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Abstract: Suriname is part of the Guiana Shield, a cratonic area in northern South America. It is
drained by several major rivers that are characterized by river terraces. The formation of terraces
along the Suriname river is closely related to climatic changes during the Quaternary, due to the
effects of climate on vegetation and precipitation changes. The terraces along the Suriname River
valley show levels of 5, 15, and 20 m above the current mean water level. The reason behind the
scarce terrace differentiation is the limited amount of long-term vertical incision. Therefore, each level
along the Suriname River valley encompasses multiple climate cycles, which cannot be separated on
morphological grounds. The limited incision reflects tectonic stability, which is typical for cratonic
areas. Fieldwork along the river combined with topographic maps were used to determine and
correlate the various terrace levels. While in the upper part of the river, climatically induced changes
in vegetation cover and sediment delivery is dominant. In the lowermost reach, sea level change is
especially important.

Keywords: fluvial terraces; tropical South America; craton; Northern Suriname

1. Introduction

Fluvial landscapes are an important part of the general geomorphological system.
Among these, rivers in stable cratonic areas covered by rainforest are among the least
studied ones. While they may show a large range of mean annual discharges and drainage
basin areas, they are distinguished by unusually low sediment yields and sediment yield
per square kilometer [1]. However, contrary to what these authors state, these rivers are not
dominated by bedload but instead by a predominance of suspended load. This is due to the
fact that the deeply weathered land surfaces hardly provide bedrock gravel but only their
weathering products, e.g., sand, silt, and clay. This results in a lack of erosive power of the
rivers, even at high discharges, so that when during incision hard bedrock is encountered,
they are incapable of eroding them away due to the lack of bedload, and instead the
channel splits itself up in several branches in order to avoid the obstacles. In this way,
a very specific channel form develops, i.e., multibranch cataracts called raudales in Spanish
South America such as in the Orinoco River, and well described by [2] for the Caroni River
in Venezuela, cachoeiras in Brazil, and sulas in Suriname [3]. These channel forms resemble
to some extent braided river channels but differ from them in the fact that they consist of
rocky islands with fixed positions, instead of sand bars which change position during each
flooding event. Even those outcrops in the river do not lead to the formation of bedload
gravel as exfoliation sheets falling from them into the river, for instance, which usually
disintegrate by weathering before being able to form solid clasts.
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Yet, like rivers from other environments, these rivers flowing in cratonic areas may
exhibit river terraces with rounded gravel, suggesting different hydrological regimes and
climatic environments in the past [4,5]. We present here a case study on the terraces
of the Suriname River in the Guiana Shield in tropical South America, with a drainage
basin wholly covered by tropical rainforest. It is known from palynological studies that the
Guiana Shield has suffered periods of greater drought and lesser vegetation cover [6,7]. The
study of terraces in this environment, however, is hampered by several factors, including
low uplift rates, deep sediment weathering, and a scarcity of datable material.

Terraces are being recognized as an important source of evidence for Quaternary
paleoenvironments [8] and, therefore, represent paleo-fluvial floodplains. Terrace formation
in the lower reaches of rivers is driven by fluctuating sea level [9], whereas in areas remote
from the marine influence, climate change produces a contrasting effect, with aggradation
during glacial and incision during interglacial. However, the upstream influence of sea
level fluctuation is likely to be limited because many rivers today flow in valleys that
formerly extended over wide areas of continental shelf, but have been truncated by the
Holocene marine transgression, which inundated and submerged their lower reaches [10].
Where the shelf is narrow, sea level fluctuation has given rise to terraces that can be traced
for considerable distances inland, which is the case for example for the Susquehanna in
North America [11] and other neighboring rivers in northern California [12].

The formation of terrace staircases is in most cases a response to regional uplift, which
forces long-term incision [8,13–15]. The rivers in tropical Suriname have a maximum of
about 20 m high, which is much less compared to what is commonly observed in high
latitudes. Suriname is underlain by cratonic crust. In general, such crust is tectonically
very stable and lacks a weak lower crustal layer, which would otherwise enable vertical
motions by isostatic responses to loading [16]. Therefore, if this 20-m long term incision is
caused by uplift, then this is in agreement with Suriname’s cratonic crust.

According to [5], the formation of terraces along rivers in Suriname is closely related
to climatic changes during the Quaternary due to the effects of climate on vegetation and
precipitation changes. In his model, glacial alluvial sediments are deposited in the river
valleys and valleys are widened during glacials. During interglacials, the rivers incise,
leaving the former floodplain behind as a terrace in the landscape. However, the number
of terraces in Suriname (~3) is much smaller than the number of climate cycles during the
Pliocene and Quaternary. In addition, close to the coast, climate driven eustatic sea level
fluctuations also should have an important control on river terrace formation. For example,
when low stand base levels were lowered by up to ~120 m and were submerged, 160 km
Suriname shelf was exposed and incised by fluvial systems.

This study gives an overview of the Pleistocene terraces and the Holocene floodplain
along the Suriname River valley, located in the central part of Suriname. Economically,
this is Suriname’s most important river, and it flows along the capital, Paramaribo. River
terraces and floodplains are preferred sites for human settlement (villages) in the hinterland
of Suriname. A detailed study would give more insight in the key controls (e.g., uplift, sea
level fluctuation, climate changes) that are responsible for river terrace development along
the Upper and Lower River valley parts. Literature studies, fieldwork, and laboratory
analysis were used to determine the various characteristics of the terraces (e.g., height
relative to mean water level, lithology). Our results are based on previous field work carried
out in the 70s and 80s in the upstream parts and new mapping based on interpretations
using historic land use maps in the midstream part, and a combination of Digital Elevation
Model DEM and topographic maps analyses and field work in the downstream part. We
provide, for the first time, full detailed maps of the distribution of terrace remnants of
the whole river, and we show the terrace remnants in a longitudinal profile. Using these
results, we discuss the formation mechanism and the relation to climate change.
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2. Regional Settings
2.1. General

Suriname is drained by seven rivers that are subdivided in three main groups based
on the extent and shape of the drainage area (Figure 1). The first group consists of the
border rivers Marowijne (East) and Courantyne (West), which have their sources in the
border mountains with Brazil and drain almost 58% of the country. The second group has
their origin in the high uplands in the middle of the country, and is represented by the
Suriname and Coppename Rivers, which drain almost 24% of the country and debouch
directly into the sea. The third group consists of the Commewijne, the Saramacca, and
the Nickerie Rivers, that together drain approximately 16% of the country. The rivers of
the last group bend westwards close to the coast to drain into the sea through the mouths
of the second group, due to the westward migration of important mud banks along the
coast [17,18].

Figure 1. Simplified topographic map and hydrographic network of Suriname with its seven main
rivers (Marowijne, Commewijne, Suriname, Saramacca, Coppename, Nickerie, and Courantyne
Rivers) in the north. The frame indicates the location of the study area.
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The rivers run through two geologically different parts of the country, first through
the hills and mountains of the cratonic Guiana Shield, while the estuary part runs through
the Coastal Plain [18,19].

2.2. Geological and Geomorphological Overview of the Study Area

Suriname can be divided into a southern rainforest-covered interior, which represents
almost 80% of the country’s surface, and a northern coastal plain that makes up the rest of
the country’s surface area. The rainforest-covered interior, which forms part of the Guiana
Shield, is underlain essentially by Precambrian igneous and metamorphic rocks, also called
the basement (Figure 1 shows that the Guiana Shield roughly corresponds to the areas >
100 m). Thick dolerite dykes with a 1782 Ma age (Avanavero Dolerite) and narrow ones of
Jurassic age (Apatoe Dolerite) intersect the basement of Suriname [20].

The morphology of the major part of the rain-forest covered basement consists of an
endless mosaic of low hills with flat tops and steeply cut creek valleys. A distinction can
be made into mountain tops up to 1280 m high, inselbergs at more than 700 m elevation,
duricrust planation levels at more than 500 m, and river terraces at levels of approximately
20 m, 15 m, and 5 m above the mean water level. The terraces along the rivers are the only
morphological units that are aligned with the present drainage pattern [21]. Structures in
the bedrock (e.g., faults and fractures) control the drainage directions, as shown by the
rectangular patterns of the larger rivers (Figure 1).

The coastal plain consists of the Savannah Belt, the Old Coastal Plain, and the Young
Coastal Plain. The Savannah Belt is a gently sloping north-facing hilly landscape between
10 to 50 m above sea level. The Savannah Belt is underlain by the Pliocene Zanderij
Formation, which consists of horizontally layered deposits of coarse sands with small
amounts of loams and fine sands. The Zanderij deposits can reach a thickness of up to
20 m. Gravel deposits, up to 2 m thick, are locally found at the base of this formation. The
Zanderij Formation was deposited during dry climate conditions [22].

The Old Coastal Plain is situated 4 to 11 m above sea level and is a dissected Pleistocene
marine terrace, consisting of numerous small plateaus, the so-called “schollenlandschap”.
This landscape has a variable width of 20 km in the east to 70 km in the west. Remarkable
features are the Old Ridge Landscape, and the Old Clay Landscape that originated due
to the westward transport of sediments along the coast under the influence of the Guiana
Current. The Old Coastal Plain consists of sands and clays of the Coropina Formation,
which can be subdivided into the lower clayey Para member and the upper sandy Lelydorp
member. The Para member has been deposited around circa 700 ka, while the Lelydorp
member is of Eemian age, which is approximately 120 ka [22].

The Holocene Young Coastal Plain deposits are subdivided into the Mara Formation,
which formed between 10–6 ka, and the Coronie Formation formed between around 6 ka to
the present. This younger part of the coastal plain is a flat clay-prone surface that is locally
interrupted by east–west oriented sandy cheniers. These cheniers mark former coastlines
and appear as single units or bundles [17].

The Suriname River valley has a total length of 480 km and has its sources in the
highlands (Figure 1). Its catchment size is approximately 16,500 km2, and 84.8% of the total
catchment area is located in the rainforest-covered interior of the Guiana Shield, 4.5% in
the Savanna Belt, and a 10.7% is in the Old and Young Coastal Plain [18,23]. The Afobaka
Dam (1964) and Prof. Dr. W.J. van Blommestein Lake (also known as the Brokopondo or
Afobaka Storage Lake) lie in the midstream part of the Suriname River valley. Downstream
of the Afobaka Dam (km 194) the average annual discharge of the river is 324 m3/s. At the
river mouth, the average annual discharge is estimated to be about 440 m3/s, while the
estimated sediment discharge is 0.25 million tons per year [19].

The river can only incise in saprolite or regolith because of the lack of abrading
bedload [24]. A specific characteristic of all rivers in the basement area, including the
Suriname River valley, is the presence of cataracts (sulas, in Surinamese). These are hard
rock sills. At such locations the river’s channel pattern resembles that of a braided river.
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However, in contrast to the gravel or sand banks in real braided rivers, the islands between
the branches consist of hard rock [3,25]. The most downstream sulas in the Suriname river
valley are the Brokopondo and Balling Sulas, just downstream of the Afobaka dam. They
are situated at the northern edge of the basement, the Guiana Shield. They form semi-
permanent knickpoints in the river that they are supposed to be stable but are subject to
slow erosion and have an important impact on river dynamics during climate-driven base-
level change and upstream changes in vegetation and sediment output (see Discussion).

2.3. Climate and Environmental Conditions from the Pliocene to Holocene in Northern South
America
2.3.1. Pliocene and Pleistocene

The Miocene and Pliocene tectonics affect the Eastern Andes, fundamentally changing
and the regional climate and the drainage patterns, which leads to the formation of the
present-day Amazon and Orinoco river systems [26]. The Suriname River valley might
have originated during the same time span. Climate conditions during the Pliocene seem
to have been generally cooler than during the Miocene. Especially the final part of the
Pliocene (between about 3 and 2.5 Ma BP) experienced a strong cooling [27–30].

Climatically, the Pliocene can be subdivided into a warm early Pliocene, a relatively
warm Mid-Pliocene, and a relatively cool Late Pliocene [31]. Yet the average climate
during the Pliocene appears to have been warmer than present day [32]. The pattern of
temperature and precipitation change during the Pliocene was similar to weather and
climate patterns observed during a modern El Niño event [33].

In general, very little is known about the Pleistocene climate in tropical South America
before 0.5 Ma [34]. The best data available refer only to the Last Glacial and the Holocene.
We therefore restrict the discussion to that period, taking it as an analogue for previous
Pleistocene climate cycles. During the Middle Pleniglacial (ca. 60–26 ka), most or all of
warm and cold tropical South America had a considerably cooler climate and relatively
high precipitation values. It became markedly drier between ca. 21 and 14 ka during the
Late Pleniglacial (last glacial maximum) [7]. During the relatively cold and dry part of the
Late Pleniglacial, savannah vegetation extended in Suriname, replacing the rain forest in
the interior. During (and part of) the LGM savannah vegetation replaced wet forest at the
entire present coastal area of Suriname [6,35]. It was estimated by Van der Hammen and
Absy [36,37] and Van der Hammen [37] that precipitation in Suriname during the LGM was
about 500 to 1000 mm/yr., which was needed in order to sustain a natural grass savannah
and 1000 to 1500 mm/yr. for a mixed grass/woodland savannah. The rainfall regime was
also more seasonal with a prolonged dry season. This is in accordance with predictions of
750 to 1500 mm/yr. for the LGM by global climate models [38].

During the Late Glacial (13–11.3 ka), the climate of northern South America became
wetter, the rivers carried an increasing quantity of water and a new cycle of sediment
deposition began and continued into the Holocene. The increase in water level in the rivers
seems to have been considerable, locally leading to temporal permanent inundation of the
(upper to) middle river valleys [39–41].

2.3.2. Holocene

Records from the savannas of eastern Colombia, indicate that there was a shift from dry
early Holocene to wetter environments after ~6 ka [42]. This can be explained by changes
in the position of the Inter Tropical Convergence Zone. During the early Holocene, the
ITCZ apparently had a more northerly position than today [43,44], causing dry conditions
in the savanna. The ITCZ shifted southwards during the mid- and late Holocene, leading
to more precipitation in the savannas.

During the early Holocene (12 to 6 ka BP), sea level rose from a depth of more than
100 m to the present level [45,46]. Sea level rise slowed down between 6 and 7 ka BP
(Figure 2) [47]. Precipitation increased during the early Holocene. Rainfall still was concen-
trated in the summer monsoon, which may explain the persistency of the savannahs during
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the early Holocene. The average yearly temperature was about 5 to 6 ◦C lower than today
during the LGM [36,38]. The yearly actual evapotranspiration was 15% lower than today,
which was approximately 1300 mm/yr. in Suriname [38].

Figure 2. Sea level rise at the Suriname coast (modified after [46]).

3. Materials and Methods

In the practically inaccessible hinterland of Suriname, aerial map analysis is a very
important research method. This is based on the existence of a relationship between soil
and landscape. The geology of the study area is also involved in the analysis. However,
height and slope differences are at least as important as soil data in the evaluation of
the landscape. The research methods of this study consisted of desktop, fieldwork, and
laboratory parts.

A preliminary map analysis was made of the study area. This map analysis was aimed
at distinguishing geomorphological units (e.g., terraces) that differ markedly from each
other in terms of height. Subsequently, a limited number of observations were made to
check the preliminary map data to obtain detailed information about the morphometry of
the different landscapes (height and slope differences, etc.) and the soil characteristics.

Fieldwork was done from the river inland. On selected locations boreholes were made
using an auger and a gouge to determine terrace sedimentary successions and to collect
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samples. The locations of the boreholes were chosen in parts of the various terraces that
were representative of the landscape. This means that data obtained from the drilling
survey was considered to be representative of the remaining area.

Samples from five boreholes were selected for analyzing the sediment texture in the
laboratory. A Sympatec HELOS laser diffraction machine was used for the particle size
analyses, ranging from 0.1 µm to 3500 µm.

Before collecting the field data, terraces were mapped in the upper, middle, and lower
Suriname River valley stretches with the aid of a Space Shuttle Digital Eevation Model
(SRTM DEM) and topographic maps. Historical topographic maps revealed that inland
residents used the terraces for laying out their agricultural lands. This information was
used to infer terraces in the midstream part of the Suriname River valley, because this part
is nowadays submerged due to the construction of the Afobaka dam.

The resulting terrace maps were largely based on a map of the upper Suriname and
Saramacca River areas produced by Balsem and Rhebergen [48] in the framework of a
geomorphological-soil science cooperation project between the Soil Survey Institute of
Suriname (DBK) and the Vrije Universiteit Amsterdam (VU), as wel as on a detailed study
of the upper Suriname River valley, which was also part of the Soil Mapping Service (Dutch:
Dienst Bodem Kartering)/Vrije Universiteit DBK/VU project by Kips and Snel [49].

4. Results
4.1. General Characteristics of the Terraces

For practical purposes, we divided the Suriname River valley into an upper (Figure 3),
middle (Figure 4), and lower valley part (Figure 5), corresponding, respectively, with the
part upstream from the Afobaka storage lake, the Afobaka storage lake itself, and the part
from the Afobaka dam to Cassipora. The terrace remnants were plotted at a longitudinal
profile (Figure 6). Apart from potential correlations, the profile also showed that the current
river profile has three important knickpoints.

Figure 3. Map of terraces along the upstream river valley part of the Suriname River.
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Figure 4. Inferred terraces along the mid-stream river valley part of the Suriname River, now
submerged in Lake Afobaka.

Figure 5. The downstream part of the Suriname River valley.
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Figure 6. Longitudinal profile of terrace remnants and their correlation along the Suriname River valley. Knickpoints
coincide with larger sulas (cataracts).

4.2. Upper River Valley Part

The terrace map of the upper river valley (Figure 3) is based on maps of the upper
Suriname and Saramacca River areas by Balsem and Rhebergen [48]. They distinguished a
20 m, 15 m, and a 5 m high terrace level. The 20-m terrace level has a relief up to 25 m and
slopes up to 18%, and consists of regolith of mainly felsic rocks, and local river sediments.
The 15 m terrace level has an undulating morphology with a relief up to 15 m and slopes
up to 8%, consisting of Pleistocene river deposits (50%) (fluviatile sediments) and regolith
of mainly felsic rocks (50%). The terrace deposits have a thickness of 0.5 to 4 m. The 5 m
terrace level remnants are almost flat plains with depressions, relief up to 5 m, and slopes
up to 4%. They consist of relatively thin fluviatile loam deposits.

Kips and Snel [49] also distinguished a 30-m high level (Figure 3) with a sediment
sequence of 3.5 to 5 m in thickness. The deposits contain fine, rounded gravel and show a
fining upwards sequence of loamy sand at the bottom, passing into (sandy heavy) loam at
the top of the sequence.

The sediments in the present floodplain differ considerably from the three levels, and
according to a few deep auger drillings, consists mainly of silty to heavy clay without any
fining upwards sequence. At some locations the floodplain and the 5 m terrace level are
absent, and the 15- m and 20- m terrace levels directly border the river channel. According
to the Geological Mining Services of Suriname (GMD) the river terraces in the upper reaches
have developed entirely on granitoid and gneissic rocks of the Precambrian basement.

The terrace remnants mapped by Balsem and Rhebergen [48] and Kips and Snel [49]
are plotted in the longitudinal profile of Figure 6. Based on the correlation of the rem-
nants, we conclude that three levels are present, at 5, 15, and 20 m above the present-day
river level.

4.3. Middle River Valley Part

Up to now, little is known of terraces along this part of the river, especially regarding
their height levels. The geological map of sheet Kabel (31) by D’Audretsch [50], made
before the construction of the Afobaka dam, shows a continuous strip of terraces, all
developed on tonalitic granitoid rocks. D’Audretsch [50] gives a terrace height of 10 m
above low water level, on which the Maroon villages were built. Martin [51] measured
the height of 7 Maroon villages on a terrace situated between 5 and 9 m relative to the
river level. Whether higher terrace levels are also present is unknown, as most earlier
researchers mainly surveyed from the river. In the present research, additional lower
terrace fragments (Figure 6) were derived based on the locations of former farmlands
depicted on historical maps.

According to D’Audretsch [50], the present floodplain is up to 6 km wide. Locally,
low levees occur in the outer bends. Where the river incises in its own deposits a gravel
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layer resting on weathered basement rock is exposed. The fill of midstream part of the
river valley consists of cream-colored to yellowish clay.

4.4. The Lower River Valley Part

According to our analyses, the main terrace levels along the downstream reach are
situated at heights of 20 m, 15 m, and 5 m above the mean water level of the river. They are
particularly well developed at three locations, which we studied in detail, i.e., from south
to north the remnants of the Victoria terraces, the Baboenhol terraces, and the Cassipora
terraces (for location see Figure 5). According to the geological map, the Victoria and
Baboenhol terrace remnants are developed on basement rocks, whereas the Cassipora
terrace remnant sits on Zanderij Formation sands (Figure 7).

Figure 7. Geological map with Zanderij Formation indicated in yellow. Other colors represent
basement rocks (V = Victoria; B = Baboenhol; C = Cassipora).

4.4.1. The 20-m Terrace Level (T20m) at Victoria

The 20-m terrace level situated at Victoria consists of fluvial deposits and is developed
on hard rock, while at Cassipora it is developed on the Zanderij Formation of Pliocene
age. The lithology at the base at Baboenhol is unknown, but is likely also hard rock. At
Baboenhol and Victoria, the topography of the upper surface of this level is irregular as a
result of numerous incised local creeks (Figure 5). The height of the terrace level increases
with increasing distance from the river. At Victoria, transitions from the 15 m terrace level
to the 20-m terrace level occur gradually. Compared to Cassipora, the sands of the 20-m
terrace level at Victoria are loamier (Figure 7).

The 20-m terrace level located at Victoria, on the left bank, extends to approximately
1.5–2 km inland from the river. The topography is fragmented by small, incised creeks,
and shows a gradual increase in height. Its subsurface consists, from top to bottom, of
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sandy loams with gravel, loamy sands, and loamy sands with gravel (Figure 8). The sands
resemble those of the Zanderij Formation, suggesting they could be related.

Figure 8. Sediment log of drilling core at the 20 m terrace level at Victoria.

The 20-m terrace level at Baboenhol, located at the left bank of the river (Figure 5),
is also fragmented by incising tributary creeks. However, it also shows very different
morphological characteristics compared to the 20-m level at Victoria. Starting from the
river, the land surface rapidly increases in height from 5 to 15 m. There is a sharp transition
from the 15-m to the 20-m terrace levels.

The width of the 20-m terrace levels is about 0.5 km. A sharp transition from the
floodplain (at 1 m) and 20-m terrace levels over a distance of circa 50 m occurs at Cassipora
(right bank). Both locations had sharp transitions. Baboenhol and Cassipora (right bank)
are situated in the outer river bends, while Victoria, with gradual transitions, lies in an
inner bend.

The shallow subsurface of the 20-m terrace level at Cassipora consists of fluvial fine
and angular quartz gravels, overlain by a clay deposit. The gravels show a fining upward
trend (Figure 9). The gravel clasts have a diameter of up to 2 cm. They are interpreted as
part of the Pliocene Zanderij Formation. The overlying clay deposits has orange (oxidized)
and green colored (reduced) spots, which are related to soil formation.

Figure 9. Sediment log of the outcrop at Cassipora.



Quaternary 2021, 4, 11 12 of 19

4.4.2. The 15-m Terrace Level (T15m)

The width of the 15-m terrace level ranges from about 0.25 to 0.5 km. The upper
surface of the 15-m terrace level ranges between 10 and 20 m above the river, but is mostly
at about 15 m, which corresponds with the findings of Kips and Snel [49] in the Upper
Suriname River valley. The terrace landscape is undulating and locally incised by some
large creeks in shallow fairly flat valleys.

4.4.3. The 5-m Terrace Level (T5m)

Along the downstream part of the Suriname River valley, the 5 m terrace group is
present at Victoria and Baboenhol. At Cassipora the floodplain is absent and the present
outcrop of the Zanderij Formation directly borders the river. The average width of the 5-m
terrace level goes up to 50 m, but where it is narrow the 5-m passes gradually into the 15-m
terrace level. The upper part of the terrace deposits consists of clays locally with rusty or
purple spots (soil formation) (Figure 10).

Figure 10. Sediment log of drilling core in the 5-m terrace level at Victoria.

At Brokopondo Sula, further upstream between Victoria and the Afobaka Dam, a 5- m
terrace level is present on an island in the middle of the river. A profile across the island
was obtained for the purpose of exploring a possible dam site [52]. The profile shows an
irregular bedrock surface at 7 to 12 m depth, covered by a fluvial fining upward sequence,
with coarse sand at the bottom and loamy sand at the top (Figure 11) [52].
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Figure 11. Cross-section through the island at the Brokopondo Sula (modified after Bleys [52]).

5. Discussion

The studied section of the Suriname River valley shows generally three terrace levels
above the present mean water level. In the most upstream and downstream parts, the
highest level is at 20 m above river level. Information about higher terrace levels in the
now submerged intermediate part (Afobaka Lake) is lacking, so it is not clear whether
these levels are the same. In view of the fact that water levels in the Suriname River valley
may vary up to 7 m between high and low discharges [50], estimations of the height of the
terraces above river level may have a large error margin.

We correlated the 20-m level in the upstream part to the level at the same height in the
downstream part for two reasons: (1) this correlation follows the shape of the present-day
longitudinal profile, including the sulas; and (2) the number of terrace levels is the same
in the upstream and downstream parts. The first argument assumes that the sulas are a
permanent feature of the fluvial longitudinal profile, for which we provide arguments
below.

The consistently presence of terraces at the 20, 15, and 5 m levels at both the up- and
downstream parts of the Suriname River valley (Figure 12), can be explained by lowering
of long-term eustatic sea level and/or low amount of uplift. There is more evidence of
recent tectonic movement than originally thought, primarily as a result of rift shoulder
development due to the separation of South America and Africa, and the development
of the Takutu failed arm along the border between Suriname and Guyana. Data from
northeastern Brazil suggest a possible uplift of 20 m in the Quaternary [53]. Cenozoic uplift
of the Bakhuis Horst in western Suriname along reactivated Precambrian faults parallel to
the Takutu rift is even recorded in seismic sections in the coastal plain [54,55].

Figure 12. Cross-sectional topographic profiles of Malobbi (Upstream part) and Victoria (Downstream
part) with correlated terrace levels.

5.1. A Model for Terrace Evolution in the Upstream and Middle Parts

Terrace development in the humid tropics is largely attributed to the effects of climate
change. During glacials, the climate is relatively dry, because less water-vapor is available
in the atmosphere, causing reduced precipitation. In contrast, interglacial climates are
relatively wet. Reduction of precipitation during a transition from an interglacial to a glacial
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period leads to the conversion of the dense tropical forest into savannah vegetation. At the
same time, because the surface is less covered with vegetation during glacials, more erosion
occurs, leading to more sediments available for fluvial transport. Thus, fluvial sediment
load increases, whereas transport capacity decreases. This results in sediment storage
(aggradation) in the river valleys and raising of the river valley floor. During interglacials
rivers incise, because the climate is relatively wet, resulting in increased precipitation and
vegetation cover [56,57].

During the Quaternary many glacial/interglacial cycles have occurred, and some
rivers, such as the Meuse in the Netherlands, show a terrace for each climate cycle, up to
30 for the whole Quaternary [58].

In general, the preservation of terraces in a terrace staircase requires a long-term
incision. In case of the Suriname River valley, the 20-m of incision during the Pliocene and
Quaternary is insufficient to produce a visible staircase of about 30 terraces, whereby each
would represent a climate cycle.

The long-term 20-m incision since the Pliocene requires an explanation. It may have
been caused by the long-term eustatic sea level fall since the Pliocene [59] and/or by uplift.
A slow and relatively low amount of uplift may have resulted from the rifting processes
that led to the formation of the Atlantic Ocean (passive margin uplift). According to studies
in north-east Brazil [53] rift shoulder uplift and denudation along the Atlantic coast due to
rifting since the Cretaceous amounted to 10 m/Ma, that is 20 m for the whole Quaternary.
Alternatively, the differential uplift can be explained as a result of erosional isostasy of the
hinterland [60]. The small amount of uplift and the consequent limited vertical separation
of the terraces can be explained by absence of lower crustal flow in of this cratonic crust [16].

Knickpoints in the upstream part of the river valley are present in the present-day
longitudinal profile, particularly at Goejaba and Pokigron (Figure 6). The knickpoint
at Goejaba is likely caused by a northeast–southwest oriented dolerite dyke that cuts
across the river and acts as a sula, whereas the knickpoint at Pokigron is controlled by
the Kwai-Kwai sula as a result of differential weathering. Sulas are very stable and non-
migrating on geological timescales. In non-tropical conditions, knickpoints can be abraded
by fluvial gravel and sand. However, under tropical conditions such as in Suriname,
chemical weathering in the basement is very intense and produces only sand and clay. Any
local gravel will also be rapidly transformed into sand and clay before reaching the sulas.
Sand and clay are largely transported in suspension, and they are too fine to be able to
significantly abrade the sula knickpoints [24].

The situation at the knickpoints may have been different in glacial times with semi-
arid climatic conditions. The fining upwards sequences in the terraces often show rounded
gravel at their base, suggesting less intense weathering in the drainage basins and more
bedload transport in the channels. Under such conditions rocky knickpoints can therefore
be lowered by the erosive power of the bedload. This is suggested by the northernmost
knickpoint, the Brokopondo sula, just downstream of the Afobaka Lake (Figure 6). The
island in the middle of this sula consists of a buried irregular rock outcrop covered by
sediments belonging to the 5-m terrace level. This suggests that the buried rock surface
has been a sula in its own right in glacial times, which probably first suffered erosion by
the increased bed load and then became covered by the fluvial fining upwards sequence.
This possibly encompasses a smoother length profile of the river in glacial times than in
the present interglacial times. Unfortunately, the absence of datable material in the terrace
sediments so far precludes confirming this scenario.

5.2. A Model for Fluvial Development in the Downstream Part

The upstream influence of sea level fluctuation is likely to be limited [10]. Many rivers
today, such as those around NW Europe, flow in valleys that formerly extended over a
wide continental shelf, but their lower reaches were inundated and submerged by the
Holocene marine transgression [8].
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While the river valleys fill-up in the upstream part of the river during a glacial, in
the downstream part they are incising due to sea level fall, and vice-versa, during an
interglacial (e.g., [61]). The location of the transition between incision and aggradation
during a certain climatic situation, the terrace-intersection likely is located at those points in
the river valley where the most downstream bedrock-controlled cataracts (sulas or rapids)
occur. These sulas limit the upstream migration of sea level induced knick-points. In the
case of the Suriname River valley, they are situated at the transition from Guiana Shield
bedrock to the coastal plain deposits, at the Brokopondo Sula (Figure 12).

For example, eustatic sea level dropped to about 120 m during the LGM. During
this period the Suriname coastline was situated at 130 to 150 km north of the present
coastline [48], leading to exposure of the Suriname Continental Shelf and, as a consequence,
the extension of the downstream part of the Suriname River valley. From the river mouth,
incision migrated landward, incising into the shelf and into the previous river floodplain
of the present lower Suriname River valley.

From the LGM to the early Holocene, rivers and creeks close to the sea were very
deeply incised (10–30 m). Erosion also took place in the Old Coastal Plain and on the
shelf of Suriname [46,62–64]. Moreover, the large Suriname River must have eroded into
the sediments of the coastal plain and continental shelf. Core drillings by Groen (2002)
show that near Paramaribo the base of the paleochannel of the Suriname River valley was
about −35 m (below msl). After the steep sea level rise at the beginning of the Holocene
(12 ka BP), the coastline shifted circa 20 km landward of its present position. Sea level
reached its current level at 6.5 ka BP [45,46]. Since then, the coastline shifted seawards 10s
of kilometers due to coastal aggradation.

In contrast, for the middle and the upper part of the river valley it is very unlikely
that eustatic sea level changes have led to the formation of terraces (i.e., deposition during
highstands and incision during lowstands), as the Brokopondo Sula forms a rock sill that
cannot be cleared away by headward river erosion.

The 5 m terrace level fragments at Victoria and Baboenhol, i.e., downstream of the
Brokopondo sill, theoretically could represent a terrace formed as a result of the 7-m Eemian
highstand that also formed the Old Coastal Plain. These terrace deposits do not show the
common fining upwards sequence of the upstream 5-m terrace levels but consists primarily
of clay (although the depth of the augering was only 3 m). In a similar situation near the
mouth of the Marowijne River valley, marine clay was found in a 5 m terrace level profile
in the Coropina Formation (Eemian) [5,65].

However, the Victoria 5-m terrace level is located at about 130 km from the mouth of
the Suriname River valley, measured along the river channel (100 km as the crow flies),
and the nearest Coropina (Eemian) marine deposits of the Old Coastal Plain are 40 km
north from Victoria. Moreover, the Old Coastal Plain marine deposits do not reach higher
elevations than 7 m above present sea level, whereas the Victoria 5-m terrace level is at
12 m above present sea level. Therefore, we conclude that that the 5-m terrace level at
Victoria is a fluvial deposit.

As discussed above, the third knickpoint in the Suriname River valley at the Broko-
pondo sula shows a fining upwards fluvial sequence on top of an irregular bedrock pro-
file [52]. This sula was buried by fluvial sediments of the 5 m level during the last glacial
semiarid period and dissected during the present humid interglacial. Fluvial deposition
during the last glacial apparently went downstream beyond the last knickpoint and is
probably also responsible for the 5-m terrace levels at Victoria and Baboenhol. Therefore,
it is unlikely that any of the studied terraces in the study area has formed as a result of
Eemian highstand deposition and Last Glacial dissection.

6. Conclusions

Like other rivers in cratonic drainage basins covered with exclusively tropical rain-
forest, the Suriname River at present is characterized by the virtual absence of bedload
transport, because the deeply weathered basement does not provide coarse-grained sed-
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iment to the rivers. Cataracts (sulas) are formed in the river channel where interglacial
incision touches subsurface rock weathering fronts. The absence of bedload forces the
Suriname river to avoid the rocky obstacles instead of eroding them away, leading to multi-
channel cataracts, which only in plain view resemble braided river patterns. However, they
are stable rocky features instead of moving gravel and sand bars. The cataracts represent
important knickpoints in the length profiles of the rivers.

In the Suriname River in the Guiana Shield, the presence of several gravel-bearing
terrace levels above the present flood plain suggests that in glacial times, in this region,
were characterized by semi-arid climatic conditions with savannah-type vegetation, fluvial
dynamics differed considerably from the present ones. Three terrace levels at 20, 15 and
5 m above present mean water level were studied in three sectors of the river: an upstream
part, a middle part (now submerged below a storage lake), and a lower part. The consistent
height difference between these levels and their length profiles being roughly parallel
to the present one suggests that they represent major stages in the development of the
river basin. The consistent presence of terraces at the 20, 15, and 5 m levels at both the
up- and downstream parts of the Suriname River valley can be explained by lowering of
long-term eustatic sea level and/or low amount of uplift. As dissection is argued to have
started already in the late Pliocene or early Pleistocene, the terrace staircase may represent
many more than three climatic cycles. However, because of the absence of datable material
individual cycles cannot be resolved as of yet.

The presence of gravel in the fluvial terraces could imply that the role of the knick-
points was less prominent than at present. An island in the northernmost knickpoint,
the Brokopondo sula, shows a buried rocky surface under a fining upwards sequence
belonging to the 5 m terrace level, suggesting that many cataracts may have suffered
bedload erosion indeed during glacial times, becoming covered with so much sediment
that their knickpoint function became less effective. As a result, glacial length profiles
could be smoother than the present one.

While in the upper part of the river valley the role of upstream controls, notably
climatically induced changes in vegetation cover and sediment delivery are obvious, in
the lowermost sector of the river the role of downstream controls, especially sea level
change must also be discussed. Theoretically, the terraces in this sector could also represent
fluvial deposition during sea level highstands and dissection by headward erosion during
lowstands. However, even the 5 m terrace levels here are situated at 12 m above present
sea level, whereas the oldest marine terrace in the Old Coastal Plain does not reach above
7 m above sea level. Moreover, the distance to the coast of the northernmost terraces is
over 100 km, far beyond any evidence of past sea levels. The presence of fluvial deposits
on the most downstream knickpoint suggests that the terrace intersection must be situated
further north than the present study area.
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