledge about the relevant components that can affect quality and yield traits
and also develop new tools to enable the improvement of those characteristics [47]. These studies are
normally related to multifactorial issues, and it is in this context that it makes good sense to explore and
to measure the same sample on complementary, synergistic and non-destructive analytical platforms
that comprise multifactorial sensors and separation methods. The difficulty of exploring, extracting
and describing the data in this way increases the challenge exponentially as well as increasing the risk
of becoming flooded with non-informative data increases concomitantly.

The acquisition of data from different analytical platforms provides researchers with new
opportunities in food research. The issues such as the validity of the information from the data
generated, the comparison of the data between different analytical platforms and the need for rigorous
control of the integrity of the data in the context of the models generated are still the primary constraints
facing “omic” approaches in the omic revolution [45]. The limitations created by the current state
of the art techniques in bioinformatic tools, the limited information in food databases (e.g., on the
identity of many metabolites), our still poor knowledge on many molecular processes taking place in
cells, and also the difficulty to combine huge data generated by the so called “omics” technologies
such as transcriptomics, proteomics and metabolomics (e.g., systems biology) are still critical to this
discussion [48]. As reported by other authors, the need for long term investigation is essential in
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order to achieve the necessary perspective (and knowledge) on these complex and fundamental
topics [39–49].

For example, both yield and quality are not single traits; they are complex combinations of
individual traits. Therefore, the efforts in understanding these complex characteristics with the current
tools raise the following question: is the reductionist approach the most adequate? Do we need to
change our approach?

Models can be constructed from different perspectives as outlined above, and for each type
of model, several approaches are available [50–55]. No single approach will explain the complex
interactions in biological networks entirely. Often, a number of techniques are used. When attempting
to capture plant performance over multiple levels of complexity, models are needed that can cope with
different regulatory mechanisms. In top-down models, statistical modelling is often the go-to technique,
whereas in bottom–up models, dynamic or constraint-based modelling seems to be appropriate [50–55].
However, these tools are not restricted to a particular class of model and are used synergistically and
frequently: e.g., multivariate statistics and machine learning techniques might be used to reconstruct a
network topology in the first step of the modelling cycle, whereas dynamic models might be used to
predict the dynamic behavior of the network in subsequent steps. Subsequently, at the genome-scale,
constraint-based models of metabolism can be built bottom–up from genomic, biochemical and
thermodynamic information [49].

The statistical network models described can be derived via regression techniques, relevance
systems based on association scores, Gaussian graphical models allowing identification of conditional
independence, or Bayesian networks used to represent probabilistic relationships [49]. The complexity
of biological networks makes comprehensive experimental testing not always feasible, but
computational models can be helpful in predicting the outcomes of different scenarios and thereby
assist experimental design by pinpointing the most promising strategies and reducing the distance in
the end possibilities [51]. Modern research will significantly benefit from intense cooperation between
experimentalists and modelers. Moreover, such models can be utilized to predict which parameters
to alter to achieve the desired system performance, a premise highly demanded by the agricultural
community. Such an interdisciplinary approach will deepen our understanding of the functioning
of plants as individuals in complex environments, including the underlying mechanisms, and the
consequences of their phenotypes for the functioning of plants in the context of interactions with other
organisms in complex biological communities [52].

5. Conclusions

In recent decades, significant advances in instrumentation (hardware) and multivariate data
manipulation techniques (e.g., new algorithms, software) have allowed the development of novel
“omic” applications [52–55]. Despite multiple publications in the scientific literature regarding these
“omic” developments, there remains a clear gap between the robust real-world application of such
high throughput technologies and feasibility studies. This is a consequence of various roadblocks
that still hinder the growth and uptake of these applications, such as the hesitancy of industry to
accept the integration of chemistry and mathematics (the benefits of chemometrics are often ignored by
those who prefer to employ classical statistics), the lack of formal (academic) education in the use and
application of instrumental methods as high throughput tools or on the implementation of an holistic
approach to complex systems analysis (the traditional reductionist approach is generally favored).
The authors have little doubt that biggest challenge stifling the implementation and development of
omic implementations is not the ability to interpret the information derived from high throughput
tools, and the mathematical models generated through multivariate analysis, but the skepticism and
reluctance of a large portion of the research community to do so.

Author Contributions: D.C. conceived and designed the experiments; D.C., J.R., A.P., S.C. and J.C. wrote and
reviewed the manuscript and final version of the paper.
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