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Abstract: We model the transmission of the hepatitis B virus (HBV) by six differential equations that
represent the reactions between HBV with DNA-containing capsids, the hepatocytes, the antibodies
and the cytotoxic T-lymphocyte (CTL) cells. The intracellular delay and treatment are integrated into
the model. The existence of the optimal control pair is supported and the characterization of this pair
is given by the Pontryagin’s minimum principle. Note that one of them describes the effectiveness
of medical treatment in restraining viral production, while the second stands for the success of
drug treatment in blocking new infections. Using the finite difference approximation, the optimality
system is derived and solved numerically. Finally, the numerical simulations are illustrated in order
to determine the role of optimal treatment in preventing viral replication.
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1. Introduction

Hepatitis B virus (HBV) infects hepatocytes and causes approximately one million deaths
annually [1]. With more than 257 million infected persons; HBV is considered a global public
health problem [2]. This dangerous epidemic can be easily transmitted through contact with infected
body fluids [3]. After transmission of the infection, HBV can cause acute or chronic illness [4].
Many mathematical models have been developed in order to study and model the dynamics of this
serious viral infection [5–8]. All these models include the interaction between HBV and both the
healthy and infected liver cells. The models which include the adaptive immune response in fighting
the free viruses and in reducing the infected cells have been studied [9–12]. This adaptive immunity is
represented by cytotoxic T-lymphocytes (CTL) and antibody immune responses. The mathematical
analysis of HBV viral infection with HBV DNA-containing capsids was determined [13–17]. It has
also been noted that the infected liver cells release the HBV DNA-containing capsids under the
form of mature viruses after being enveloped by both cellular membrane lipids and viral envelope
proteins [18,19]. More recently, the optimal control of HBV infection including HBV DNA-containing
capsids and CTL immune response was studied [17]. In this paper, we are interested in the same
problem, but we will introduce antibodies into this model. This work is motivated by the role of
antibodies in reducing the viral infection severity [20–22]; thus it will be important to consider such an
interesting element in studying the HBV viral dynamics. The model under consideration will be stated
under the form of the following nonlinear system of six differential equations:
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dX
dt

= s− µX(t)− k(1− η1)X(t)Y(t),

dY
dt

= e−λτk(1− η1)X(t− τ)V(t− τ)− δY(t)− pY(t)Z(t),

dD
dt

= (1− η2)aY(t)− βD(t)− δD(t),

dV
dt

= βD(t)− uV(t)− qV(t)W(t),

dW
dt

= gV(t)W(t)− hW(t),

dZ
dt

= cY(t)Z(t)− bZ(t).

(1)

The uninfected cells X are produced with an average s, die with a rate µ, and become infected
by the virus with a rate k. Infected cells Y die with an average δ and are killed by the CTL immune
system with an average p. The constant λ is the death average of infected but still not virus-producing
cells. The intracellular delay, τ, stands for the time needed for infected cells to produce new viruses
after viral entry. The term e−λτ is the probability of surviving between t− τ and t. The capsids D
are produced with a rate a, they are transmitted to blood with a rate β and die with a rate δ. The
free viruses V grow with a rate β, decay at a rate u and are neutralized by antibodies with a rate q.
Antibodies W expand in response to free virus with a rate g and decay at a rate h. CTLs Z develop in
response to viral antigen derived from infected cells with a rate c and decay in the absence of antigenic
stimulation with a rate b. Finally, η1 and η2 denote the efficiency of pegylated interferon (PEG IFN)
and lamivudine (LMV) drugs, respectively. It is noteworthy to mention that the main function of the
PEG IFN drug is to block new infections of the healthy hepatocytes in the liver, while the prime role of
the second drug, LMV, is to stop viral production [16,17].

The organization of this paper is as follows. The next section is concerned to the analysis of
the model. Section 3 is devoted to an optimization analysis of our suggested viral infection model.
In Section 4, we construct an appropriate numerical algorithm and show some numerical simulations.
The last section concludes the work.

2. Analysis of the Model

2.1. Non-Negativity and Boundedness of Solutions

The model (1) represents a system of six delayed differential equations. For such kind of
problems, initial functions have to be stated and the functional framework needs to be specified.
Let X = C([−τ, 0];R6) be the Banach space of continuous mapping from [−τ, 0] to R6 supplied by
the sup-norm ‖ϕ‖ = sup

−τ≤t≤0
ϕ(t). The initial functions of the problem verify the following:

(X(θ), Y(θ), D(θ), V(θ), W(θ), Z(θ)) ∈ X. (2)

Also, for biological reasons, these six initial functions X(θ), Y(θ), D(θ), V(θ), W(θ) and Z(θ)
have to be non-negative:

X(θ) ≥ 0, Y(θ) ≥ 0, D(θ) ≥ 0, V(θ) ≥ 0, W(θ) ≥ 0, Z(θ) ≥ 0, for θ ∈ [−τ, 0]. (3)

We have the following result about the boundedness and the positivity of any solutions of the
system (1):

Theorem 1. For any initial functions X(θ), Y(θ), D(θ), V(θ), W(θ) and Z(θ)) verifying (2) and (3), the
system (1) has an unique solution; moreover, this solution is non-negative and bounded for all t ≥ 0.
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Proof. By the classical theory of the functional differential equations (see for instance [23], and the
references therein), we know that there is a unique local solution (H(t), I(t), D(t), V(t), W(t), Z(t)) to
system (1) in [0, tm), where tm is a finite number.

By using the system (1), we have

X(t) = e−
∫ t

0 (µ+k(1−η1)V(ξ))dξ

(
X(0) +

∫ t

0
se
∫ η

0 (µ+k(1−η1)V(ξ))dξ dη

)
,

Y(t) = e−
∫ t

0 (δ+pZ(ξ))dξ

(
Y(0) +

∫ t

0
βe−λτ(1− η1)V(η − τ)X(η − τ)e

∫ η
0 (a+pZ(ξ))dξ dη

)

D(t) = e−(δ+β)t
(

D(0) +
∫ t

0
(1− η2)aY(η)e(δ+β)ηdη

)
,

V(t) = e−
∫ t

0 (u+qW(ξ))dξ

(
V(0) +

∫ t

0
βD(η)e−

∫ η
0 (u+qW(ξ))dξ dη

)
,

W(t) = W(0)e
∫ t

0 (gV(ξ)−h)dξ

and
Z(t) = Z(0)e

∫ t
0 (cY(ξ)−b)dξ ,

By recursive argument we get that X(t) ≥ 0, Y(t) ≥ 0, D(t) ≥ 0, V(t) ≥ 0, W(t) ≥ 0, Z(t) ≥ 0,
for all t ≥ 0, this proves the positivity of solutions in t ∈ [0, tm).

For the boundedness result of all the solutions, we will consider the following functional:

H(t) = cge−λτX(t) + cgY(t + τ) +
δcg
2a

D(t + τ)

+
δcg
2a

V(t + τ) +
δcq
2a

W(t + τ) + gpz(t + τ).

Therefore, when we use (1), we have

dH(t)
dt

=cge−λτ (s− µX(t)− β(1− η1)V(t)X(t))

+ cg
(

ke−λτ(1− η1)V(t)X(t)− δY(t + τ)− pY(t + τ)Z(t + τ)
)

+
δcg
2a

((1− η2)aY(t + τ)− βD(t + τ)− δD(t + τ))

+
δcg
2a

(βD(t + τ)− uV(t + τ)− qW(t + τ)V(t + τ))

+
δcq
2a

(gW(t + τ)V(t + τ)− hW(t + τ))

+ pg (cY(t + τ)Z(t + τ)− bZ(t + τ)) ,

because of the fact η2 ∈ [0, 1], we have 1− η2 ≤ 1, from which, it follows

dH(t)
dt

≤scge−λτ − cge−λτµX(t)− cg
δ

2
Y(t + τ)− δcg

2a
δD(t + τ)

− δcg
2a

uV(t + τ)− δcq
2a

hW(t + τ)− pbZ(t + τ).
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Assuming that ρ = min(µ,
δ

2
, u, h, b), we obtain

dH(t)
dt

≤ scge−λτ − ρH(t),

then,

H(t) ≤ H(0)e−ρt +
scge−λτ

ρ
(1− e−ρt),

this shows that H(t) is bounded, and so are the other functions X(t), Y(t), D(t), V(t), W(t) and Z(t).
Therefore, every local solution can be prolonged up to any time tm > 0, which means that the solution
exists globally.

2.2. Steady States

By simple calculation the system (1) has the following disease free equilibrium

E f = (
s
µ

, 0, 0, 0, 0, 0).

Indeed, the system (1) has four steady states other than E f :

E1 = (X1, Y1, D1, V1, 0, 0),

where

X1 =
δu(β + δ)

akβe−λτ
, Y1 =

sakβe−λτ − µδuβ− µδ2u
akδβ

,

D1 =
sakβe−λτ − µδuβ− µδ2u

kδβ(β + δ)
, V1 =

sakβe−λτ − µδuβ− µδ2u
kδβu(β + δ)

,

(4)

E2 = (X2, Y2, D2, V2, 0, Z2),

where
X2 = scu(δ+β)

abβk+cuµ(δ+β)
, Y2 = b

c , D2 = ab
c(β+δ)

, V2 = abβ
cu(δ+β)

,

Z2 = sackβe−λτ−abβδk−µcδuβ−cµδ2u
p(abβδk+µcδuβ+cµδu) ,

(5)

E3 = (X3, Y3, D3, V3, W3, 0),

where

X3 =
sg

kh + gµ
, Y3 =

kshe−λτ

δ(kh + gµ)
, D3 =

akshe−λτ

δ(β + δ)(kh + gµ)
, V3 =

h
g

,

W3 =
sagkβe−λτ − agβδk− µhδuβ− gµδ2u− hkuδ2

sq(β + δ)(kh + gµ)
,

and

E4 = (X4, Y4, D4, V4, W4, Z4),

where

X4 =
sg

gµ + kh
, Y4 =

b
c

, D4 =
ab

c(β + δ)
, V4 =

h
g

, W4 =
abβg− chu(β + δ)

chq(β + δ)
,

Z4 =
sckhe−λτ − δµbg− δbkh

bp(kh + gµ)
.
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3. Mathematical Analysis of the Optimal Control

3.1. The Optimization Problem

To state the optimization problem, we first suppose that η1 and η2 vary in time. The problem (1)
becomes then 

dX
dt

= s− µX(t)− k(1− η1(t))X(t)V(t),

dY
dt

= e−λτk(1− η1(t))X(t− τ)V(t− τ)− δY(t)− pY(t)Z(t),

dD
dt

= (1− η2(t))aY(t)− βD(t)− δD(t),

dV
dt

= βD(t)− uV(t)− qV(t)W(t),

dW
dt

= gV(t)W(t)− hW(t),

dZ
dt

= cY(t)Z(t)− bZ(t).

(6)

For this problem, we will have the following result of the boundedness and the positivity of
any solutions:

Theorem 2. For any initial conditions X(θ), Y(θ), D(θ), V(θ), W(θ) and Z(θ)) verifying (2) and (3),
the system (6) has a unique solution; moreover, this solution is non-negative and bounded for all t ≥ 0.

Proof. Using the classical theory of the functional differential equations [23], it is clear to see that there
is a unique local solution (X(t), Y(t), D(t), V(t), W(t), Z(t)) to system (1) in [0, tm).

From the system (6), we have

X(t) = e−
∫ t

0 (µ+k(1−η1(ξ))V(ξ))dξ

(
X(0) + se−

∫ t
0 (e
−
∫ η

0 µ+k(1−η1(ξ))V(ξ))dξ dη

)
,

Y(t) =Y(0)e−
∫ t

0 (δ+pZ(ξ))dξ + e−
∫ t

0 (δ+pZ(ξ))dξ

×
∫ t

0
ke−λτ(1− η1(ζ))X(ζ − τ)V(ζ − τ)e

∫ ζ
0 (δ+pZ(ξ))dξ dζ,

D(t) = e−(δ+β)t
(

D(0) +
∫ t

0
(1− η2(η))aY(η)e(δ+β)ηdη

)
,

V(t) = e−
∫ t

0 (u+qW(ξ))dξ

(
V(0) +

∫ t

0
βD(η)e

∫ η
0 (u+qW(ξ))dξdη

)
,

W(t) = W(0)e
∫ t

0 (gV(ξ)−h)dξ

and
Z(t) = Z(0)e

∫ t
0 (cI(ξ)−b)dξ ,

from all these previous equalities, we deduce that all solutions are non-negative in t ∈ [0, tm).
About the boundedness, we will prove that the solutions are bounded in each interval

[nτ, (n + 1)τ] such that n ∈ N.
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We will begin with n = 0. Let t ∈ [0, τ], from the first equation of system (6), we obtain

dX
dt
≤ s− µX(t),

so,

X(t) ≤
(

X(0)− s
µ

)
e−µt +

s
µ

,

this means that X is bounded.
From the second equation of (6), we obtain

dY
dt
≤ e−λτk(1− η1(t))V(t− τ)X(t− τ)− δI(t),

since (1− η1(t)) ≤ 1 and e−λτ ≤ 1, it follows

dY
dt
≤ kV(t− τ)X(t− τ)− δY(t),

therefore,

Y(t) ≤ Y(0)e−δt +
∫ t

0
kV(ξ − τ)X(ξ − τ)eδ(ξ−t)dξ,

since (t− τ) ∈ [−τ, 0] and from (2) and (3), we have the fact that V(t− τ)X(t− τ) is bounded, then Y
is also bounded.

From the third equation of (6), we obtain

dD
dt

= (1− η2(t))aY(t)− βD(t)− δD(t),

since (1− η2(t)) ≤ 1, it follows

dD
dt
≤ aY(t)− βD(t)− δD(t),

this inequality implies that

D(t) ≤ D(0)e−(δ+β)t +
∫ t

0
aI(ξ)e(δ+β)(ξ−t)dξ,

from the boundedness result of I, one can conclude that D is bounded.
From the fourth equation of (6), we obtain

dV
dt
≤ βD(t)− uV(t),

then,

V(t) ≤ e−utV(0) +
∫ t

0
βD(ξ)eu(ξ−t)dξ,

from the boundedness result of D, we conclude that V is also bounded.
From both the fourth and the fifth equations of (6), we obtain

dW
dt

+ hW(t) = gV(t)W(t) =
g
q
(

βD(t)− uV(t)− V̇
)

,
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then

W(t) ≤W(0)e−ht +
g
q

( ∫ t

0
(βD(ξ) + (h− u)V(ξ))eh(ξ−t)dξ

−V(t) + V(0)e−ht
)

,

from the boundedness results of D and V, we deduce that W is bounded.
From the second and the last equation of system (6), we obtain

dZ
dt

+ bZ(t) = cI(t)Z(t)

=
c
p

(
ke−λτ(1− η1(t))V(t− τ)H(t− τ)− δI(t)− İ

)
,

then

Z(t) ≤ Z(0)e−bt +
c
p

( ∫ t

0
(kV(ξ − τ)X(ξ − τ) + (b− δ)Y(ξ))eb(ξ−t)dξ

−Y(t) + Y(0)e−bt
)

,

from the boundedness results of X, Y and V, it follows the result that Z is bounded.
By following the same analysis as before, for each single interval [nτ, (n + 1)τ] with n ≥ 1,

one can conclude that all the solutions are bounded for all t ≥ 0. Therefore, every local solution can be
prolonged up to any time tm > 0, which means that the solution exists globally.

Let us consider the following objective functional:

J (η1, η2) =
∫ t f

0

{
X(t) + W(t) + Z(t)−

[A1

2
η2

1(t) +
A2

2
η2

2(t)
]}

dt, (7)

where t f is the time period of therapy and the two positive constants A1 and A2 are based on the
benefit-cost of the therapy η1 and η2, respectively. The two control functions, η1(t) and η2(t) are
supposed to be bounded and also Lebesgue integrable. Our main purpose is to maximize the objective
functional defined in the Equation (7) by maximizing the number of the uninfected cells, increasing
the CTL immune responses and the antibodies, decreasing the viral load and also decreasing the cost
of treatment. That means, we are seeking an optimal control pair (η∗1 , η∗2 ) such that

J (η∗1 , η∗2 ) = max{J (η1, η2) : (η1, η2) ∈ U}, (8)

where U is the control set given by

U = {(η1(t), η2(t)) : ηi(t) measurable, 0 ≤ ηi(t) ≤ 1, t ∈ [0, t f ], i = 1, 2}. (9)

3.2. An Optimal Control Existence Result

The two optimal control pair existence result can be obtained via the results [24,25]. Indeed,
we have the following result:

Theorem 3. There exists an optimal control (η∗1 , η∗2 ) ∈ U such that

J (η∗1 , η∗2 ) = max
(η1,η2)∈U

J (η1, η2). (10)

Proof. To use the existence result [24], we should first check the following properties



High-Throughput 2018, 7, 35 8 of 16

(C1) The set of the corresponding state variables and controls is nonempty.
(C2) The set U is closed and convex.
(C3) The right hand side of the state system is bounded by a linear function in the state and

control variables.
(C4) The integrand of the objective functional is concave on U.
(C5) There exists an α > 1 and two constants c1, c2 > 0, such that the integrand I(X, W, Z, η1, η2) of

the objective functional satisfies

I(X, W, Z, η1, η2) ≤ c2 − c1(| η1 |2 + | η2 |2)
α
2 , (11)

where
I(X, W, Z, η1, η2) = X(t) + W(t) + Z(t)−

[A1

2
η2

1(t) +
A2

2
η2

2(t)
]
. (12)

The boundedness of the state system equations with the two controls (6) ensures us the existence
of a solution. We can therefore deduce that the set of controls and the corresponding state variables are
non-empty, this gives us the condition (C1). The control set is convex and closed by definition, which
ensures the condition (C2). Moreover, since the system of state is bi-linear in η1, η2, the right hand-side
of (6) verifies condition (C3), using the fact that the solutions are bounded. About the condition (C4),
we obtain the Hessian matrix for I as follows,

HI =

(
−A1 0

0 −A2

)
, (13)

its determinant is stated as follows,

det(HI) = A1 A2 ≥ 0, ∀(η1, η2) ∈ U,

then I is concave on U.
For the condition (C5), we have

I(X, W, Z, η1, η2) ≤ c2 − c1(| η1 |2 + | η2 |2), (14)

with c2 depends on the upper bound on X, W, Z, and c1 = min
( A1

2 , A2
2
)
> 0. We deduce that there

exists an optimal control pair (η∗1 , η∗2 ) ∈ U such that

J (η∗1 , η∗2 ) = max
(η1,η2)∈U

J (η1, η2).

3.3. The Optimality System

To prove the necessary conditions for the optimal control problem, we will use the Pontryagin’s
minimum principle [26]. This principle changes (6), (7) and (9) into a problem of maximizing of an
Hamiltonian, T, pointwise with respect to η1 and η2:

T(t, X, Y, D, V, W, Z, Xτ , Vτ , η1, η2, λ) =
A1

2
η2

1 +
A2

2
η2

2 − X−W − Z +
6

∑
i=1

λi fi,
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where the λi for i = 1, ..., 6 is an adjoint variables and fi for i = 1, ..., 6 is the system dynamics defined by

f1 = s− µX(t)− k(1− η1(t))X(t)V(t),

f2 = e−λτ(1− η1(t))kH(t− τ)V(t− τ)− δY(t)− pY(t)Z(t),

f3 = a(1− η2(t))Y(t)− βD(t)− δD(t),

f4 = βD(t)− uV(t)− qV(t)W(t),

f5 = gV(t)W(t)− hW(t),

f6 = cY(t)Z(t)− bZ(t),

(15)

By the Pontryagin’s minimum principle with the delay fact in state [26], we have the
following theorem:

Theorem 4. For any optimal control pair η∗1 , η∗2 , and any solutions (X∗, Y∗, D∗, V∗, W∗, Z∗) (6), there exists
an adjoint variables, λ1, λ2, λ3, λ4,λ5 and λ6 satisfying

λ′1(t) = 1 + λ1(t)
[
µ + k

(
1− η∗1 (t)

)
V∗(t)

]
+χ[0,t f−τ](t)λ2

(
t + τ

)(
η∗1
(
t + τ

)
− 1
)
ke−λτV∗(t),

λ′2(t) = λ2(t)δ− λ3(t)a
(
1− η∗2 (t)

)
− cZ∗(t)λ6(t) + pZ∗(t)λ2(t),

λ′3(t) = λ3(t)
(
δ + β

)
− βλ4(t)

λ′4(t) = λ1(t)
[
k(1− η∗1 (t))X∗(t)

]
+ λ4(t)(u + qW∗(t))

+χ[0,t f−τ](t)λ2(t + τ)
[
ke−λτ(η∗1 (t + τ)− 1)X∗(t)

]
,

λ′5(t) = 1 + λ4(t)qV∗(t) + λ5(t)
[
h− cV∗(t)

]
λ′6(t) = 1 + λ2(t)pY∗(t) + λ6(t)

[
b− cY∗(t)

]
(16)

where the transversality conditions

λi(t f ) = 0, i = 1, ..., 6. (17)

Moreover, the optimal control as follows,

η∗1 =min
(

1, max
(

0,
k

A1

[
λ2(t)e−λτV∗τ X∗τ − λ1(t)V∗(t)X∗(t)

]))
η∗2 =min

(
1, max

(
0,

1
A2

λ3(t)aY∗(t)
))

.
(18)

Proof. The transversality conditions and adjoint equations as follows,

λ′1(t) = −
∂T
∂X (t)− χ[0,t f−τ](t)

∂T
∂Xτ

(t + τ), λ1(t f ) = 0,

λ′2(t) = − ∂T
∂Y (t), λ2(t f ) = 0,

λ′3(t) = − ∂T
∂D (t), λ3(t f ) = 0,

λ′4(t) = −
∂T
∂V (t)− χ[0,t f−τ](t)

∂T
∂Vτ

(t + τ), λ4(t f ) = 0,

λ′5(t) = − ∂T
∂W (t), λ5(t f ) = 0.

λ′6(t) = − ∂T
∂Z (t), λ6(t f ) = 0.

(19)

The two optimal controls η∗1 and η∗2 can be solved from the optimality conditions,

∂T
∂η1

(t) = 0, at η∗2 ,
∂T
∂η2

(t) = 0, at η∗2 .
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∂T
∂η1

(t) =A1η1(t) + kλ1(t)v(t)X(t)− kλ2(t)VτXτe−λτ = 0,

∂T
∂η2

(t) =A2η2(t)− aλ3(t)Y(t) = 0.

By the definition of U, we obtain

η∗1 =min
(

1, max
(

0,
k

A1

[
λ2(t)e−λτV∗τ X∗τ − λ1(t)V∗(t)X∗(t)

]))
η∗2 =min

(
1, max

(
0,

1
A2

λ3(t)aY∗(t)
))

.

If we replace η∗1 and η∗2 in the systems (6), we have the following optimality system:

dX∗

dt
= s− µX∗(t)− k(1− η∗1 (t))V

∗(t)X∗(t),

dY∗

dt
= e−λτk(1− η∗1 (t))V

∗(t− τ)X∗(t− τ)− δY∗(t)− pY∗(t)Z∗(t),

dD∗

dt
= (1− η∗2 (t))aY∗(t)− δD∗(t)− βD∗(t)

dV∗

dt
= βD∗(t)− uV∗(t)− qV∗(t)W∗(t),

dW∗

dt
= gV∗(t)W∗(t)− hW∗(t),

dZ∗

dt
= cY∗(t)Z∗(t)− bZ∗(t),

then, 

λ′1(t) = 1 + λ1(t)
[
µ + k

(
1− η∗1 (t)

)
V∗(t)

]
+χ[0,t f−τ](t)λ2

(
t + τ

)(
η∗1
(
t + τ

)
− 1
)
ke−λτV∗(t),

λ′2(t) = λ2(t)δ− λ3(t)a
(
1− η∗2 (t)

)
− cZ∗(t)λ6(t) + pZ∗(t)λ2(t),

λ′3(t) = λ3(t)
(
δ + β

)
− βλ4(t)

λ′4(t) = λ1(t)
[
k(1− η∗1 (t))X∗(t)

]
+ λ4(t)(u + qW∗(t))

+χ[0,t f−τ](t)λ2(t + τ)
[
ke−λτ(η∗1 (t + τ)− 1)X∗(t)

]
,

λ′5(t) = 1 + λ4(t)qV∗(t) + λ5(t)
[
h− cV∗(t)

]
λ′6(t) = 1 + λ2(t)pY∗(t) + λ6(t)

[
b− cY∗(t)

]
(20)

λi(t f ) = 0, i = 1, ..., 6. (21)

4. Numerical Results

To illustrate the numerical simulations, we implement and solved numerically our optimality
system by the finite difference approximation method [27–29]. We obtain the following algorithm
(Algorithm 1):
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Algorithm 1: The forward-backward finite difference numerical scheme.
Step 1:
for j = −M, ..., 0, do:

Xj = X0, Yj = Y0, Dj = D0, Vj = V0, Zj = Z0, η
j
1 = 0, η

j
2 = 0.

end for
for j = N, ..., N + M, do:

λ
j
1 = 0, λ

j
2 = 0, λ

j
3 = 0, λ

j
4 = 0, λ

j
5 = 0, λ

j
6 = 0.

end for
Step 2:
for j = 0, ..., N − 1, do:

Xj+1 = Xj + h[s− µXj − k(1− η
j
1)VjXj],

Yj+1 = Yj + h[ke−λτ(1− η
j
1)Xj−MVj−M − δYj − pYjZj],

Dj+1 = Dj + h[(1− ηi
2)aYj − δDj − βDj],

Vj+1 = Vj + h[βDj − uVj − qVjWj],
Wj+1 = Wj + h[gVjWj − hWj],
Zj+1 = Zj + h[cYjZj − bZj],

λ
N−j−1
1 = λ

N−j
1 − h[1 + λ

N−j
1 (µ + k(1− η

j
1)Vj+1)]

+χ[0,t f−τ](tN−j)λ
N−j+M
2 k(η j+M

1 − 1)e−λτVj+1],

λ
N−j−1
2 = λ

N−j
2 − h[λN−j

2 (δ + pZj+1)− λ
N−j
3 a(1− η

j
2)− λ

N−j
6 cZj+1],

λ
N−j−1
3 = λ

N−j
3 − h[λN−j

3 (δ + β)− λ
N−j
4 β],

λ
N−j−1
4 = λ

N−j
4 − h[λN−j

1 k(1− η
j
1)Xj+1 + λ

N−j
4 (u + qWj+1)

+χ[0,t f−τ](tN−j)λ
N−j+M
2 k(η j+M

1 − 1)e−λτXj+1],

λ
N−j−1
5 = λ

N−j
5 − h[1 + λ

N−j
2 qVj+1 + λ

N−j
5 (h− gVj+1)],

λ
N−j−1
6 = λ

N−j
6 − h[1 + λ

N−j
2 pYj+1 + λ

N−j
6 (b− cYj+1)],

Rj+1
1 = (1/A1)(kλ

N−j−1
2 e−λτVj−M+1Xj−M+1 − kλ

N−j−1
1 Vj+1Xj+1)

Rj+1
2 = (1/A2)λ

N−j−1
3 aYj+1,

η
j+1
1 = min(1, max(Rj+1

1 , 0)),

η
j+1
2 = min(1, max(Rj+1

2 , 0)),
end for
Step 3:
for j = 1, ..., N, write

X∗(tj) = Xj, Y∗(tj) = Yj, D∗(tj) = Dj, V∗(tj) = Vj, W∗(tj) = Wj,

Z∗(tj) = Zj, η∗1 (tj) = η
j
1, η∗2 (tj) = η

j
2.

end for

Using values of parameters from [12,17]; i.e., s = 2.6× 107, k = 1.67× 10−12, µ = 0.01, δ = 0.053,
a = 150, β = 0.87, u = 3.8, τ = 5, λ = 1.1× 10−2, q = 10−12, g = 10−4, h = 0.1, p = 0.01, b = 0.2,
c = 0.03, A1 = 50, 000 and A2 = 5000. The role of the two parameters A1 and A2 is to calibrate the
terms size in the system equations.

Figure 1 depicts the evolution of the uninfected cells as function of time for both cases with and
without control therapy. It is shown that with control the number of the uninfected cells is higher than
those observed for the case without control. This result support the fact that the control strategy is to
maximize the number of the healthy cells.
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Figure 1. The evolution of the healthy cells (left) vs. time and a zoomed in region (right).

From Figure 2, one can observe that the plot representing the infected cells with control strategy
converges towards 0.002, however without any control therapy it converges towards 7.69, which proves
that administrating this treatment will help the patient by a significant reduction of the infected cells.
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Figure 2. The evolution of the hepatitis B virus (HBV) infected cells vs. time.

Figure 3 illustrates the evolution of the capsids during the period of observation. It was established
that with a control strategy, the amount of capsids vanishes after the first weeks of the administrated
therapy. Meanwhile, without any control strategy this number remains at very high positive level,
4.37× 103.

The role of the two administrated therapy controls is also remarked in Figure 4. It was shown
that with therapy control, the number of virions dies out after the first weeks of therapy, while without
any control strategy it remains equal to 11.53. This indicates clearly the impact of the administrated
therapy in controlling the HBV viral replication.

The antibody immune response is clearly affected by the control. This is illustrated in Figure 5;
indeed, with control, the curve of antibodies converges towards zero; however, without any control
strategy it converges towards 33.09 which clearly indicates the importance of adding the antibody
component to HBV viral dynamics.

The CTL cell dynamics are also affected by the optimal control. This is shown in Figure 6; indeed,
with control, the curve of CTL cells converges towards zero; however, without any control it converges
towards a high level of 3.41 × 103; this reveals the role of the CTL component in blocking HBV
viral infection.
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Figure 3. The evolution of HBV capsids vs. time.
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Figure 4. The free HBV virions as function of time.
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Figure 5. The evolution of antibodies as function of time.
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Figure 6. The behavior of the cytotoxic T-lymphocyte (CTL) immune response as function of time.

The two optimal controls η1 and η2 representing inhibiting new infections and blocking viral
replication are represented in Figure 7. The two curves present the treatment administration schedule
for the period of observation. Both of the controls start from zero and when the first immune boosting
drug is administered at full scale, the second drug is at its lowest for the first days of observation.
During the last days of observation both the therapies should be administrated at their full scales.
In this case the new infection is totally blocked. It is worthy to notice that if we compare the numerical
simulation of this paper and the recent work [17], we remark that the antibodies have a clear effect in
maximizing the level of the healthy cells and reducing the amount of the free viruses. Also, we remark
that the presence of antibodies improves the effectiveness of both treatments after the first 60 days
by reaching their maximum value. However, without antibodies, only the second treatment presents
efficacy (see [17]) which leads to the elimination of HBV viruses. The obtained numerical results show
that with antibodies and the optimal control, we observe a significant reduce of the HBV infection.
All our numerical simulations will performed during the acute HBV infection period. This period is
also known as the early stage of the infection [12,30]; however it will be very useful to predict infection
for a chronic type of the infection.
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Figure 7. The optimal control η1 (left) and the optimal control η2 (right) versus time.

5. Conclusions

We have modeled HBV in regards to intracellular behavior, capsids and adaptive immunity.
The considered adaptive immune system is represented by the cytotoxic T-lymphocyte cells and
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the antibodies. The model under consideration includes six nonlinear differential equations that
describe the dynamics that occur between hepatitis B free viruses (HBV), HBV DNA-containing capsids,
hepatocytes, the antibodies and the CTL cells. An intracellular infection time delay and the effect of two
drugs are incorporated into the suggested model. We have established the existence and uniqueness of
the optimal controls via Pontryagin’s maximum principle. The problem was implemented and solved
numerically using backward and forward finite numerical difference schemes. It was established
that with the two administrated optimal therapies, the amount of the healthy hepatocytes increases
considerably while the number of infected hepatocytes decreases remarkably. Moreover, it was also
shown that, with the control strategy, the viral load decreases significantly comparing with the model
without control case, and this may boost the patient’s life quality. Finally, we would like to mention
that the used optimal controllers are given by open-loop, it will be useful to test other feedback control
methods as a new predictive control model.
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