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Abstract: The surface of the lowland deltaic plain around Taihu (Lake Tai), south of the Yangtze river
mouth in eastern China, lies near sea level and until recent drainage and development by human
societies was mostly covered by wetlands of various types. It was created by regular overbank
flooding, mainly from the Yangtze, and the deposition of mostly mineral sediments over the several
millennia since sea level regained its current altitude in the early mid-Holocene and progradation of
the Yangtze delta began. Fluvial activity has therefore been the dominant influence on sedimentation
in the Taihu lowlands, and in the lower Yangtze valley generally, and has determined the character
of the mainly inorganic sediment sequences that have accumulated there, with autochthonous
deposition of organic sediments within the local wetland plant communities playing a minor role.
The presence of both clastic flood horizons and peat layers within the deposits of the Taihu plain
attests to great variability in the magnitude of fluvial input from the Yangtze, with repeated extreme
floods occurring at some periods, but with periods when the growth of peat layers shows low
water tables, little exogenic sediment input and so little fluvial influence. We have examined the
published evidence for these different depositional environments in the lower Yangtze and the Taihu
plain during the Holocene, comparing the flood history with the middle and upper reaches of the
Yangtze catchment. Discrete phases of high or low flooding influence are recognised, and these
correspond with large-scale Holocene climate history. Intensified human land use in recent millennia
has complicated this relationship, amplifying the flooding signal. Our palynological research shows
that algal microfossil type and abundance is a useful proxy for changing water depth and quality in
the aquatic environments of the Holocene Taihu wetlands, and can recognise flooding events that are
not registered in the floodplain lithological sequences.

Keywords: Yangtze river; Holocene; palaeofloods; non-pollen palynomorphs

1. Introduction

It can be no surprise that the coastal lowlands around Lake Tai (Taihu), to the west
of Shanghai in eastern China, have been greatly influenced by fluvial action in the mid-
and Late Holocene, as their surface altitude is very low, mostly between 2 and 5 m above
sea level, and they lie between the Yangtze (Changjiang) river to the north, one of the
largest rivers in the world, and the major Qiantang river to the south, which empties into
Hangzhou Bay (Figure 1). There are also several minor rivers that drain the uplands of
Tian-Mu-Shan, that fringe the plain to the west, or run between Taihu and the sea, for
example the Tiaoxi, Nanxi and Wusongjiang rivers to the south, west and east of the
Taihu lake respectively [1,2]. These, and many lesser streams and creeks, have formed
an intricate network of drainage channels across the Taihu lowland [3–5] which also had
the potential to contribute fluvial sediments to the plain’s depositional facies. The Taihu
lowland, and nearby coastal lowlands in the area such as the Ningshao plain south of
Hangzhou Bay, is an alluvial floodplain that, since its creation about 7000 years ago and its
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subsequent progradation [6], has always experienced high groundwater tables and surface
waterlogging, including many shallow lakes [7,8], and so naturally has supported wetland
vegetation of various types [9–11].

These wetlands have been much altered and reduced by agricultural development,
eutrophication, drainage and urbanisation over the last two millennia but particularly in
recent times [7,8,12–16], and the plain’s hydrology is likely to be even more affected in
future because of recent major damming of the middle Yangtze [17,18], which will result in
greatly reduced water discharge in the river’s lower reaches, with reduced fluvial sediment
input in the Taihu area [19–22]. Throughout mid- and late Holocene times, however,
sedimentation in the low-lying coastal plain to the south of the main Yangtze river channel
has been massive, and has produced the prograding Yangtze Delta [23–27]. Sedimentation
in the Taihu plain has been naturally governed by three main processes: marine influence
through fluctuations in sea level and storm surges, autochthonous depositional regimes
within freshwater wetlands, and fluvial input from the Yangtze and the smaller rivers that
drained the area. Of these, flooding from the Yangtze has been the most important, certainly
since postglacial sea-level readjustment was completed in the late mid-Holocene [28–33].

While moderate annual seasonal Yangtze flooding has been a constant factor, intro-
ducing fine-grained minerogenic sediment into the floodplain sequence, major floods have
occurred regularly throughout the Holocene, continuing into modern times [34,35], with
periods during which very extreme flood events affected the Taihu lowlands as well as
many other parts of the Yangtze valley [36,37]. Such extreme flooding events were not
confined to the Yangtze, although the huge Yangtze catchment and river water discharge
rates would exacerbate them, and have been recorded throughout eastern Asia, as in north
China [38–45], Japan [46,47] and Korea [48–50]. As the timings of the major flooding phases
in all these places correlate closely, it is clear that a regional external driver of extreme
freshwater flooding has been involved, with some periods during the Holocene particularly
affected. Periods of extreme flooding often had major repercussions for human culture and
settlement [51,52], including migration and wars [53–57]. Occasionally major floods were
triggered by other factors such as destabilisation and failure of valley palaeolake debris
dams [58,59], causing outburst flooding. In almost all cases, however, the linkage of flood
events to climate variability and extreme rainfall seems established [60], and the history
of the East Asian Summer Monsoon (EASM) [61–63] is central to this, with human land
use, especially deforestation, an exacerbating factor in more recent times [64–68]. In this
paper we review the evidence for major river flooding and its impacts in the lower Yangtze,
primarily in the lowland plain around the Taihu lake, and present new data regarding the
value of microfossil assemblages as subtle indicators of past water level changes, and hence
for the recognition of major fluvial discharge events.

2. The Study Area—Geological and Environmental Settings
2.1. The Yangtze Delta and the Taihu Lowlands

The Yangtze Delta is a sedimentary feature of relatively recent, mid-Holocene ori-
gin [69–71] (Figure 1), and owes its creation mainly to fluvial transport and deposition
of clastic sediment derived from erosion in the catchment of the lower parts of the river
system [23,72]. Beneath the Holocene sediments of the Taihu plain, however, are many
metres of clastic sediments of pre-Holocene age [73,74], some of which are also of fluvial
origin [75]. During the main glacial, Lateglacial and earliest Holocene periods flood-
plain wetland deposits were confined to the deeply incised valleys of the Yangtze and
Quiantang rivers [76–79]. Sea level rose swiftly in the early Holocene [30,31,33,80] until
about 7000 years ago, after which major deceleration of the rate of sea-level rise greatly
reduced the Yangtze’s rate of flow and it changed to an aggrading fluvial system, thus
becoming prone to flooding.



Quaternary 2021, 4, 21 3 of 38

Quaternary 2021, 4, x FOR PEER REVIEW 3 of 39 
 

 

years ago, after which major deceleration of the rate of sea-level rise greatly reduced the 
Yangtze’s rate of flow and it changed to an aggrading fluvial system, thus becoming 
prone to flooding. 

 
Figure 1. Location of the study area to the east of Taihu Lake in the Yangtze coastal plain, showing the topography, loca-
tion of smaller lakes and the position of the four study sites 1. Chuodun 2. Tianyilu 3. Dianshan 4. Pingwang. Adapted 
from Innes et al. [81] with permission from Elsevier. 

The delta began to form [82] as the new high, stable sea level encouraged the fluvial 
input of water and its entrained sediment from the river into the lowlands to the south 
of the Yangtze mouth [83–85]. This annual alluvial sediment supply maintained the 
growth of the delta [86], both eastwards into the sea but also the vertical accretion of 
sediment within the wetland ecosystems that developed upon it, affecting delta surface 
morphology [87,88]. Delta expansion continued throughout the Holocene until very re-
cently, when reduction in the river’s water discharge and in fluvial sediment supply to 
the delta has followed the construction of many reservoirs in the Yangtze catchment in 
recent times, causing greatly reduced delta progradation rates [22,86,89,90]. Since the 
construction of the Three Gorges Dam in 2003 sediment deposition has ceased at the 
subaqueous delta front, which is now eroding [17,91–96]. 

The freshwater wetlands of the Taihu lowland owed their formation to the culmi-
nation of rapid Holocene sea-level rise to near its present level, meaning that from about 
7000 cal. BP marine sedimentation in the Yangtze delta would occur only during periods 
of more minor and temporary positive fluctuation in sea level, and would be confined to 
limited areas around the delta front and to the creeks and inlets which penetrated the 

Figure 1. Location of the study area to the east of Taihu Lake in the Yangtze coastal plain, showing
the topography, location of smaller lakes and the position of the four study sites 1. Chuodun 2.
Tianyilu 3. Dianshan 4. Pingwang. Adapted from Innes et al. [81] with permission from Elsevier.

The delta began to form [82] as the new high, stable sea level encouraged the fluvial
input of water and its entrained sediment from the river into the lowlands to the south of
the Yangtze mouth [83–85]. This annual alluvial sediment supply maintained the growth of
the delta [86], both eastwards into the sea but also the vertical accretion of sediment within
the wetland ecosystems that developed upon it, affecting delta surface morphology [87,88].
Delta expansion continued throughout the Holocene until very recently, when reduction in
the river’s water discharge and in fluvial sediment supply to the delta has followed the
construction of many reservoirs in the Yangtze catchment in recent times, causing greatly
reduced delta progradation rates [22,86,89,90]. Since the construction of the Three Gorges
Dam in 2003 sediment deposition has ceased at the subaqueous delta front, which is now
eroding [17,91–96].

The freshwater wetlands of the Taihu lowland owed their formation to the culmination
of rapid Holocene sea-level rise to near its present level, meaning that from about 7000 cal.
BP marine sedimentation in the Yangtze delta would occur only during periods of more
minor and temporary positive fluctuation in sea level, and would be confined to limited
areas around the delta front and to the creeks and inlets which penetrated the deltaic
lowlands [5,97], such as a brief but rapid positive pulse in sea level that has been recorded
on both sides of Hangzhou Bay between about 4500 and 4400 cal. BP [98–100]. The Taihu
lowland has a concave morphology, forming a shallow depression [101] with the centre now
occupied by the modern Lake Taihu, and with slightly higher altitude lips to both north
and south. This architecture and the creation of chenier barrier ridges to the east [102–104]
prevented marine inundation of the bulk of the Taihu lowland during these periodic pulses
of higher sea level. Continuous high sea level, however, kept groundwater tables in this
very low-lying floodplain area at or above the land surface, initiating and maintaining
freshwater wetlands, with semi-aquatic and aquatic vegetation communities [105], except
on the occasional small higher areas that rise out of the plain, where woodland developed.
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The natural wetland ecosystems in the Yangtze delta area [15] would have been com-
plex, mainly comprising palustrine marshland dominated by reedswamp with emergent
taxa such as Cyperaceae, Phragmites and Zizania depending upon the water depth, then
sedge fen with Carex and Typha, and swamp-carr communities with Salix and Alnus as
hydroseral succession progressed [106,107] and terrestrialisation ensued as autochthonous
sediment accumulated. Limnic clays containing plant roots are typical sediments deposited
in these shallow water marsh habitats, and pollen data from several sites suggest that the
Poaceae-dominated reedswamps were the most common plant community across the delta
plain. In topographically lower areas, however, or when river floods occurred, deeper
water existed, with aquatic plants such as Potamogeton, Myriophyllum, Salvinia, Nelumbo
and Typha latifolia.

These lower areas formed many lakes during periods of increased rainfall and en-
hanced fluvial discharge during the mid-Holocene [108–110], and particularly at the time
of the later Holocene (c. 4.2 ka BP) climatic deterioration [111], when Lake Taihu and many
of the Yangtze lakes came into being or expanded [83,84,109,112–120], encouraged by a
slow rise in sea level that started at this time [31,109]. Throughout most of the Holocene
therefore, the Taihu lowland was primarily a mosaic of aquatic habitats of a range of water
depths, but usually shallow marshland, undergoing hydroseral succession through sedi-
mentation but regularly affected by hydrological disturbance through the input of fluvial
water and sediment from the Yangtze, a river with regular floods but periodically of the
most extreme kind [121]. As alluvial wetlands, those of the Taihu plain would have been
flood-adapted and were capable of expanding greatly in size as well as depth because of
sudden flooding [122], absorbing floodwaters [123], and converting areas of higher ground
to wetland.

2.2. Recognition of Past Hydrological Changes

There are various ways to recognise fluvial events in the sedimentary archive, but
perhaps the easiest way of gathering information on extreme fluvial conditions and palae-
ofloods in the lower Yangtze in the past, at least in historical dynastic times, is to accept
documentary records of such events and use them to reconstruct flood history [124–131],
as has been done elsewhere in China [132]. These are often detailed and there is no reason
to consider them any less accurate than modern flood records [133,134]. For example,
multiple phases of greatly increased water discharge from the Yangtze into the Chaohu
Lake basin at the end of the Han dynasty, for which the flooding might have been at least
partly responsible, and in the later Ming and Qing dynasties are noted in contemporary
historical annals as extreme flooding events which disrupted settlement and agriculture
there [135,136]. Yi et al. [137] noted that their documentary records of floods matched their
lithostratigraphic and geochemical evidence for Yangtze floods very well, and correspon-
dence of historical records with such palaeoenvironmental evidence is strong support for
its accuracy [138].

Lithostratigraphic analyses can be highly diagnostic of overbank flood events with
changes in the grain-size of minerogenic sediments, usually coarsening due to high dis-
charge energy [39,45,119,136–146], and exogenic clastic layers within organic sediment
profiles indicating sudden changes in depositional regime [147–149]. Finer-grained, sorted
and well-bedded layers often represent fluvial slackwater deposits [38,43,75,140,150–160].
Soil erosion in the river catchments by increased rainfall volume, intensity and runoff
was usually the cause [161,162], enhanced in the last few millennia by human land-use
activity [21,98], leading to greatly increased delivery of sediment to the lower reaches, the
delta and subaqueous delta front sandbars [163,164]. Lithofacies and particle-size charac-
teristics of floodplain sediments have been shown to be sensitive to sedimentation changes
and flooding in the valleys of other major rivers [165] and have had an important role in
recognising flood deposits in the Yangtze valley through their pedostratigraphy [160,166],
usually a well-sorted sandy silt, although sometimes of coarser grain size, even gravel.
Chemical signatures in clastic layers are also diagnostic of their flood origin [35,142,148],
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while magnetic anomalies in Lake Tai sediments have been interpreted as flood proxy
records [167,168]. Minerogenic sediment layers in recent floodplain facies correspond
closely with high magnitude flood events, as at Tongling and Nanjing in the lower Yangtze
area [156], and will have done so in this area in the past [117,160,169], as has been shown
in other regional studies of Holocene flood histories (e.g. [41,43,47,148,170]).

Other evidence that has been interpreted as recording flood events is the presence of debris,
notably tree trunks and branches that are referred to as ‘palaeotrees’, that occur within the clastic
flood layers. That these are often mixed with coarse-grained sand and gravel sediment [141,145]
indicates high-energy flash flooding and transport of material by torrents of flood water, as
well as the sudden destruction of local standing trees [52,112,171–174]. The many local water
bodies of the Yangtze Delta area, such as Lakes Taihu and Dianshan [141], would also have
rapidly expanded [83,117,120]. That these layers of clay and silt, often sealing cultural
horizons and even major cultural sites, are archaeologically ‘sterile’ indicates that the scale
of the flooding was sufficient to bring local human settlement to an end, and even terminate
whole archaeological cultures in the lower Yangtze. Although not every buried tree trunk
will have been deposited because of freshwater flooding, the ages of many palaeotrees do
correspond to periods of known heavy rainstorms and floods [34,52] and when found in
numbers are therefore likely to be a good indicator of past high-magnitude flood events.

Where flooding did not cause major change in lithology, such as within swamps or
lacustrine systems where it might have only resulted in increased water levels, deeper
water should be discernable through changes in the microfossil assemblages preserved
within the limnic or fluvial sediment. Some pollen and spore types, particularly Pinus
and Filicales, are buoyant and can be transported long distances with floodwater [175]. A
high pollen producer, the sudden abundance of Pinus pollen, particularly in slackwater
deposits, may be an indicator of hydrodynamic processes and flooding [176], rather than
climatic deterioration as it is often interpreted, although climate instability might have
been a driver for the flooding [175,177,178].

Pollen and spores of marsh or aquatic plants might be useful where their water depth
preferences are known, and their pollen is unlikely to have been transported significant
distances from where the plants grew. Algal spore assemblages, however, could be the
most sensitive indicators of changes in water depth [179–182] as they live in situ in the
water column, although there is necessarily some overlap in their tolerances [183] so that
depth interpretations can not be precise, with direction of depth changes a more reliable
interpretation. Also, other variables including trophic status and temperature will have
influenced algal abundance. Nevertheless, analysis of freshwater algal spore assemblages
can have strong indicator value regarding increases in water depth [184]. They have been
used in previous research in China [178,185] including the Yangtze Delta [186,187] and
Ningshao Plain [188,189] to reconstruct water depth, for example increased Pediastrum
or Botryococcus levels interpreted as indicating a rise in lake levels and/or increased
precipitation [181,190–195], and although Pediastrum might represent eutrophication [196],
that would itself be a likely result of the input of silt-laden Yangtze flood water. The blue-
green alga Gloeotrichia is sensitive to light levels and prefers clear, open water, but not too
deep, as does Volvocaceae [197]. Spores of Zygnema are likely to represent waterlogged
marsh environments or very shallow water rather than open water [198–200]. Mougeotia
and Spirogyra are common in fluvial sediments and are more likely to represent less deep
open water, although their affinities are less well known [185]. Algal assemblages have
been an important element in palaeoenvironmental reconstruction in wetland archaeology
and palaeolimnology, including floodplain wetlands, in other parts of the world for some
time [199–206].

2.3. Climate and Precipitation Changes

The dominance of the East Asian Summer Monsoon (EASM) over climate [61,207] in
the lower Yangtze area is such that the great majority of water and sediment discharge to
the deltaic plain takes place during the summer flood season [208–210], with much of the
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transported fluvial sediment retained within the sedimentary sequences there [71,177,211],
and the rest deposited offshore of the delta front [22,66,98,212]. Meteorological conditions
suitable for heavy rainfall in the mid- and lower reaches of the Yangtze occur when East
Asian atmospheric circulation patterns and pressure systems [213] conspire to reinforce the
monsoon, producing persistent and intense rainfall, and annual precipitation variability
during the summer monsoon months [214,215], with high amplitude peaks in wet years,
causes extreme rainfall events and major flooding [127,216–219]. These frequent and
extreme floods are responsible for the acceleration of sedimentation rates [220] in the lower
Yangtze lowlands, and the evolution of the floodplain in the Taihu area [156].

Increased fluvial discharge and flooding in the lower Yangtze has therefore been inti-
mately connected with fluctuations in climate and therefore in catchment rainfall [221,222],
and these were governed primarily by changes in the strength of the EASM and its in-
teractions with the El Niño-Southern Oscillation (ENSO) events [160,161,216,223–234].
Regional research on this connection [48,49,164,217,235–237] suggests that major hydro-
logical changes in the Yangtze valley are consistent with a stronger ENSO and weaker
EASM, so that the monsoon rain belt does not penetrate far north in China and remains
static over the Yangtze river, concentrating rainfall there and producing long rainstorms
and extreme flood events [160,227]. Blender et al. [162] showed strong correlation between
ENSO and Tibetan snow-melt, influencing runoff and hydrology in the Yangtze catchment,
and Yangtze floods still correlate with ENSO [212]. Weak EASM and strong ENSO condi-
tions also correlate well with a cold climate in eastern China [238], as shown in the δ18O
record from Shanbao cave [239] to the west of the Taihu plain, which agrees with the other
reconstructions of monsoon history and climatic change for east China [216,228,240–243].

Li et al. [244] have produced a pollen-based reconstruction of rainfall and temperature
history for the lower Yangtze region, showing that the early and mid-Holocene had a warm,
wet and humid climate with a strong EASM, with a cooling and drying climate after about
5000 cal. BP as the EASM gradually weakened. This supports previous climate research
in the area [176,233,245–248]. Periods of lower rainfall did occur, as between 7500 and
6500 cal. BP [249], but several high amplitude cold events are the most notable Holocene
climatic features [233], occurring particularly around 8200, 5500, 4200 and 2800 cal. BP,
the later examples corresponding with the stronger ENSO, and this record of abrupt
climatic fluctuations confirms previous findings [120,234,250]. These climate deterioration
events were global phenomena. The 8200 cal. BP event [251,252] was of considerable
significance in China [228,253,254] including the Taihu region [164,233] but the major
cold event starting at 4200 cal. BP was particularly pronounced [111,164,255–258] and
represents the transition to the Late Holocene neoglacial period [259,260], and is now
officially recognised as such [261].

As well as being much colder, there was extreme variability in precipitation from this
time onwards [221,262,263], with high amplitude fluctuations leading to severe flooding, as
is common during periods of climate transition and instability [264]. Such an abrupt climate
change must have had a significant impact [265–269] on human settlement and agriculture
in eastern China, no matter how resilient their society [270], including the Yangtze delta
where the high population of the well-developed Neolithic Liangzhu culture [271–274]
depended on benign climate, stable hydrological conditions and water management [275]
for its subsistence. Another abrupt phase of climatic deterioration occurred after the
2800 cal. BP event with the lakes that came into being around 4000 cal. BP [225] expanding
due to increased rainfall [244,276,277], magnified by river floods [151], and lasting to about
1200 cal. BP [278]. This 2800 cal. BP climate deterioration is marked in stalagmite records
in China [161,242] and India [217,279], and in global environmental archives [280,281], and
is one of the largest drivers of Holocene hydrodynamic instability and flooding.

2.4. Yangtze Floods

The Yangtze has always been prone to some moderate seasonal flooding because
of increased monsoonal rainfall during the summer months [72,210,282], although to a
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limited degree and varying from year to year. There has therefore been an annual small to
moderate input of river floodwater into the Taihu floodplain during the Holocene, but one
that usually would not carry a large sediment load [156]. However, the Yangtze valley is a
part of China notorious for great floods [283,284] and some extreme examples have occurred
in the last two millennia [131], including in recent times [63,168,222]. Zheng et al. [127]
have noted that great floods in late dynastic times were common between 900 and 600 cal.
BP, and Wu et al. [285] and Luo et al. [286] noted that many major flood events occurred
during the Ming and Qing dynasties after 600 cal. BP during an extended cold phase
corresponding to the Little Ice Age [62,75,129,287,288].

High-intensity flooding has also occurred regularly in the last two centuries [35,156,289],
and floods in the 19th and 20th centuries have been as bad as any in the last 1500 years. As
recently as 1889, 1954 and 1998, the greatest magnitude floods have been recorded in both
the mid- and lower Yangtze [146,160,168,220,290,291], with flood deposits of the 1998 event
widespread [119]. The EASM rain belt has moved southwards in recent decades, bringing
heavy rains and floods to the lower Yangtze [221,292,293], such as the extreme rainfall
there in 2015 [219]. Usually such recent high magnitude floods have left a lithostratigraphic
signature in floodplain and lake sediments [156,294]. These more recent examples provide
analogues for mid- to late Holocene flood history, as the ancient and modern flood deposits
are morphologically very similar [295] and represent similar depositional environments
and processes [138].

3. Materials and Methods

Sub-samples from the cores were prepared for palynological analysis at five-centimetre
intervals, using standard laboratory techniques [296]. Alkali digestion with NaOH was
followed by sieving at 180 µm, removal of silicate mineral material with hydrofluoric
acid, and acetolysis. The residue was stained before mounting on microscope slides.
Although designed for pollen and spores, the work of Clarke [297] has shown that these
procedures do little to affect the preservation of most other microfossils, such as algae
or fungal spores. Microfossils are defined as palynomorphs which passed through the
180 µm sieve. Reference keys were used to aid identification of pollen and spores, primarily
Wang et al. [298] for pollen and Zhang et al. [299] for pteridophyte spores. At least
200 land pollen grains were counted at each level, often more, as well as all aquatic pollen,
pteridophyte and bryophyte spores that were present.

Full pollen data are not presented in this paper because the taphonomy of pollen
grains means that they will represent extra-local as well as in situ plant communities,
so providing a spatially composite pollen assemblage that derives from several plant
communities in the wider area. It therefore might well not record hydrological changes at
a particular site itself, and would blur any signal of rapid water depth changes, as caused
by flooding events, but would record a mosaic of wetland habitats [176]. It is important
to note, however, that several pollen taxa were recorded in every diagram that indicated
local wetland environments of deposition, including organic soil, reedswamp and marsh,
or more open water. These included Poaceae (grass) pollen grains below 40 µm, which
are likely to originate from wild reedswamp and marsh grasses such as Phragmites and
Zizania [298,300], and Cyperaceae, as well as the emergent aquatic Typha angustifolia, an
important element of past Taihu wetland vegetation [11,178,301,302]. Obligate aquatic
pollen types were also occasionally present in very low frequencies, notably including
Myriophyllum and Typha latifolia, indicating areas of deeper water. A combined curve for
aquatic pollen, which is comprised mainly of T. angustifolia, is shown on the diagrams,
calculated as percentages of total land pollen.

The pollen data from the sites in this paper have been published previously either
in full [81,260] or summary form [85,303]. In this paper we concentrate on the record of
non-pollen palynomorphs (NPPs), mainly comprising algal and fungal spores [304], which
are much more likely to reflect in situ hydrological conditions such as water depth. Fungal
NPPs would have been produced in situ at the core sampling point and usually are hardly
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transported from their point of production to point of deposition [305], unless redistributed
by a force such as a fluvial flooding event which might affect algal spores living in aquatic
environments, which are the subject of this paper.

At least 100 algal and fungal spores were counted at each level, and their identifica-
tion was achieved by reference to the illustrations and descriptions in several published
papers [180,306–308] although, as many NPPs have not yet been identified and remain
known only by their Type (HdV) number in the Hugo de Vries Laboratory catalogue in
Amsterdam, taxonomic identification was not always possible, although the palaeoecology
of individual types is well known from previous research [304,308]. HdV numbers are
shown on the microfossil diagrams and with the first mention of an NPP type in the text. In
this paper microfossil diagrams for each site show only the curves for selected individual
NPP taxa that are present in substantial frequencies and are sensitive to water level, calcu-
lated as percentages of the total NPP counting sum. The ratio between algal and fungal
spores should provide an indication of water table changes, with rises in fully aquatic algal
spore frequencies showing increased water depth whereas fungal spore taxa and marsh
algae represent more stable semi-terrestrial or shallow marsh conditions. Rapid rises in
open water aquatic algal taxa can be interpreted as recording flooding events. Following
the literature cited above, Volvocaceae (HdV-128), Spirogyra (HdV-130), Gloeotrichia (HdV-
146), Mougeotia (HdV-313) and Pediastrum (HdV-760) are considered fully aquatic while
Zygnema (HdV-58), HdV-306 and HdV-708 are considered shallow wetland reedswamp or
marsh taxa. Mougeotia may signify less eutrophic conditions [309]. Common fungal spores
considered as indicating wet semi-terrestrial conditions are Sordariaceae (HdV-55A) and
Coniochaeta cf. ligniaria (HdV-172). To provide an independent measure of spore abundance
for individual taxa in aquatic sediments [310,311], spore concentrations are also shown,
calculated as numbers of spores per cc. of wet sediment using the Lycopodium exotic marker
technique [312]. Stable concentration rates indicate stable sedimentation rates, so that
changes in frequencies reflect real changes in microfossil proportions in the assemblage.

Radiocarbon (AMS) dates are from Beta-Analytic, Miami, on pollen (organic) residues
or peat, which previously have produced consistent results [311,313]. Alluvial sediment
samples are avoided as these can produce anomalous dates [314]. Dates were calibrated us-
ing Calib 7.1 and IntCal13 [315]. Microfossil diagrams were constructed using TILIA [316].

4. Results

Microfossil data from four sites in the Taihu lowlands have been chosen to illustrate
NPP evidence for increases in water depth that almost certainly correspond to flooding
episodes. Their locations are shown on Figure 1. Results from Pingwang and Dianshan
have been presented elsewhere [81,260], whereas data from Chuodun and Tianyilu have
been published only in summary form [303]. A different sediment profile at Chuodun has
been investigated by Long et al. [317]. The core lithostratigraphies of the four sites are
shown in Table 1.

4.1. Chuodun

Chuodun lies in the northern part of the central Taihu plain to the east of Lake
Yangcheng, at 31◦24′16′ ′ N; 120◦50′37′ ′ E, with a ground surface altitude of 2.5 m YSD
(Yellow Sea Datum). The selected taxa microfossil diagram is presented as Figure 2. The
site supported shallow marsh wetland habitats, as shown by the dominance of NPP taxa
indicating reedswamp or wet semi-terrestrial conditions until around 1964 cal. BP when the
more terrestrial indicators decline and are replaced by increasingly high percentages of open
water algae, particularly Volvocaceae. Although the lithostratigraphy is clay throughout
this section of the core, around 92 cm depth there is a change to less organic clay, marking
the switch from a shallow marsh to deeper open water and fully aquatic environments at
the site. Floating aquatic herbs including Myriophyllum and Potamogeton are present during
the open water phase, suggesting quite eutrophic conditions presumably stimulated by
the silt and nutrient content of the floodwaters, which is supported by the absence of
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Mougeotia, which prefers less eutrophic conditions. Total aquatic pollen frequencies are
very low, however, indicating deep open water. The evidence from Chuodun suggests a
flooding phase which increased water depth and therefore changed ecological communities
at the site. Pollen concentration data show no rapid changes in sedimentation rate, and
emphasise the abundance of Volvocaceae in the aquatic algal community.

Table 1. Core lithostratigraphy for the four sites.

Site Depth (m) Description

Chuodun 0.00–0.30 Agricultural soil
0.30–0.50 Yellow-grey firm silt and clay with organic matter
0.50–0.95 Green-grey soft clay
0.95–1.20 Black-grey soft clay
1.20–1.38 Green-grey soft clay
1.38–1.50 Hard clay

Tianyilu 0.00–0.50 Organic soil
0.50–1.60 Brown-grey firm silt and clay, rich in organic matter and herbaceous roots
1.60–2.00 Black-grey soft silt and clay
2.00–2.30 Green-grey soft silt and clay

Dianshan 0.00–1.00 Agricultural soil
1.00–1.15 Brown-yellow silt
1.15–1.90 Green-grey mud
1.90–2.20 Dark grey mud
2.20–2.45 Green-grey highly organic mud
2.45–2.60 Black peat
2.60–2.65 Brown-black peaty mud
2.65–3.05 Green-grey mud
3.05–3.45 Grey mud with calcium carbonate patches
3.45–3.50 Hard clay

Pingwang 0.00–0.45 Organic soils
0.45–1.10 Brown-yellow grey firm clay
1.10–1.25 Black-grey soft clay
1.25–1.80 Green-grey soft clay
1.80–2.10 Brown-grey soft organic-rich clay
2.10–3.10 Dark grey soft organic-rich clay with small shells in the upper part
3.10–3.70 Green-grey soft silt and clay
3.70–3.80 Black-brown peat
3.80–4.00 Hard clayQuaternary 2021, 4, x FOR PEER REVIEW 10 of 39 
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Figure 2. Frequencies of selected NPP taxa (histogram bars calculated as % total NPPs) from Chuodun.
A combined aquatic pollen curve is also shown, calculated as percentages of total land pollen. Pollen
concentration values for the NPPs are shown as shaded curves (numbers of grains per cc. on the
secondary x-axis).
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4.2. Tianyilu

Tianyilu lies 600 m east of Siqian village, to the east of Lake Dianshan at 31◦11′54′ ′ N;
121◦6′40′ ′ E with a ground surface altitude of 1.9 m YSD. The selected taxa microfossil
diagram is presented as Figure 3. The site supported shallow marsh wetland habitats,
as shown by the high frequencies of taxa indicative of wet surface marsh or shallow
reedswamp, until 4000 cal. BP when the curves for fully aquatic taxa increase sharply,
particularly Volvocaceae, Spirogyra and Mougeotia. Coniochaeta cf. ligniaria and HdV-708 are
especially reduced, while Sordariaceae percentages decline more gradually, this general
decomposer of plant material remained present in the locality. Pollen of floating and
emergent aquatic plants occurs in low frequencies in this open water phase of the core,
including Myriophyllum and Nelumbo, while Typha percentages are low to moderate. The
total aquatic pollen curve comprises mainly Typha. The change in hydrological regime with
significantly increased water depth at 4000 cal. BP was quite swift and represents one or
more major fluvial flooding events. Concentration rates mirror the percentage changes
well, and changes in taxa frequencies reflect changes in proportions in the assemblage,
notably the switch from Coniochaeta to Volvocaceae as water levels deepened significantly.
The age of 4000 cal. BP is significant in that it falls within a phase of climatic deterioration
that has considerable evidence for flooding in most parts of the Yangtze catchment, as
discussed below.
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4.3. Dianshan

Dianshan lies on the eastern shore of Dianshan Lake at 31◦05′35′ ′ N; 120◦59′0′ ′ E with
a ground surface altitude of 2 m YSD. The selected taxa microfossil diagram is presented
as Figure 4. The site supported wetland marsh habitats depositing organic sediments
in shallow reedswamp environments until around 1514 cal. BP when a transition to
open water began. Reedswamp types HdV-306 and HdV-708 decline. Algal taxa increase
with HdV-119 added to the assemblage, Gloeotrichia high and Volvocaceae percentages
rising. Pollen of fully aquatic plants Nelumbo, Myriophyllum and Potamogeton occur in
the open water phase of Figure 4 and record significant water depth, although Typha is
the most common in the low total aquatic curve. The introduction of Pediastrum and
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Botryococcus, and peaks of Aphanizomenon, indicate that water depth continued to increase
and some eutrophication occurred. The succession suggests perhaps two phases of fluvial
flooding that changed shallow reedswamp to open water and then to increased water
depth. Flooding was perhaps of repeated and major type but not extreme, as the shift to
more aquatic systems was not sudden, but continuous. The location of the site adjacent
to the large lake Dianshan will have made it susceptible to the effects of flooding and
water level rises and it may have been subsumed within the lake [81]. The concentration
curves are similar to the percentage changes, suggesting stable sedimentation rates, with
Volvocaceae and Gloeotrichia the most abundant assemblage components.

4.4. Pingwang

Pingwang lies to the south-east of Lake Taihu at 30◦57′30′ ′ N; 120◦38′25′ ′ E, with a
ground surface altitude of 1.6 m YSD. The selected taxa microfossil diagram is presented
as Figure 5. The lower part of the core contains a thin peat which probably formed
under higher saltmarsh conditions [260], followed by shallow water reedswamp and
marsh as water tables continued to rise, shown by high frequencies of HdV-306, HdV-708
and semi-terrestrial fungal taxa. Some aquatic spores are present but do not dominate
the assemblage and indicate the progression to shallow water. The semi-terrestrial and
reedswamp taxa fall until about 7650 cal. BP when an increase in water depth occurs,
with deeper water indicators Volvocaceae, Gloeotrichia and Pediastrum increasing. Floating
aquatic pollen taxa Myriophyllum, Potamogeton and Nelumbo occur in low values, with
Salvinia also present, but most of the low total aquatic pollen curve comprises Typha.
Concentrations are generally high but mirror the percentage changes, indicating slow and
stable sediment accumulation. Although not a dramatic change, the evidence suggests a
significant increase in water depth, and possibly also eutrophication, that is most likely
to represent substantial flooding. Evidence for floods of this age is not common in the
lower Yangtze area, but this date corresponds to the date of 7700 cal. BP recorded by
Song et al. [176] for a major flood in a core in the Yangtze valley just to the north of Nanjing,
during a brief period of climatic deterioration.
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4.5. Summary

These four examples from the Taihu lowland differ in the timing and magnitude
of the evidence for flooding at each site, but they have demonstrated the ability of al-
gal assemblages to recognize significant increases in water level that are not apparent in
the lithostratigraphy, indicating rapid increases in water depth in already aquatic loca-
tions, although the ecological tolerances and preferences of these taxa are not exact and
should be interpreted in assemblage terms, rather than individually. The curves for total
aquatic pollen vary between the sites, although are never high, and mainly comprise Typha,
common in the Taihu lowlands throughout the Holocene at a range of water depths.
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These aquatic pollen curves largely reflect Typha pollen taphonomy and the distance
from the coring site of Typha beds. They do not reflect conditions at the sites themselves.
These sites occur across a significant time range through most of the Holocene, and can be
compared with the existing evidence for lower Yangtze floods, and all four fall within the
age ranges for flooding phases in the Taihu plain discussed below, that are derived from
synthesis of the published literature. They show that the use of aquatic algal microfossils
can be an important additional proxy method in the study of floodplain hydrology and
flood history, particularly when used in association with other techniques.

5. Discussion
5.1. Hydrology of the Taihu Lowland Plain

The overall postglacial lithostratigraphy of the Taihu lowland plain can be recon-
structed from the many boreholes that have been completed there and in deltaic offshore
cores, and comprises several facies, including lacustrine, riverine, deltaic, floodplain, marsh,
lagoonal and estuarine-marine units [77,275,318–320]. Changes between these sedimen-
tary units in site lithologies reflect changes in depositional environments and therefore in
hydrological regimes. Freshwater floodplain sedimentation in the Yangtze delta lowland is
governed by accretion rate, with high rates of fluvial sediment supply usually producing
mineral-dominated deposits with low organic content [321], as most sedimentation in such
environments occurs during low-intensity, regular river floods [26]. Most Yangtze delta
deposits are therefore floodplain clays and silts of alluvial origin [188,322,323] and the
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presence of in situ plant remains in most of them indicates steady accumulation of wetland
sediments within shallow-water, hydrologically stable fen and swamp environments, as the
delta gradually accreted vertically and prograded laterally. This type of autogenic hydro-
logical succession through increasingly terrestrial wetland plant communities would have
been the natural ecosystem in the lower Yangtze valley and the Taihu/delta lowlands [1].

Annual low-scale flooding from the river system would have had only moderate
effects, raising the water table and laying down organic muds and clays in areas of lower
altitude where semi-aquatic habitats would be maintained, and temporarily flooding more
terrestrial land surfaces. In periods of low rainfall, or at slightly higher altitudes in the
floodplain, fully organic peats would form under the process of terrestrialisation, and
surface altitude would have been an important regulator of sedimentation type in the
floodplain areas. Most sediments in the lower Yangtze and Taihu lowland represent these
stable hydrological conditions [105], deposited in a range of wetland types with various
water depths, but undergoing autogenic sedimentation.

The four examples shown in this paper, despite their differences in age, are alike in
showing significant and sometimes rapid changes in local hydrology which must have been
generated by major, or even extreme, flood events with significantly increased water depth
causing a switch between a macrophyte-dominated marsh or shallow water fen-swamp
state to an algae-dominated open water state, similar to hydrological successions in some
recent shallow Yangtze lakes [7,15], including present-day Lake Taihu [116]. They also
illustrate the types of evidence that can be diagnostic of such a rapid environmental change.
Such major inputs of fluvial water during great flood events would suddenly alter the
hydrology [324], increasing water depth and reversing the natural sedimentation regime,
so that shallow aquatic marsh habitats would become deep, and semi-terrestrial wetlands
would become fully aquatic, perhaps subsumed into the many already existing lakes of the
floodplain, as the Pediastrum record [192] indicates for Pingwang. These sudden shifts in
water depth would often be expressed in the sedimentary lithology, and lake sediments
can be very good archives for preserving palaeoflood stratigraphies [325], using techniques
such as magnetic measurements and grain-size analysis, as in Lake Taihu [168]. At already
aquatic but shallow sites, however, the change might well be most observable in the
biostratigraphy with deeper water micro-organisms becoming favoured, particularly algae,
exacerbated by increased eutrophication as major amounts of sediment and nutrient-rich
water were swept into the aquatic ecosystem, encouraging microphytic diversity and algal
blooms for taxa including Pediastrum [196].

In the following sections we present the evidence for periods of hydrological stability
and peat formation (Table 2) and for phases of major or extreme flood events (Table 3) in
the lower Yangtze valley and Taihu lowlands/Ningshao plain, deduced from the published
literature. A synthesis of the data is shown in Figure 6, divided into the phases when great
floods were either common or rare. These broad phases can not be considered mutually
exclusive, as exceptions to the general trend will occur within them, and they will be
modified by future research. The existing dataset is large enough, however, to come to
general conclusions regarding Holocene flood history in the study area. For correlation
with climate, graphs of fluctuations in temperature (and monsoon precipitation) during
the Holocene in the study area are also shown on Figure 6, derived from Shao et al. [239]
at Shanbao Cave, the δ18O record closest to the Taihu lowland and at the same latitude,
and from the Lianhua Cave [242], which has a record that continues up to the present day,
unlike the Shanbao record which does not continue beyond about 2000 cal. BP.

5.2. Terrestrialisation and Peat Formation

Peat deposits indicate sedimentation at or near the wetland surface, deriving from
plants of the ‘in situ’ marsh vegetation [204], and there are peat layers of various ages within
the stratigraphic sequences of the lower Yangtze and Taihu lowlands, including some dated
to the Lateglacial and to the very beginning of the Holocene [77,319], although the oldest
is 32,325 cal. BP at Hemudu south of Hangzhou Bay at 36 m depth [188]. In a borehole
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offshore of the present Yangtze mouth Zhao et al. [326] recorded a floodplain freshwater
marsh peat almost a metre thick that was dated as forming from 19,000 to 11,300 cal. BP,
Stanley et al. [327] recorded a thin peat dated to about 15,800 cal. BP resting upon the stiff
Pleistocene clay at core YZ-1, 30 km west of Shanghai, Li and Wang [318] recorded peats
dated to about 13,500 cal. BP on the north bank of the Yangtze, Liu et al. [322] recorded
a thin peat dated around 12,758 cal. BP at 36 m depth at Qidong at the seaward end of
the delta, Liu et al. [188] reported a peat dated to 12,647 cal. BP at 30 m depth at Hemudu,
while Qin et al. [328] recorded a peat dated about 12,568 cal. BP in a core offshore of the
Yangtze delta. Zhang et al. [2] and Cheng and Ye [329] have reported peat at more than
18 m depth dated to 11,004 cal. BP at Beihu, south of Taihu on the upper Tiaoxi River near
Hangzhou. Zhang et al. [79] recorded deep peat layers dated to 10,859 and 10,087 cal. BP,
towards the end of the Lateglacial, at Xiaoshan in the incised Qiantang valley, as have
Lin et al. [78,330] of similar age.

It is clear that fluvial floodplain freshwater marsh environments have a very long
history in the area of the present lower Yangtze and delta, many forming during the
Lateglacial. Many more, however, have formed at various stages throughout the Holocene
(Table 2). All such peats will have formed within floodplain, marsh-lacustrine or back-
barrier lagoonal environments, but will represent near-surface autogenic organic sediment
accumulation in a paludified freshwater marsh stage of hydroseral development [1], rather
than in a deeper water aquatic environment. Their presence therefore implies phases
in which water levels are not significantly elevated by extreme flood events. Examples
of Lateglacial and earlier Holocene date are usually basal peats resting upon terrestrial,
fluvial sediments, and will have formed in response to rising sea levels which were driving
freshwater perimarine zone water tables higher [85,331], until waterlogging and organic
sediment accumulation occurred in freshwater marsh and lagoonal areas. This sea-level
rise created many of the shallow lakes that formed in the Taihu lowlands in the mid-
Holocene [109,114,248]. The high water tables at this time caused many peats to accumulate
(Table 2) in the Taihu lake area and around Hangzhou Bay in the early to mid-Holocene [332,333],
but several more recent ones also occur [173,246,332,334]. In some cases, peats, some of
which will have formed in the high upper saltmarsh zone [11], were then overtaken by
rising marine waters which deposited estuarine clay and silt facies above them. Most
were buried by freshwater and alluvial deposits, however, as sedimentation in floodplain
wetlands in the mid-Holocene generally kept pace with any sea-level rise and chenier
barrier ridges came into being [74,103,104], both preventing marine penetration [30,85].

The formation of marsh peats within floodplain wetlands requires conditions of low
riverine input coupled with developed marsh vegetation and continuous organic accu-
mulation [204]. The presence of peat in sediment columns in the Taihu lowlands must
therefore indicate phases of low fluvial influence and vegetation-covered marshland sur-
faces. Periods during which such peat accumulation was dominant and fluvial sediments
were rare will correspond to times when fluvial input was low, and so probably with low
rainfall intensity. Dated examples of peat beds in the lower Yangtze and Taihu floodplain
lowland are listed in Table 2. Derived from these data, periods during which peat formation
was the norm are shown on Figure 6. It is clear that during the early and mid-Holocene,
and into the late Holocene, hydrological conditions were largely stable, and while some
significant flood events will have occurred, these were unusual and probably not of extreme
strength. Low energy marsh, swamp and peat-forming wetland environments were the
norm, with sediments of variable organic content, and these mid-Holocene conditions were
very attractive for human settlement [335]. High sea level, and minor replenishment from
fluvial sources, maintained freshwater floodplain marshes in most areas between the areas
of open water represented by the floodplain’s many lakes. There were, however, periods of
exception to this stable norm when major floods did occur.
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Table 2. Chronology of phases of Holocene peat formation (surface water table) in the Taihu low-
land/lower Yangtze area. Dates are in calibrated years BP. Age ranges may include several dates.

Site Median Age of Peat

D2 [327] 1050
Yaojiang [146] 1321

T-1 [336] 1350
Longnan [337] 1500–1400
Dianshan [81] 1514

D2 [327] 1700
Taihu plain [332] 1710–1414

Qingpu [313] 2500
Yushan [98] 2540
YZ-1 [327] 2651

Taihu plain [332] 3110–2818
Dongjing [52] 3177–3111

Taihu plain [332] 3630
Dongjing [52] 3657–3639

Guoyuancun [303] 3795–3710
Baiwaitan [52] 4291
Maoshan [149] 4464

Banxiangchan [52] 4577
Liangzhu (LZ-1) [273] 4620

Wuguishan [338] 4630
Yangxi [30] 4700
HB3 [339] 4886

Hemudu [188] 4924–4603
Luojiang [5,311] 4940–4620

Yushan [340] 4903
Taihu plain [332] 5129–4346

Liangzhu (LZ-4) [273] 5175
Jingtoushan [341] 5200– 5000
Tianluoshan [11] 5326

Yaojiang [25] 5386
Shisanzuqiao [332] 5434–5347

Tiaoxi valley [1] 5445
Xiaofengyang [52] 5517

Fengjing [52] 5680
Wuguishan [338] 5815

Hemudu [342] 6255
Jingtoushan [341] 6350–6200

Hemudu [178] 6470–6255
Wujincheng [52] 6494

Yaojiang [177] 6509
Jingtoushan [341] 6650–6500

Xinjie [221] 6713
Gehu Lake [30] 6800–6500

Hemudu 1501 [189] 6932
Luotuodun [343] 7000

Yuyao [344] 7000
Xinjie [221] 7210

Longnan [337] 7410
Wujiabang [5] 7509–7499

Taihu plain [332] 7554–7134
Beihu [2] 7914

Beihuqiao [329] 7989–7883
Beihu [2] 7990

Maqiao [52] 8069
Hongkou [52] 8156

Beihu [2] 8348
Beihuqiao [329] 8356

ZX-1 [327] 8481
ZX-1 [250,323] 8690–8512

Pingwang [260] c.8850
Zhaoxiang [52] 9072–8847
HL81063 [339] 10,027
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5.3. Major Palaeofloods

With the regularity and strength of recent flooding events as shown by historical
records [345], it is to be expected that the basins and floodplains of the river were subject to
major floods many times earlier in the Holocene, and there is considerable evidence that
these have occurred. Clastic layers which represent flooding horizons occur in many early
and mid- Holocene sediment sequences throughout the valley of the Yangtze [275] and in its
tributary valleys [158,159,346–349], as well as in more recent, including historical, times [28].
Many of these earlier clastic units have been confirmed as flood layers by sedimentological
research [159,164,350], and their ages, established by various dating techniques including
radiocarbon, can be shown to correspond with periods of climatic change with higher
rainfall and temperature fluctuation by analyses of several other forms of sedimentary
archive [130,351–354], particularly cave speleothem records [161,228,239,242,353,355,356].

5.3.1. The Lower Yangtze and Delta

Tables 2 and 3 and Figure 6 show that the first three Holocene millennia were char-
acterized by stable hydrological conditions, with gradually rising sea level encouraging
rising water tables, surface soil waterlogging and the formation of peats in many low-lying
parts of the Yangtze Delta and Hangzhou Bay area. While the Delta area was accreting
rather than prograding between 10,000 and 7000 cal. BP, it was a warm, humid period with
high rainfall as shown by biomarker and other research in the Yangtze valley [357–359]. It
is only during the few centuries around the 8200 cal. BP cold and wet climatic deteriora-
tion [342] that there is evidence of major freshwater flooding from the Yangtze, labelled
phase ‘a’ on Figure 6. Otherwise, the very few records of flooding is a reflection of the
minor role the incised Yangtze river played in the area’s hydrology in the early Holocene,
with rising groundwater driven by sea-level rise leading to autochthonous lacustrine and
peat deposition, often of the upper saltmarsh type as at Pingwang around 8850 cal. BP,
in lagoonal and perimarine wetlands. During brief phases of less stable climate during
this period, however, occasional floods did occur, such as the event around 7700 cal. BP
recorded by Song et al. [176], which is reflected in the evidence for water depth rise at
Pingwang at the same time.

After the Yangtze Delta floodplain was established and began to prograde after about
7000 cal. BP, river floods occurred more often, although variability of climate and rainfall
allowed long periods of stability when peat still formed. Patalano et al. [249] have shown
that climate between c.7500 and c.6500 cal. BP was relatively dry and, while peat could still
form in the wetlands, floods did not occur (Table 3). A significant phase with major flood
events occurred around the centuries around 6000 cal. BP, phase ‘b’ on Figure 6, again
corresponding broadly with climatic deterioration and colder, wet conditions, as recorded
at Hemudu south of Hangzhou Bay [342]. It was followed by a long period of humid
climate [233] and hydrological stability with peat formation (Table 2), high lake levels [360],
and only occasional floods, that lasted until about 4200 cal. BP. Overall, in the first six
thousand years of the Holocene the lower Yangtze and Delta area can be categorized as
hydrologically stable during the warm and wet Holocene climatic optimum [245], with
relatively brief phases when major floods occurred and fluvial input was dramatically
increased from that of the low-intensity seasonal EASM.
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Table 3. Chronology of Holocene fluvial flood events (rapid water level rises) in the Taihu low-
land/lower Yangtze area. Dates are in calibrated years BP. Age ranges may include several dates.
Some dates are reliable estimates based on other data.

Site Median Age of Flood Events

Lake Taihu [168] 400–0
Dianshan [81] 800

Jiang-nan [127] 800–400
Jiang-nan [127] 1400–1200
Longnan [337] 1300–1200

Chaohu Lake [135] 1300
Shangshan [361] 1710
Longnan [337] 1800–1700
Chuodun [303] 1964

Chaohu Lake [135] 2200, 1800
Guangfulin [311] 2400
Qingfeng [246] 3900
Maqiao [362] 4000–3800

Maoshan [149] 4000–3900
Maoshan [154] 4000–3900
Chuodun [363] c.4000
Dadong [363] c.4000
Dasanjin [363] c.4000

Guoyuancun [363] c.4000
Liangzhu [363,364] c.4000

Longtanhu [363] c.4000
Shuitianfan [363] c.4000
Tangwanli [363] c.4000

Tenghualuo [142] c.4000
Taihu plain [365] c.4000
Yuanjiadi [363] c.4000

Wangjiashan [363] c.4000
Xuxiang [363] c.4000

Yuecheng [363] c.4000
Tianyilu [303] 4030

Yuhuicun [366] 4100
XL [367] 4200

Caoxieshan [246] 5250
Baohuashan [246] 5860
Fuquanshan [246] 6020

Songze [246] 6170
Huaihe valley [368] 6250–5500

Qingfeng [139] 6400–5500
Jingtoushan [341] 6500
Pingwang [260] 7650

HG01 [176] 7700
Taihu plain [139] 8100–7700

Lower Yangtze [141] 9200–8000

While some major flood events occurred in the Yangtze coastal lowlands in the early
and mid-Holocene, it is with the great climatic deterioration that started around 4.2 ka cal.
BP [111,234], and which marks the transition to the colder Upper Holocene (Meghalayan) sub-
epoch [261], that the most severe and repeated flood events occurred [136,145,225,265,268,369].
While much of China became more arid, field evidence as well as modelling [370] shows
that the middle and lower Yangtze valley became wetter.

While the transition towards cooler conditions began around 6000, and especially
after 5500 cal. BP [247,371,372], it is the major climatic shift around 4000 cal. BP, marked
as phase ’c’ on Figure 6, that marks the end of the warm and wet mid-Holocene climate
optimum [266,359,373] and the beginning of centuries of low temperatures, climatic vari-
ability and increased rainfall intensity [120,256,259]. Evidence of this major flooding phase
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is recorded in sedimentary sequences throughout the Yangtze catchment, including the
delta lowlands (Table 3) as recorded at Tianyilu [303], and it clearly had major hydrological
consequences [181,268,374]. Several sites experienced repeated flooding during this climat-
ically transitional period [375], and some of the floods were very extreme events. Lake
levels increased markedly at this time [278,376].
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shown, derived from Cosford et al. [242] at Lianhua Cave and Shao et al. [239] at Shanbao Cave, which is the δ18O record
closest to the Taihu lowland and at the same latitude. Major climatic deterioration events are dated to (a) 8.2 (b) 6.2 (c) 4.2
(d) 2.8 (e) 1.8 cal. ka BP and (f) since c.500 cal. BP (Little Ice Age).

For more than a millennium after the end of phase ‘c’ on Figure 6 at about 3800 cal.
BP there was relative hydrological stability in the study area, with many records of peat
formation (Table 2) and no evidence of major flood events (Table 3). It corresponds to
colder conditions under which the wetland communities of the Delta floodplain developed
without exceptional fluvial input. Clearly shown on Figure 6, the next phase of major
flooding in the lower Yangtze and Delta began at about 3000 to 2800 cal. BP, when climate
deteriorated rapidly and became extremely variable, with rainfall volume and intensity
increasing greatly [244,278,358]. This 2.8 ka cal. BP event and the preceding one at 4.2 ka cal.
BP have been identified by Donges et al. [356] as one of the major non-linear climatic regime
shifts in the Holocene, with very rapid climate change and high-amplitude variability in
eastern China, with severe rainstorm events.
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Although climate change and the strength and character of the EASM remained a
vital driver of rainfall in the Yangtze valley, with increased variability and rainstorm
intensity in the Late Holocene [62], a complicating factor in palaeoflood history in the
last three millennia has been the much increased impact of human activity in agriculture,
deforestation and increasing runoff, erosion and flooding [34,64,65,67,68,311,377–379],
particularly starting before 2500 cal. BP, in the centuries before the Qin dynasty [311]
and having the effect of greatly increasing progradation rates of the Delta [72]. This
human factor amplified the effects of climate in the last two millennia [135–137,380], a
period during which climate, particularly rainfall, variability has been marked [62,124,221],
especially so in the last half millennium and leading up to the very heavy rainfall intensity
of modern times [381–383].

As Table 3 and Figure 6 show, from before 2500 to about 800 cal. BP relatively short
periods of a few centuries’ duration occurred, agreeing with the findings of Lu et al. [221] of
extreme rainfall variability on centennial scales in the lower Yangtze, which had alternate
dominance of flooding and peat formation with the centuries between 2000 and 1700 cal.
BP (climatic phase ‘e’) notable for cold and wet climate and major flood events [153], as
recorded at Chuodun [303]. At Chaohu Lake between 2250 and 2100 cal. BP fine sand occurs
in the lacustrine sediment column, signifying soil erosion caused by significant flooding,
probably a combination of heavy rainfall and Yangtze floods [135], probably exacerbated
by an increase in human impacts on the vegetation from this time onwards [384]. Major
floods occurred in the Taihu area between about 1500 and 1200 cal. BP, with rising lake
levels, as recorded at Dianshan [81]. Flooding has seriously affected the Yangtze Delta
area in the last millennium [385] and Table 3 shows that since 800 cal. BP major flooding
has been common under deteriorating climate [81,127,128,168], with a particularly cold
climate excursion in recent centuries represented as phase ’f’ in the Lianhua Cave evidence
(Figure 6), corresponding to the ‘Little Ice Age’ cold phase [287]. Overall, Figure 6 shows
that major flooding phases in the lower Yangtze and Taihu plain correspond well [36,338]
to periods of Holocene climatic instability and deterioration. The dates of the increases in
water depth at the four Taihu Plain sites presented in this paper fall within the age ranges
of major flood phases (Figure 6).

5.3.2. The Upper and Middle Yangtze

The main focus of this paper is the fluvial flood history of the lower Yangtze, and es-
pecially the delta lowlands around lake Taihu, but for comparative purposes it is important
also to consider the flood history of the upper and middle reaches of the Yangtze valley
and its tributary headwaters, and also because increased river flow and discharge in those
areas of the catchment will have had an input into the situation downstream. Now much
reclaimed for agriculture [7,386], the major lakes and other wetlands in the mid-Yangtze
area, particularly Dongting Lake and Poyang Lake, would have expanded and provided
accommodation space for floodwater and sediment from upstream [8,134,360,376,387–392],
but a considerable amount would still have entered the lower Yangtze valley, adding to
overbank flooding and sedimentation in the study area. Records of major floods in the
upper and mid-Yangtze region and in tributary headwaters are listed in Table 4. As with
the Lower Yangtze, it is clear that flood events have occurred in the higher and middle
reaches of the river at intervals throughout the Holocene [376,393–395]. Zhang et al. [351]
have demonstrated that all sections of the Yangtze valley have had the same monsoon, and
therefore climate, history and so have been subject to the same external environmental
drivers. They should therefore have had similar Holocene flood histories.

Comparison of Tables 3 and 4 shows this mostly to be the case, although the middle
and lower Yangtze appear to have suffered widespread great floods most particularly dur-
ing the great climate deterioration and instability of ‘Holocene Event 3’ between 4200 and
3800 cal. BP [36,294,376,387,391], with flood clays deposited [376,393] and with multiple
clastic layers at some sites, such as Hongqiaocun in the Upper Yangtze Chengdu Plain [170],
experiencing several extreme flood events. It is clear that the Neolithic societies of the
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Middle Yangtze valley suffered major decline at this time [396,397], exemplified by the
abandonment of the large Neolithic site of Chengtoushan on the west bank of Dongting
Lake at 4000 cal. BP [369,398]. Many sites of the Baodun culture in the Chengdu Plain [399]
were abandoned during this period. Further major flooding occurred at intervals during
the similar, severe climatic deterioration that started around 2800 and lasted until 1700 cal.
BP, for example the flood event at Majie in the Chengdu Plain [400]. It began a period of
heavier rainfall [358] and increased flooding intensity that has lasted until the present day,
as seen in the Poyang Lake area [401,402].

Table 4. Chronology of Holocene fluvial flood events (water level rises) in the upper and mid-Yangtze
valley, and in Yangtze tributary headwaters. Dates are in calibrated years BP. Age ranges may include
several dates. Some dates are reliable estimates based on other data.

Site Median Age of Flood Event

Wufeng [349] 400
Weibicun [160] 600
Poyang [401] 800–0

Nanchang [288] 840–772
Weibicun [160] 1000–800
Luojiatan [153] 1800–1700

Liaowadian [151,166] 1800
Weibicun [160] 1800

Zhangjiawan [403] 1800
Xintancun [166] 1900–1700
Weibicun [160] 2200

Liaowadian [151,166] 2200
Majie [400] 2610

Longgan Lake [278] 2700
Hanjiang TJW [158] c.3000

Weihe GCZ [158] c.3100
Luojiatan [153,166] 3200–2800
East Dongting [387] 3900

Baodun [399] 4000–3800
Caitai [376] c.4000

Chengtoushan [369] c.4000
Longgan Lake [278] c.4000

Dongting [391] c.4000
Lajia [404] c.4000

Jianghan [171] c.4000
Hongqiacun [170] c.4000

Jinsha [145,170] c.4000
Mangcheng [399] c.4000
Three Gorges [29] c.4000

Shuanghe [399] c.4000
Zhongba [148] c.4000
Yichang [405] c.4000

Yuxi [375] c.4000
Wulinji [376] c.4000

Zhongqiao [119,170] 4100–3800
Zhongqiao [119,170] 4168

Tanjialing [294] 4200–4000
Luojiatan [153] 4200

Zhongqiao [119] 4900–4600
Dongting [391] 5800

T0403 Yuxi [295] 6800–6300
T0403 Yuxi [295] 7600–7250

Dajiuhu [354] 9500–7500

References cited in Table 4 show that great floods were common in the period between
1900 and 1700 cal. BP and again from 1000 cal. BP to modern times. Lake levels in the
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middle Yangtze were at their highest during these Late Holocene flooding phases [277,278].
Extreme floods seem not to have occurred so much in the earlier Holocene, with examples
dated to around the 8.2 ka cal. BP event not present, although this might well just be an
expression of the distribution of research effort and the availability of suitable sedimentary
archives in those regions. Alternatively, the character of the 8.2 ka event in China remains
poorly understood [406], and it may be that the climate event was cold but without
increased rainfall, precluding major floods. Future research might well yield data which
modify this assessment.

5.4. Influence of Hydrology on Human Settlement and Land Use

It is clear that hydrology was the dominant environmental factor in the Taihu low-
lands since the creation and development of the Yangtze delta, and while the wetland
environments would have been attractive to human occupation and subsistence with
many food and other resources, at times of hydrological instability a human presence
amongst the floodplain wetlands might not have been viable. Much of the evidence for
past fluvial activity in the Yangtze valley has therefore been derived from studies in envi-
ronmental archaeology at ancient cultural sites and the relative hydrological stability (site
formation and stable wetlands) and instability (river flooding and site abandonment) that
occurred [52,136,143,258,369,391,407–410].

Evidence from sites in the area shows that in the Taihu-Hangzhou lowland many human
settlements were located upon stable, organic marsh soils, some on surface peats [98,335] and
others on piles in shallow water [342,411–413]. Here rice agriculture would be reliable and
could be supplemented by the exploitation of wild plant and animal resources from the
deeper water lakes and swamps that would have existed nearby [414–418]. During most of
the Neolithic the Taihu plain supported dense and economically wealthy settlement [335],
of which the sites at Kuahuqiao, Guangfulin, Hemudu, Majiabang, Siqian, Tianluoshan,
Songze and Liangzhu are major examples [271,344, 365]. In the later Neolithic around
4200 cal. BP freshwater flooding was apparently an increasing problem with earthworks
for flood defence built at the Liangzhu site [141,273,275,317]. The dramatic increase in
the incidence and magnitude of river valley flooding [135,136,369,374], where settlement and
agriculture tended to be located, made people very vulnerable to rapid water level rise [143,399]
and would force the abandonment of cultivated fields as well as settlements [148,267,391],
including in the Delta area [363,419].

Evidence shows that at the end of the Neolithic many sites were submerged by a
dramatic elevation of water levels, by lake or river floods, or covered by rapidly grow-
ing marsh peat [154,265,327], often with clastic flood layers, usually yellow clay and
silt [2,145,149,334,366,375], which can be up to a metre thick [275], sealing cultural occupa-
tion horizons [142,154,258,363,376,396,420–422]. These flooding horizons were devoid of
archaeological material [169,366,423,424], so that there appears to have been a cultural inter-
ruption as humans evacuated the area, with major sites such as Qingpu [313], Maqiao [362]
and Liangzhu [364,419] abandoned. Zhang et al. [363] have listed several sites where such
flooding horizons occur in the Taihu lowlands.

As occurred with agriculturally-based societies world-wide [425], in China cultures
including the Liangzhu, Longshan, Qujialing and Shijiahe collapsed at this time [52,111,132,
142,294,366,376,409,426,427], perhaps following a period of decline [428], due to repeated
extreme floods. Cultural interruption of this kind because of severe climate change is not
confined to the Yangtze region, but has been noted at several sites on the Yellow River and
elsewhere in northern China [169,429–431] at the time of the 4.2 ka event, such as at Erlitou.
As well as by flood events, however, in that region cultural disruption was sometimes
caused by severe drought, as noted by Wu and Liu [265], caused by the weakening of
the EASM [170,234,429]. In some cases, whole settlements could be at risk of destruction
because of flood and debris flow after extreme rainfall at the time of the 4.2 ka climate
event, as in the headwaters of the Yellow River [432].
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The locations of middle and late Neolithic human settlements of all sizes were also
strongly influenced by hydrology, so that they were situated on higher ground near smaller
water bodies [51,136,409], away from areas likely to be badly affected by flooding. For ex-
ample, no settlements in the Chaohu lake basin in the lower Yangtze valley were below 10 m
above sea level during that period, nor in the subsequent Shang and Zhou dynasties [372].
Changes in river and lake level, and even movement of river channels [433,434], often forced
relocation of Neolithic settlements to higher, safer ground [169,174,303,361,363,365,435],
such as the small isolated uplands within the Taihu marshes or the coastal ridges to the
east (Figure 1), a process which occurred in the middle as well as the lower reaches of the
Yangtze [358,376,391,392,427]. Archaeological site distribution was therefore closely linked to
environmental, mainly hydrological, factors and local topography [51,344,358,368,436–438].
Serious fluvial impacts occurred during post-Neolithic times also, with examples of in-
creased frequency and severity of flooding disrupting settlement and food production, as
at Guangfulin around 2400 cal. BP [311]. Bronze Age and Iron Age cultures in the Dajiuhu
region of the central Yangtze valley [272] also came to an end during periods of major
flooding [358]. Yin et al. [131] have discussed the impacts of climate change on dynas-
tic history in the last two millennia, identifying centennial-scale warm and cold periods
during which social and economic stability was maintained or destabilised [439,440]. This
periodicity correlates well with the peat/flood phases shown on Tables 2 and 3 and Figure 6,
illustrating the important role of great floods in Late Holocene cultural history in this part
of the Yangtze valley, increasingly so in the last 800 years.

Although most flooding events that terminated occupation at cultural sites were
fluvial, there are examples where marine flooding was responsible [10,99,174,340,441], as
at Wuguishan [338] and Yushan near the southern coast of Hangzhou Bay [98] where
an inundation event caused by storms laid down thick muddy marine sand deposits.
These seal Neolithic cultural levels, which occur within a wooded freshwater marsh peat,
as do similar typhoon-induced coastal flood deposits at nearby Xiawangdu in the mid-
Holocene [100]. Marine inundation also swamped cultural levels at the earlier Neolithic
site of Kuahuqiao on the southern shore of the lower Qiantang River [301,442]. Although
not the subject of this paper, marine inundation, especially driven by exceptional typhoon
events, would have been an important force in the Yangtze delta area in the mid- and
late Holocene.

6. Conclusions

Much of the lowland plain between the Yangtze River and Hangzhou Bay was created
by fluvial activity due to progradation of the Yangtze delta from the early mid-Holocene
onwards, and rests upon terrestrial sediments of pre-Holocene age, some of which are
fluvial. Although also subject to marine influence, particularly in the early to mid-Holocene
but also more recently, the varying input through time of fluvial water and suspended
sediment discharge from the Yangtze has been dominant in governing the history of
depositional regimes in this coastal plain since the mid-Holocene [23,209]. Combined
with fluvial input from the other large rivers of the area, primarily the Qiantang but also
the myriad of lesser drainage channels and creeks which cover the plain [1,5], deposits
comprising minerogenic fluvial material dominate most of the sedimentary sequences
in the Taihu lowlands, particularly to the east and south of the lake. Seasonal Yangtze
floods must account for some of these exogenic clastic facies, but much of this material
was introduced during great flood events, occasionally very extreme, which have occurred
periodically during the Holocene. The Taihu lowland is the creation of the Yangtze.

Although allochthonous flood deposits are most important, also highly significant are
the autochthonous deposits that have formed in the wetlands of the Taihu lowland—usually
expressed as more organic units in the sediment column—within lakes, swamps, marshes
and other freshwater aquatic systems. In particular, the occasional peat layers provide
dateable marker horizons that signify periods of local hydrological stability and slower
sedimentation when more extreme Yangtze floods were absent. Analysis of lithologies and
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microfossil content, particularly of aquatic plants and algae, from sites around Lake Taihu
has allowed the reconstruction of water level movements that can be interpreted as proxies
for greater or lesser flooding influence, especially from the Yangtze but also from other
watercourses. Although occasional major floods could occur at any time, periods with
many great floods were broadly around 8000, 6000, 4000 and after 2800 cal. BP, especially
since c. 800 cal. BP, the later events often amplified by the hydrological effects of human
activities in the catchment during a period of deteriorating climate.

Overall, the timing of major fluvial floods in the lower Yangtze and Taihu/Ningshao
plains corresponds well with periods of Holocene climatic instability and deterioration,
with six major phases of climate change and severe flooding recognized. Increased human
settlement, its location and major land use in this coastal floodplain lowland were closely
tied to local topography and to times when, mainly due to climatic factors, more extreme
flooding events were rare, hydrological regimes were stable and ground surface conditions
permitted extensive and intensive agriculture.

In this study, non-pollen palynomorphs, as they are generated very close to their site
of deposition, have proven to be good diagnostic indicators of very local environmental
conditions. At our four research sites, high frequencies of fungal spores correlated well
with stable organic marsh soils with on-site vegetation and surface or shallow water,
while aquatic algae that lived in the local water column increased in abundance when
major flooding caused increases in water depth, replacing the fungal spores in the NPP
assemblage. Although further analysis is required, it seems that the relative abundance
of algal spores and algal assemblage composition in floodplain sediments can be used to
recognize the occurrence of major freshwater flooding events. This will be of particular
use in already aquatic environments, where the environment of deposition switches from
shallow to deep water, and where other evidence of hydrological change, such as in
sedimentary facies, does not occur.
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