
Review

Applications of Next Generation Sequencing to the
Analysis of Familial Breast/Ovarian Cancer

Veronica Zelli 1,2, Chiara Compagnoni 1 , Katia Cannita 3, Roberta Capelli 1, Carlo Capalbo 4 ,
Mauro Di Vito Nolfi 1, Edoardo Alesse 1, Francesca Zazzeroni 1 and Alessandra Tessitore 1,2,*

1 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2,
67100 L’Aquila, Italy; veronica.zelli@univaq.it (V.Z.); chiara.compagnoni@graduate.univaq.it (C.C.);
roberta.capelli@graduate.univaq.it (R.C.); mauro.divitonolfi@graduate.univaq.it (M.D.V.N.);
edoardo.alesse@univaq.it (E.A.); francesca.zazzeroni@univaq.it (F.Z.)

2 Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini,
67100 L’Aquila, Italy

3 Medical Oncology Unit, St Salvatore Hospital, Via L. Natali 1, 67100 L’Aquila, Italy; kcannita@gmail.com
4 Department of Molecular Medicine, University of Rome “La Sapienza”, Viale Regina Elena 324, 00161 Rome,

Italy; carlo.capalbo@uniroma1.it
* Correspondence: alessandra.tessitore@univaq.it

Received: 29 November 2019; Accepted: 7 January 2020; Published: 10 January 2020
����������
�������

Abstract: Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics,
allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes
or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the
understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the
various types of tumors, those with a familial predisposition are of great interest for the isolation of
novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis.
The identification of novel genetic factors would have great translational value, helping clinicians in
defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian
cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes
(non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have
been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel
factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of
the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.

Keywords: next generation sequencing (NGS); whole exome sequencing (WES); whole genome
sequencing (WGS); hereditary tumors; familial breast/ovarian cancer; BRCA1; BRCA2

1. Introduction

Inherited genetic defective variants significantly contribute to familial cancers. In the beginning,
the study of hereditary cancer was based on the linkage analysis of numerous pedigrees, which
led, in 1994, to the isolation of BRCA1 and BRCA2, the main predisposing genes for hereditary
breast/ovarian cancer (BC/OC) syndrome [1,2]. Later, other genetic risk factors for BC/OC were
identified as well. The extensive use of Sanger DNA sequencing, often associated with upstream
prescreening techniques (e.g., single stranded conformational polymorphism or DHPLC) [3], allowed
the detection and the characterization of germ-line gene mutations responsible for cancer susceptibility.
However, the above-mentioned technologies analyze just one gene, or its parts, at a time, making the
procedures time-consuming. In the first decade of the 21st century, after the human genome project
completion, a significant step forward was provided by the creation of next generation sequencing (NGS)
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technologies, able to perform multi-gene analysis or sequencing of entire exomes, corresponding to the
DNA protein-coding regions, transcriptomes, including coding and/or non-coding RNA transcripts,
or genomes, consisting of both exon and non-coding intron DNA regions [4,5].

This review is focused on describing the applications and potentiality of NGS technologies for
the detection of variants in genes already known as responsible for familial breast and ovarian cancer,
and novel susceptibility genes/variants as well.

2. Breast and Ovarian Cancer

Breast cancer (BC) is the most diagnosed cancer in women worldwide. In 2018, its incidence was
estimated at more than 2 million new cases. BC accounts for about 11.6% of all cancer cases and for 6.6%
of all cancer-related deaths [6]. On the other hand, ovarian cancer (OC) is less frequent, accounting
for about 1.6% of all tumor cases and 1.9% of cancer-related deaths, but is more lethal compared to
BC [6]. Approximately 90%–95% of breast tumors and 80% of ovarian tumors are sporadic, whereas
the remaining 5%–10% and 20%, respectively, are classified as familial or hereditary. In the latter group,
only 20%–25% of BC/OC cases are due to inheritance of the highly penetrant cancer susceptibility
genes BRCA1 and BRCA2, involved in DNA repair mechanisms [7]. The prevalence of BRCA1/2
alterations varies across ethnic groups and geographical areas, with higher frequencies observed in
white populations from Europe and Australia (17.6%–29.8%) and lower frequencies recorded in Asian
countries (9.4%–21.7%) [8].

Thus, a high fraction of cases with familial predisposition (non-BRCA) lack mutations in those
highly penetrant genes and remain unexplainable [9].

It has been hypothesized that other moderately-penetrant genes, coding for proteins that interact
with BRCA1/2 or act in the same DNA repair pathway, would be likely candidates for hereditary BC/OC
susceptibility. As expected, genes such as ATM, CHEK2, PALB2, BRIP1 and RAD50 have shown to play
a role in familial/hereditary forms of BC/OC [7,10,11]. Compared with highly penetrant genes, for which
inherited mutations confer a five-fold or greater risk, mutations in those moderately-penetrant genes
are associated with a two- to four-fold risk increase. Furthermore, genetic testing for specific cancer
susceptibility genes, such as TP53, PTEN, CDH1 has also proven to be indicated in selected BC patients
as well [11].

Although mutations in several genes have been found to predispose to BC/OC, these account for
only a small fraction of cases and most potential hereditary cases still remain unexplained [12]. Thus,
it is likely that additional gene mutations remain unidentified, especially in the category of moderate-
to low-penetrant gene variants.

In this context, a polygenic risk model, in which the combination of many common single
nucleotide polymorphisms (SNPs) may contribute to increase the BC/OC risk, has been suggested [13].
These SNPs act as common low-penetrance variants, that individually confer a small increased risk but,
in combination, confer a much larger risk in the population. This hypothesis has been confirmed by
several genome-wide association studies (GWAS) that identified more than 70 SNPs associated with
BC [14–20] and more than 30 SNPs associated with OC [21–23]. Taken together, these data suggest that
the identification of additional susceptibility genes or gene variants is crucial to better define the large
fraction of BC/OCs due to genetic predisposition but lacking pathogenic variants in highly-penetrant
BRCA1 and BRCA2 or other less-penetrant genes, with important clinical implications in terms of risk
assessment and personalized approach to prevention and treatment.

3. NGS Technologies

Next-generation sequencing (NGS) technology has revolutionized the clinical approach to genetic
testing across many areas of medicine, such as oncology. The great power of NGS technology is the
capability to massively sequence millions of DNA reads, allowing for an accurate characterization
of the “status” of multiple genes, by using very low amount of nucleic acids with considerable
time and cost reduction. Several second and third generation platforms, showing high performance



High-Throughput 2020, 9, 1 3 of 16

based on different chemical/physical principles and ability to respond to different experimental needs,
are currently commercially available [24]. Thanks to its ability to detect high numbers of variants
simultaneously, NGS technology has been widely used in many studies in order to provide insight
into the characterization of the tumorigenic process and tumor heterogeneity [25,26]. The analysis of
the molecular landscape of tumors can provide information of clinical utility in terms of diagnosis,
prognosis and therapy response prediction. Furthermore, NGS technology provides a very powerful
method for the identification and discovery of novel genes responsible for cancer susceptibility, with the
possibility of counseling patients and their families regarding screening, surveillance, and risk-reducing
options [27]. During the last decade, the advent of NGS made it possible to obtain not only targeted
sequencing of several genes, such as those highly or less penetrant already known to be involved
in BC/OC susceptibility, but also sequencing of entire exomes, transcriptomes or genomes for the
identification of novel genes or gene variants putatively responsible for BC/OC predisposition.

The “easiest” NGS approach is “targeted gene sequencing”, which allows the analysis of selected
genes or specific subsets of gene regions, whose involvement in specific diseases has already been
observed or suggested. NGS gene-panels are widely used, since they represent a very high-throughput
and cost-effective screening method for sequencing of specific targets of interest; they offer the
possibility of massive parallel multigene analysis in few days, with significant time and cost reduction
and by using a very low amount of nucleic acid [28].

Whole exome sequencing (WES), where DNA coding regions are captured and sequenced at a deep
level, has proven to be an effective procedure for detecting disease-causing variants and discovering
new target genes. Compared to targeted gene sequencing, WES allows one to enhance sequencing
power, providing a more complete investigation of the genomic landscape. Currently, WES is the
most used NGS technique for the identification of rare genetic variants associated with disease [29,30].
However, WES analysis provides information about exons, confining the analysis to the coding regions
of the genome. Therefore, one of the most important limitation of this approach is the omission of
variants in non-coding regulatory regions that, in some cases, have been implicated as cancer driver
mutations [31,32]. An example is represented by both germline and somatic TERT promoter mutations
that lead to the increase of telomerase activity and so promote the immortalization of cancer cells [33].
Particularly, germline TERT promoter mutations have been associated with familial cancer risk [34].

In this regard, whole-genome sequencing (WGS), an approach based on the sequencing of the
entire genome, provides the most complete analysis for the characterization of the genomic profile and
the possible biological consequences, leading to the discovery of new molecular alterations in coding
as well as non-coding regions [35]. Compared with WES, WGS is more expensive and requires a
greater amount of starting material. Furthermore, despite the great potential of WGS analysis, it shows
several difficulties, mainly related to the high amount of generated data and their validation and
interpretation [36].

Overall, despite the enormous potential of WES and, mostly, WGS, data management, data
analysis and biological interpretation are critical to achieve optimal results [37,38]. NGS sequencing
produces millions/billions of massive sequencing reads; thus, a huge amount of raw data is generated,
especially when high sequencing depth is required. Therefore, one of the most relevant challenges is
how to manage the enormous amount of data and how to choose the best computational methods
and tools for analysis, taking into consideration, for both approaches, the lack of a standardized data
analysis method and the different levels of performance shown from different tools employed in the
NGS workflow [28].

To date, comprehensive multi-gene panels, mainly focused on genes involved in DNA repair
pathways, have been extensively used in BC/OC research and clinical application [39]. In addition,
more exhaustive examination has been performed by whole exome [40] or genome sequencing studies.
In the next sections, the state of the applications of the gene panel, WES and WGS approaches will be
discussed in the context of familial BC/OC. The studies here reported are summarized in Table 1.
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Table 1. NGS studies in familial breast/ovarian cancer.

Type of Study Reference NGS Approach Country or Ethnicity Samples/Groups
Analyzed

Most Relevant Genes
Emerged

Validation/Additional
Analysis

Targeted
sequencing

studies

Tung et al., 2016 [41]

Targeted sequencing (ATM,
BARD1, BRIP1, CDH1, CHEK2,

NBN, PALB2, PTEN, STK11,
TP53, APC, BMPR1A, CDK4,
CDKN2A, EPCAM; MLH1,

MSH2, MSH6, MUTYH, PMS2,
RAD51C, RAD51D, SMAD4)

USA
488 BC patients with
or without BC/OC
family history

BRCA1, BRCA2, CHEK2,
ATM, BRIP1, PALB2, PTEN,
NBN, RAD51C, RAD51D,
MSH6 and PMS2

Byers et al., 2016 [42]

Targeted sequencing (TP53,
CDH1, STK11, PTEN, PALB2,

BRIP1, RAD51C, RAD51D,
ATM and CHEK2)

UK

42 individuals from
45 high-risk
BC/OC-male BC
families, negative for
BRCA1/2

RAD51D, ATM, CHEK2

Tedaldi et al.,
2017 [43]

Targeted sequencing (panel of
94 genes involved in hereditary

tumors)
Italy 255 HBOC patients

BRCA1, BRCA2, PALB2,
ATM, BRIP1, RAD51D,
MSH6, PPM1D, RECQL4,
ERCC3, TSC2, SLX4

Suszynska et al.,
2019 [44]

Meta-analysis of 48
targeted-sequencing studies (37

genes evaluated)
More Countries

about 120,000 BC/OC
patients and 120.000
controls

BRCA1/2, CDKN2A, PTEN,
PALB2, TP53 in Breast
cancer; BRCA1/2, RAD51D,
PTEN, TP53, BRIP1,
RAD51C, MSH6, MSH2 in
Ovarian cancer

WES studies

Park et al., 2012 [45] WES More Countries 13 BC families XRCC2

Case-control analysis in 1308
early-onset BC cases, 689
multiple-case BC families and
1120 healthy controls

Thompson et al.,
2012 [46] WES Australia

33 individuals from
15 BC families,
negative for BRCA1/2

FANCC and BLM

Analysis of additional 438 BC
families (screening of all
FANCC and BLM exons), 957
BC families (screening of
FANCC mutation hotspot) and
464 healthy controls

Kiiski et al., 2014 [47] WES Finland
24 individuals from
11 BC families,
negative for BRCA1/2

FANCM
Case-control analysis in 3166
BC patients, 569 OC patients,
and 2090 healthy controls
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Table 1. Cont.

Type of Study Reference NGS Approach Country or Ethnicity Samples/Groups
Analyzed

Most Relevant Genes
Emerged

Validation/Additional
Analysis

Park et al., 2014 [48] WES More Countries 89 BC patients from
47 families RINT1

Analysis of additional 798
BC/OC families; case-control
study in 1313 BC cases and
1123 healthy controls

Cybulski et al.,
2015 [49] WES Poland, Canada

144 Polish and 51
French-Canadian
high-risk BC patients,
negative for BRCA1/2,
CHEK2, NBN, PALB2
founder mutations

RECQL

Case-control analysis of
selected mutations in 1013 BC
cases and 7136 healthy controls
in Canadian population, and
13,136 BC cases and 4702
healthy controls in Polish
population.
Segregation analysis

Sun et al., 2015 [50] WES China
9 early-onset familial
BC patients, negative
for BRCA1/2

RECQL

Case-control study in 439
familial BC cases and 1588
healthy controls. Functional
studies for missense variants

Maatta et al., 2015 [51] WES Finland
37 individuals from
13 high-risk HBOC
families

18 candidate variants in
DNA damage response
(DDR) pathway genes. In
particular, variants in ATM,
MYC, PLAU, RAD1 and
RRM2B

Case-control analysis in 129
HBOC patients and 989 healthy
controls. Analysis of 31 breast
tumours. Two variants also
validated in 49 male BC
patients and 909 male
healthy controls

Tavera-Tapia et al.,
2017 [52] WES Spain two BC patients from

a non-BRCA family ATM

Analysis of the ATM
c.5441delT mutation in 1477
HBOC families and 589 healthy
controls; NGS panel for ATM
mutational screening in 392
HBOC families and 350
patients affected with diseases
different from BC

Hamdi et al., 2018 [53] WES Tunisia

8 individuals from 7
BC families, negative
for BRCA1/2 (analysis
focused on one
family)

12 relevant high-risk
variants in HSD3B1, CFTR,
PBK, ITIH2, MMS19,
PABPC3, PPL, DNAH3,
LRRC29, CALCOCO2,
ZNF677 and RASSF2 genes.
4 new breast cancer
candidate genes (MMS19,
DNAH3, POLK, KATB6)
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Table 1. Cont.

Type of Study Reference NGS Approach Country or Ethnicity Samples/Groups
Analyzed

Most Relevant Genes
Emerged

Validation/Additional
Analysis

Lu et al., 2019 [54] WES USA 11.416 HBOC patients
and 3.988 controls

ATM, CHEK2, PALB2,
MSH6 in Breast cancer;
MSH6, RAD51C, TP53,
ATM in Ovarian cancer

Girard et al., 2019 [55] WES France
100 familial BC
patients, negative for
BRCA1/2

Selection of 77 genes plus
36 candidate BC-related
genes (N = 113 genes) for
validation analysis

Case-control study: Targeted
sequencing of 113 DNA
repairing genes in 1207 BC
cases and 1199 healthy controls.
Significant association between
PALB2, ATM, CHEK2, FANCI,
MAST1, POLH and RTEL1
mutations and BC risk

Weitzel et al.,
2019 [56]

WES (focused on 12 known
and candidate cancer
susceptibility genes)

Hispanic women
1.054 familial BC
patients, negative for
BRCA1/2

CHEK2, PALB2, ATM, TP53,
BRIP1, CHD1, NF1

Case-control analysis using
1189 healthy controls and data
from Exome Aggregation
Consortium (ExAC) database

Glentis et al., 2019 [57] WES Greece 52 individuals from
17 HBOC families

BARD1, MEN1, MDM1,
NBEAL1. Missense variants
in SETBP1 and C7orf34

Case-control analysis using 51
Canadian HBOC patients of
European ancestry (FBRCAX),
512 Canadian BC patients
(CHUM-BC) and 1940 healthy
controls (CARTaGENE), as
well as data from The Cancer
Genome Atlas (TCGA) and
Exome Aggregation
Consortium (ExAC) databases

WGS studies Nones et al., 2019 [58] WGS (germline and tumor) Australia

78 matched germline
and tumour samples
from individuals with
and without
mutations in
BRCA1/2

BRCA1/2, PALB2, MUTYH,
TP53, ATM, CHEK2
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4. NGS Applications for BRCA1/2 Gene Analysis

Due to the large size of BRCA1 and BRCA2, and to the varied nature of the mutations scattered
across the whole length of both genes, several tests, often labor intensive, were conceived and used. The
protein truncation test [59], an indirect method for mutation analysis, was able to detect the presence
of truncating variants but missed those missense and structural gene alterations. The “gold standard”
Sanger sequencing was considered the best approach to identify point mutations, small deletions
or insertions, but it is time consuming and expensive. Other mutation analysis methods, based on
screening by DHPLC [60] followed by direct sequencing, have been employed. Moreover, multiplex
ligation dependent probe amplification (MLPA) was used to detect large genomic rearrangements [61].
The advent of NGS technologies made it possible to perform multi-gene massive sequencing, with
very sensitive detection of gene variants, even complex, and copy number variations as well [62,63].
Several works [64–67] demonstrated the advantage of using NGS with respect to traditional methods
for BRCA variant identification in terms of sensitivity, cost and time reduction. Importantly, the
latter is very relevant for therapy decision-making, in consideration of the possible use of anti-PARP
drugs for ovarian and breast cancer treatment [68–70]. In 2012, two studies developed a NGS method,
based on long-range PCR of BRCA1/2 exons and flanking regions [71] or of the entire genomic
regions [72], which allowed identification of 100% of the BRCA1/2 predisposing mutations, as well as
other genomic variations in a cohort of patients with a family history for BC/OC, already screened
for BRCA1/2 mutations by denaturing HPLC and/or Sanger sequencing. Later, Hernan et al. [73]
and Hirotsu et al. [74] identified two novel frameshift mutations in BRCA2 and one mutation in
BRCA1, plus two mutations in BRCA2, respectively, by using commercially available kits for NGS,
further confirming the usefulness of this technology in clinical molecular diagnostics. In the same way,
Kluska et al. [75] identified a wide spectrum of mutations, some of them recurrent, in 512 Polish women
with familial or early onset BC/OC. Jouali et al. [76] analyzed 15 patients from 68 Moroccan families
with BC/OC predisposition and found several BRCA mutations, including one novel frameshift in
BRCA1. Twenty-nine novel BRCA1/2 gene variants were identified by Santonocito et al. [77] in 1400
consecutive Caucasian patients with a BC/OC family history, further confirming the power of this
technology in BRCA genotyping with the aim of better managing patients and relatives with a genetic
predisposition. In a recent study [78], the authors performed exome sequencing-based screening in an
unselected research cohort of adult volunteers in order to identify pathogenic and likely pathogenic
variants in BRCA1/2 genes. Results of this analysis highlighted the power of population screening in
the identification of a higher proportion of BRCA1/2 mutation carriers compared to current criteria for
genetic testing, with relevant implications and opportunities in terms of prevention strategies.

Some reports [66,79,80] described simultaneous NGS sequencing data collection and identification
of BRCA rearrangements, simply by evaluating the presence of copy number variations (CNVs).
This provides a fast and useful global first-step analysis that leads to more in-depth confirmatory
investigation on positive samples by complementary tests, such as MLPA. Commercially available
diagnostics kits currently take advantage of this NGS potentiality.

As known, the expected frequency of germline BRCA mutations is 50%. Interestingly,
Friedman et al. [81] highlighted a constitutional low-level de novo mosaicism, identifying by NGS a
pathogenic BRCA1 mutation (c.1953dupG, 5% of reads) in DNA extracted from BUCCAL SWAB,
leucocytes, and normal breast tissues obtained from a patient affected by early-onset, triple negative
breast cancer, who showed the BRCA1 mutation in tumor tissue (approximately 50% of reads). The
mutation was missed in germline DNA by conventional Sanger sequencing, whose detection limit
is known to be approximately 15%–25% [82,83], highlighting the utility of NGS in the identification
of mosaicism events that are not always detectable by traditional sequencing methods, due to low
mutation frequency.
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5. Gene-Panel Sequencing Approach in Familial Non-BRCA Breast/Ovarian Cancer

In order to identify other BC/OC susceptibility genes/variants, especially in familial non-BRCA
patients, panels for analysis of cancer-related genes other than BRCA1/2 were used as well. In a
prospective study of Tung et al. [41], a panel of 25 genes was used to test 488 patients with stage I to III
breast cancer with or without family history. Several germline mutations in genes related to breast or
other types of cancer were found, indicating the need to identify new predisposing factors responsible
for non-BRCA cancers. Byers et al. [42] took advantage of NGS for the analysis of a 10 genes’ panel,
associated with BRCA1/2 RNA sequencing, in breast/ovarian-male breast cancer families with no
identified pathogenic exon variants and a copy number analysis of BRCA1/2. The study showed little
contribution of RNA sequencing and NGS gene panel testing, further highlighting the need to identify
other high-risk genes for patients with a familial history.

A panel of 94 genes involved in hereditary tumors was used to assess the presence of germline
mutations in 255 women with a familial history. Pathogenic BRCA1/2 mutations were found in
57 patients, whereas 17 showed pathogenic variants in other less-penetrant genes (e.g., PALB2, ATM,
BRIP1, RAD51D, MSH6, PPM1D, RECQL4, ERCC3, TSC2, SLX4). Based on the clinical characteristics
of the latter group, mutations in genes other than BRCA1/2 seemed to confer a high risk of cancer
development, indicating that a wider gene analysis could improve protocols of surveillance [43].
A very recent work by Suszynska et al. [44] showed the results of a large meta-analysis based on
results obtained from multi-gene panel testing. After evaluating 37 genes usually analyzed in BC/OC
predisposition, the authors highlighted several non-BRCA genes associated with higher breast/ovarian
cancer risk, providing evidence on the possibility of identifying groups of genes more specifically
connected to BC/OC. Among them, CDKN2A showed a contribution to breast cancer risk that was
comparable to that conferred by BRCA2, whereas RAD51C, RAD51D, BRIP1 were proven to be
responsible for an increase in ovarian cancer risk. This work points out the great heterogeneity
shown by the gene panel-based studies in terms of number of cases and selection strategies, analyzed
genes and data elaboration, suggesting more standardized workflows are needed among molecular
genetics laboratories.

6. WES Approach in Familial Non-BRCA Breast/Ovarian Cancer

In addition to multi-gene panels, including genes already known to be involved in hereditary
cancers, several studies have aimed at identifying novel factors putatively responsible for familial
BC/OC. In this context, NGS offers high performance, allowing one to sequence entire exomes, genomes
and transcriptomes in a fast and cost-effective manner. Whole-exome sequencing (WES) is a technology
able to provide information about almost all the protein-coding DNA sequences. For this reason,
the WES approach is thought to be particularly suitable in cancer genetics for the isolation of new
putative genes playing a role in non-BRCA patients with familial susceptibility, which could, in addition,
potentially aid in defining risk stratification. In 2012, Park et al. [45] identified by WES the gene XRCC2,
a RAD51 paralog, as putatively correlated to BC risk increase. In the same year, Thompson et al. [46]
analyzed 33 patients with a family history by WES and described FANCC and BLM, responsible for the
autosomal recessive disorders Fanconi Anemia and Bloom Syndrome, as BC susceptibility genes. The
same technology was used by Kiinski et al. [47] to identify FANCM, with the presence of a nonsense
mutation c.5101C>T, as a BC susceptibility gene in Finnish families. Park et al. [48] identified RINT1,
originally described as coding for a RAD50 interacting protein, as correlated with an intermediate level
BC risk. Cybulski et al. [49] analyzed 144 Polish and 51 French-Canadian women with BC, negative for
BRCA1/2, CHEK2, NBN (NBS1), and PALB2 founder mutations, selected based on their family history
and/or young age at the onset. The authors identified rare and recurrent variants of RECQL, a gene
involved in preventing double-stranded DNA breaks. The same gene was also identified as potentially
associated with BC by Sun et al. [50], who analyzed the exomes of Chinese non-BRCA patients. Maatta
et al. [51] performed exome sequencing of 13 non-BRCA high-risk Finnish families. After filtering, 18
candidate variants in the DNA damage-response (DDR) pathway were identified and further validated
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by conventional methods in cohorts of BC/OC female patients, female controls and breast tumors.
Results showed that enrichment of multiple defects in DDR genes are related to BC predisposition in
those high-risk families, opening the possibility of further studies. Tavera-Tapia et al. [52] analyzed
the exome of a non-BRCA Spanish family and found a novel germline ATM mutation (c.5441delT;
p.Leu1814Trpfs*14). In the same study, the ATM gene was further analyzed in a cohort of 392 non-BRCA
cancer families and showed 1.78% prevalence of mutations in non-BRCA familial BC/OC and a 1.94%
frequency in BC, suggesting that testing of this gene in Spanish non-BRCA families should occur.
Hamdi et al. [53] performed whole exome sequencing in non-BRCA Tunisian families and identified
twelve relevant high-risk variants and four new BC candidate genes (MMS19, DNAH3, POLK, KATB6).
In a large study by Lu et al. [54], more than 11,000 patients with clinical features of breast and/or
ovarian cancer and almost 4000 controls were subjected to exome-sequencing to analyze the BC/OC
features in depth, to confirm the involvement of known genes other than BRCA, and to identify new
genes potentially associated with the disease. The study produced a huge amount of data, in terms
of genes and pathogenic variants. After filtering, enrichment of pathogenic variants was identified
in four non-BRCA genes, which were related to BC risk (ATM, CHEK2, PALB2, and MSH6). On the
other hand, increased risk for OC was linked to MSH6, RAD51C, TP53, and ATM. Genes belonging to
the MRN complex (RAD50, MRE11, NBN-NBS1) and CDKN2A were not correlated with increased
BC/OC risk. In addition, no association was shown between BC and OC susceptibility BRIP1, RAD51C,
RAD51D, MSH2, and PMS2 genes, partly confirming results of other studies. Overall, the study
highlighted the need to (i) standardize NGS procedures for obtaining high-quality results and (ii)
analyze pathological samples and controls with well characterized clinical data. Moreover, extending
the analysis was suggested, not only to protein truncating and known pathogenic mutations, but also
to a wider spectrum of variants, especially in less-studied genes that could be putatively involved in
BC/OC susceptibility. Another study [55] examined 113 DNA repair genes, filtered from whole exome
sequencing data of a well characterized and homogeneous group of familial BCs. Other than PALB2,
ATM, and CHEK2 deleterious-predicted variants, the authors found, for the first time, BC susceptibility
associated with FANCI, MAST1, POLH and RTEL1 gene mutations. Weitzel et al. [56] analyzed a large
cohort of more than 1000 non-BRCA Hispanic women by exome sequencing, 4.5% of whom carried
pathogenic variants in cancer susceptibility genes (CHEK2, PALB2, ATM, TP53, BRIP1, CHD1, and
NF1). Among them, the most frequent were reported in PALB2 and CHEK2, further confirming their
involvement in some non-BRCA cancers. Whole exome sequencing was also applied to 52 individuals
from 17 Greek families, in which at least one patient was negative for known hereditary BC risk
variants [57]. Pathogenic variants were found in already-described genes (BARD1, encoding a ligase
interacting with BRCA1; MEN1, involved in multiple endocrine neoplasia syndrome) and a workflow
was used to identify novel variants outside the known risk genes: rare loss-of-function variants were
detected in MDM1, encoding a nuclear protein, and the NBEAL1 gene, playing a role in molecular
mechanisms including vesicular transport, apoptosis and receptor signaling. A missense variant in
SETBP1, coding for a protein that binds to the nuclear oncogene SET, and C7orf34, with predicted
damaging effects, was detected as well.

Despite the more than a dozen WES-based studies reported here and the comparable, in terms
of order of magnitude, number of interesting genes identified, with most involved in tumor key
mechanisms, no unequivocal genes, specifically responsible for non-BRCA BC/OC cases, were isolated.
Nevertheless, these analyses provided significant and extensive deepening of knowledge of the
complex landscape of familial breast and ovarian cancers. In the future, one could expect that selected,
homogeneous groups of patients, with adequate size, and novel bioinformatics analysis pipelines for
results’ filtering and interpretation could enhance the list of putative susceptibility genes/variants to be
further validated.
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7. WGS Approach in Familial Breast/Ovarian Cancer

Other than exome sequencing, whole genome sequencing (WGS) has gained attention due its
power in analyzing both coding and non-coding regions. WGS produces high-throughput data, with
the consequent need for powerful and focused bioinformatics analysis. A work by Nones et al. [58]
compared 78 paired germline and tumor DNA samples obtained from women carrying BRCA1 or
BRCA2 pathogenic mutations, and from non-BRCA patients. Matched analysis allowed the authors
to confirm biallelic inactivation of genes, playing a role in cancer risk increase, which lead to the
accumulation of somatic mutations. Loss of function of BRCA1/2 and PALB2 was correlated with
mutation burden and defective homologous recombination (HR). Thirteen non-BRCA tumors were
BRCA-proficient and showed structural rearrangements correlated with oncogene amplification and
germline pathogenic variants at the level of TP53, ATM and CHEK2. In conclusion, this study
highlighted, for the first time, the importance of the whole genome sequencing-based approach,
focused on the analysis of paired germline-tumor DNA, to shed light on important mechanisms of
genomic instability underlying familial breast cancer.

8. Pros and Cons of NGS Approaches for the Analysis of Familial Breast/Ovarian Cancer

Although NGS technologies have a well-established potential in BC/OC clinical diagnostics,
as well as molecular research, there are still many challenges associated, for example, with the accurate
determination of large genomic rearrangements, the interpretation of variants of unknown significance
in known susceptibility genes and the interpretation of pathogenic variants in genes not previously
associated with BC/OC genetic risk.

Conventional methods, including Sanger sequencing and MLPA, are time-consuming and very
expensive, particularly for the analysis of large genes such as BRCA1 and BRCA2. In this context,
NGS technologies offer a powerful alternative, improving the speed and the efficiency of molecular
testing [67]. Furthermore, it was demonstrated that NGS is more sensitive for detecting BRCA1/2
sequence variants compared to previous techniques such as PTT, SSCP and DHPLC, and, for this
reason, there is often the need to re-analyze patients by using NGS technologies, due to the false
negative results obtained by using the above mentioned screening methods [84]. Concerning large
genomic alterations, even though studies are under development, detection of CNVs by NGS has
not yet been fully validated in clinical diagnostics, and improvement of enrichment methods and
bioinformatics analysis processes are necessary to allow the application of NGS as a routine method
for the detection of BRCA1/2 CNVs analysis [85].

Over the last few years, thanks to the extensive use of NGS technology, several genes other than
BRCA1/2, have been associated with increased BC/OC risk. To date, a wide range of NGS panels are
available for the analysis of hereditary BC/OC [86]; generally, these panels include high-penetrance
BC/OC genes (BRCA1 and BRCA2), moderate/low-penetrance genes (e.g., PALB2, CHEK2 and ATM),
mismatch repair genes (e.g., MLH1 and MSH2), and genes related to hereditary cancer syndromes
(e.g., CDH1, PTEN, STK11 and TP53) [87]. Overall, a critical factor for NGS panel use is that a high
number of variants of unknown significance (VUS) are detected, for which clinical management
is unclear.

To date, over 35 genes have been suggested as possible BC susceptibility genes, however a
statistically significant association with BC risk has been established only for a minor fraction of
them [40]. This result highlights the need to identify additional BC/OC susceptibility genes able
to explain the high fraction of hereditary cases not attributable to mutations in known BC/OC
predisposing genes.

In this context, WES and WGS analyses offer a great opportunity to discover novel genes involved
in BC/OC susceptibility. However, the success of this type of study relies on many factors, including
size and selection of patients recruited and data analysis strategies as well. Adequate validation
experiments in independent series and case-control analyses are also essential to obtain information of
clinical utility. For some putative novel BC/OC associated genes, identified by WES studies, further
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independent investigations and case-control analyses have not been performed and thus the associated
BC/OC risk is unknown [40]. Furthermore, it is important to note that, in some studies, BC cases that
were exome-sequenced had no mutation reported [40].

Overall, well-designed studies that include well selected patients/families, adequate sample size
(due to the rarity of variants), homogeneity of the population analyzed, validation experiments in
independent cohorts and case-control studies to assess the risk, are essential to improve the success of
WES studies and the probability of discovering new BC/OC-associated genes.

9. Conclusions

The recent advances in high-throughput technologies and the advent of second and third generation
sequencing methods have shown great potential for medical genetic research with translational value,
providing a significant improvement in terms of genetics understanding. Several studies led to
the identification of novel susceptibility genes/variants associated with familial BC/OC, analysis of
which can help clinicians assess risk stratification and prevention strategies. The NGS-based studies
here reported did not always analyze univocal genes other than BRCA1 and BRCA2, but one could
expect that further studies, focused on analysis of well selected patients/families and coupled to
the improvement and standardization of bioinformatics investigations, will have a strong chance of
identifying novel genes/variants involved in familial breast and ovarian cancers. Ethnicity, number of
analyzed cases necessary to identify rare variants, and case/control studies for risk assessment should
also be considered. Moreover, these technologies can provide a powerful tool for understanding
additional mechanisms operating in familial cancer that can be revealed by the wide comparison, now
possible, of matched germline and tumor DNA.
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