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Abstract: Turtle taxa represented at Lepold site 23RI59 in southeastern Missouri, USA provide a
record of environmental conditions spanning the Middle Holocene. Identified turtle taxa show that
open water was present between 7500 and 4000 radiocarbon years ago. Aquatic resources seem
to be more intensively exploited beginning about 6300 years ago, about 1200 years after intensive
occupation of the site had begun. The observed turtle taxon composition is consistent with the
presence of a floodplain with shallow, seasonal, overflow ponds, but with riverine and upland
habitats also being represented.
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1. Introduction

Archaeological interpretations of Middle Holocene adaptations in the midcontinent
have embraced at least two broad environmental factors: the emergence of a Midwest
prairie wedge and the development of floodplain wetlands along the major rivers in
the central Mississippi valley. A major distinctive biome of the Midwest is the eastern
extension of a tall grass prairie protruding east from Iowa and northern Missouri across
the Mississippi into northern Illinois and Indiana. It was called the Prairie Peninsula by
Transeau [1], building on Gleason’s [2] ideas. Defining features of the midcontinental
grassland climate determined by Borchert [3] using modern meteorological data were
further refined [4,5]. Long-term environmental proxy records provided by pollen profiles
preserved in wetlands established that grass-dominated vegetation was established in the
Midwest early in the Holocene [6] and persisted to historic times, although modified by
climatic shifts through time. Moreover, mounting evidence shows spatially variable climatic
and vegetational shifts during the Early and Middle Holocene [7–9]. Understanding the
climatic causes, development, and chronology of the Prairie Peninsula of the midcontinent
continues to progress, and whatever may be concluded here could certainly be superseded
by more detailed assessments.

The development of the Prairie Peninsula, and its perceived waxing and waning mar-
gins through time have influenced archaeological interpretations in the Midwest, Ozarks,
and central Mississippi valley at least since the mid-1970s. Early studies of Holocene
environmental changes in Missouri used data from excavations conducted at Rodgers
Shelter and Graham Cave [10,11].

The impact of the evolution of major river floodplains during the Holocene in the
Midwest in the Mississippi River valley itself and its major tributaries has long been implicit
in reviews of eastern North American prehistory [12] (pp. 128, 135), [13] (pp. 34–37), [14]
(p. 22), [15]. Butzer [16,17] and Hajic [18] reviewed geological evidence for the changing
environmental context of the Koster site in the lower Illinois valley. Several archaeological
research projects were conducted considering landscape evolution or environment change
in the Midwest, and are summarized in a compendium edited by Phillips and Brown [19].
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From these studies, Munson [20] suggested that increasingly sedentary settlements first
emerged in the major river valleys, where there is evidence that floodplains with extensive
wetlands containing permanent slack-water or seasonal ponds first emerged about 8000
to 7000 years ago. At about that time, upland grassland was becoming established in
the Midwest. More sedentary communities apparently emerged slightly later in smaller
tributary valleys, such as the Green River of Kentucky and Saline River in southern Illinois.
More recent research tends to support that view [15,21–23]. However, as is shown on
the southeastern Ozark margin, dense shell midden deposition begins at about 6000 BP,
following midden deposition beginning at 7500 BP.

Beyond the margins of the Prairie Peninsula itself, climatic and vegetation shifts are
evident during the Holocene. On the southern margin of the Prairie Peninsula, dryer
Middle Holocene conditions are expressed, but not limited to the northern or western
Ozark flanks [11]. Increased grass and more xeric adapted trees widely dominated the
vegetation in the Ozarks during the Middle Holocene [24,25].

The interface of the Mississippi valley and the Ozark upland is a locality where the
impact of shifting intensity of upland xeric conditions and the emergence of lowland
slack-water resources can be assessed though time. A case study is provided by the faunal
elements recovered from the Lepold site located on the Ozark escarpment bordering the
Western Lowland of the central Mississippi valley in southeastern Missouri (Figure 1).
Because the modern floodplain of Little Black River borders the Ozark escarpment there,
approximately half of the surrounding catchment is upland, and the other half is lowland.
Within 1 km of the site, 53% of the area is lowland and 47% upland. Most of the lowland is
floodplain, whereas only about 9% of the upland is stream bottom.
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Figure 1. Location of Lepold site and others in central Mississippi valley.

Although archaeofauna is often analyzed to study prehistoric diet or subsistence
activities, a major objective here is to elucidate prehistoric environmental conditions [26]
(pp. 200–202), [27] (p. 13), [28] (p. 335), [29,30]. Turtle remains are chosen as a monitor of
past environmental conditions because they first form a large component of the Lepold site
archaeofauna. Second, individual turtle species have specific habitat preferences rendering
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them sensitive environmental monitors. In the region, herpetologists studied the relationship
of individual turtle species and communities to environmental variables [31–34].

Ample precedent exists for ecological interpretations of faunal remains, including
herpetofauna recovered from natural traps and archaeological deposits in the midconti-
nent [11,27,35–41]. Among sites studied from an ecological perspective is Modoc Shelter,
located about 170 km north of the site discussed here [42].

2. Materials and Methods
2.1. Excavation Methods

The site was sampled by an excavated area totaling 18.6 m2 (200 ft2). The excavation
consisted of a central excavated block of 7 m2 (75 ft2), a unit of 4.6 m2 (50 ft2) to the south,
and three individual units five feet on a side, 2.3 m2 (25 ft2), to the east and south of these
two larger blocks (Figure 2). The top of the midden is a plow zone (PZ) approximately
21 cm thick (0.7 ft). Below the PZ, all units were excavated in 12 cm (0.4 ft) levels to the
base of the midden deposit 1.2 m (3.9 ft) to 1.3 m (4.3 ft) below the surface. Although the
total extent of the midden is unclear, it must minimally extend over an area of 500 m2.
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All midden soil was passed through a 6.35 mm (0.25 in) mesh screen, and all observed
bone fragments were retained. Approximately 30,300 bone fragments were recovered.

Even though bone preservation is very good, most fragments are small and fre-
quently burned, hindering species identification. The few larger bone fragments often
show tooth marks from scavenging. Assessment of the possible introduced bias was left
for future analysis.

2.2. Faunal Sample

Turtles (Testudines) are common among the represented faunal taxa. Of the 30,300 bone
fragments recovered, 8152 are turtle, about 27% of the total. The relative importance of turtles
is probably somewhat inflated because even small turtle carapaces and plastron fragments
can be distinguished among the bone fragments. Species-level taxonomic identification is
more difficult. Of the total turtle bone, about 74% is identified simply as turtle.

Turtles are the only herpetofauna considered here. Any microfauna in screened water
samples taken during excavation were unstudied [40] (p. 7), [41] (p. 9), [43]. However, both
Colubridae and Crotalidae snakes are notably present.



Quaternary 2022, 5, 29 4 of 17

2.3. Occupation History

Projectile point types show that site occupation began in Dalton and Early Archaic
times, but if any midden had accumulated then, it was extensively mixed during the
Middle Archaic occupation. Seven radiocarbon dates establish the midden deposition
chronology, as shown in Table 1. In the central block, a date of 7450 ± 60 BP (Beta-104977)
from unit 100/70 level 7 (3.1–3.5 ft) near the base of the midden is supported by two other
dates, 7230 ± 95 BP (Beta-65936) from unit 75/75 level 8 (3.5–3.9 ft) and 7260 ± 60 BP
(Beta-104975) from unit 75/80 level 7 (3.1–3.5 ft), associated with early midden deposition.
A feature extending into the top of the midden yielded a radiocarbon date of approximately
4000 BP [44]. In other words, the top of the midden truncated by the PZ was deposited
before 4000 BP. The beginning of dense shell deposition by about 6000 BP is supported by
three dates, 6110 ± 60, 5630 ± 50, and 6300 ± 80 BP. These dates show that initial shell
deposition lagged about 1200 years after initial midden deposition.

Table 1. Radiocarbon dates.

Unit and Level Depth (cm) Lab No. Material RCY BP 13C/12C

1981 test 20–40 B-5601 bone 3900 ± 110 −21.7
105/75 3 46–58 B-104976 nut shell 6110 ± 60 −25.2
100/70 5 70–82 B-66800 bone 5630 ± 50 −23.3
75/80 6 82–95 B-66801 bone 6300 ± 80 −23.5
75/80 7 95–107 B-10975 nut shell 7260 ± 60 −26.9
100/70 7 95–107 B-10977 nut shell 7450 ± 60 −27.4
75/75 8 107–119 B-65936 bone 7235 ± 95 −24.6

In sum, although occupation of the site began in Dalton and Early Archaic times,
increased occupation intensity, as indicated by midden accumulation, began by about
7500 BP. Dense mollusk shell deposition beginning in levels 4 or 5 indicates the increased
use of at least one aquatic resource about 6000 BP. It is unclear how to interpret this shift.
Did a local habitat change render riverine mollusks more accessible or did a wider climatic
change occur? That this is not a local phenomenon is shown by shell middens in Green
River of western–central Kentucky appearing about the same time [21–23].

2.4. Evidence of Local Environmental Conditions

The relation of the local environment to wider climatic events is briefly reviewed.
On the basis of data mainly from the Upper Midwest, Nelson et al. [7] concluded that
aridity increased between 10,000 and 8500 cal BP, but declined somewhat between 8500
and 6200 cal BP. After 6200 cal BP, aridity was no more severe than before, suggesting that
wildfire had a role in the establishment and maintenance of the prairie. They indicated
that the onset and progression of dryer conditions within the Midwest showed regional
variation. Turning to the Ozarks, speleothem isotopic analysis indicates increasing aridity
between 9500 and 8200 cal BP; by 7500 cal BP, grassland was established in the Ozarks [25].

Within the Ozark uplands, about 48 km from the Lepold site at Cupola Pond, a pollen
profile indicates Holocene vegetation generally dominated by oak and hickory with a
substantial grass component [45]. Since about 8000 calendar years ago, Poaceae pollen has
generally been declining, suggesting a general increase in effective moisture during the
period when the Lepold midden accumulated.

Archaeological investigations of two sites on the Prairie Peninsula border show evi-
dence of drier Middle Holocene conditions. Eolian deposits suggest that maximal aridity
occurred at Graham Cave between 8000 and 7600 BP [11] (p. 237). Similarly, on the western
Ozark margin at Rodgers Shelter, maximal steppe conditions occurred between 8000 and
6500 BP, with dry conditions persisting later [11] (pp. 231, 238).

Alluvial processes respond to climatic shifts [16,17,46]. Furthermore, Ozark streams
were modified by some 300 years of human activity [47]. The geoarchaeological record of
the Little Black River watershed may not be completely consistent with Midwest climatic
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events or the geoarchaeological record evident at locations in much larger river valleys
such as those of the Illinois, Mississippi, and Missouri. Little Black River and neighboring
Cane Creek watersheds are flanked by much larger watersheds of Black and Current Rivers.
In comparison to Black or Current River, the watershed of Little Black River extends for
a far shorter distance into the Ozark upland to the northwest. The Little Black River
floodplain of about 1 km width is small compared to that of the Mississippi River or its
major tributaries. This geographic situation presents a fundamental geoarchaeological
issue of scale to consider. In small watersheds, alluvial deposits record more localized
and shorter-term climatic events in comparison to the broader regional record that large
watersheds provide [48].

The flow of Mississippi River through the Western Lowlands ended during the Pleis-
tocene. Among other Ozark streams entering the lowland, Little Black aggraded and
established a meandering flow, creating cut-off ponds in its floodplain [49] (p. 271), [50]
(p. 602). As Little Black is a small river, these ponds would be inherently small and shallow,
but presumably at least some would be permanent.

Pollen and sediment analyses are available to monitor past Holocene environmental
conditions in the site vicinity [51]. The core was taken from a small pond, Powers Fort
Slough, which is only a little more than 2 km from the site. Most of the Lepold occupation
was during the later part of the drier interval between 9500 and 4500 BP, defined as the
Quercus-Fraxinus pollen assemblage zone, characterized by ash, oak, and hickory pollen.
Grass pollen is also common and may represent cane thickets in this lowland location.

Within the Quercus-Fraxinus zone, a shift in sediment deposition and decrease in tree
pollen suggest the maximal dry conditions at about 6600 BP [51] (p. 165). Subsequently,
the pollen core showed a rapid shift represented by increased tree pollen, but a decrease
in oak, apparently associated with more mesic conditions. Willow, Salix, and buttonbush
Cephalanthus occidentalis pollen began to increase before 4500 BP, which is consistent with
more flow through the slough [51] (p. 165). During the Middle Holocene, pollen evidence
from the Powers Fort Slough core is interpreted as showing seasonal water level fluctuation,
exposing areas colonized by annuals [52] (p. 120). After 4500 BP, the pollen spectrum re-
sembles the modern species composition. Forest composition during the last few thousand
years was not completely stable or unchanging because of local hydrological shifts and
short-term climatic variation. Evidence of drier Late Holocene intervals exists on the Prairie
Peninsula margin of the Ozarks [53].

3. Results
3.1. Turtle Bone Distribution

Although a substantial number of fragments were identified to the species level,
variation among level totals hinders observations about species distribution through time,
Table 2. Much less bone is present and identified from the lowest two levels. Shifts in
frequency or diversity are difficult to evaluate if sample sizes are very different [54] (p. 116).
As sample size increases, more uncommon taxa appear, and the percentage of common
taxa thereby decreases, and diversity appears to increase; small samples seem less diverse
and dominated by a few common taxa.

Figure 3 shows that turtle bone occurs throughout the midden depth. Total bone other
than turtle generally decreases with depth, while turtle bone is at a maximum in levels 1 to
3, with slightly less in the PZ. Turtle bone ranges as a percentage of total bone fragment
count from a maximum of 36.3% in level 3 to a minimum of 18.3% in level 8. Levels 1 to
6 are all over 20%. In the three lowest levels, percentages are less than 20%, although the
total quantity of bone in these levels is much less than those above. In chronological terms,
the maximal amount of turtle bone occurred between 6000 and 4000 BP. The quantity of
turtle bone seems slightly less in the Woodland and Late Archaic than during the Middle
Archaic occupation, both relative to quantity per level and relative to other animal bone.



Quaternary 2022, 5, 29 6 of 17

Table 2. Total bone fragments and turtle by level.

Level Total Turtle Percent Turtle

PZ 5965 1219 20.4
1 5186 1524 29.4
2 5236 1611 30.8
3 4311 1418 32.9
4 3330 886 26.6
5 2475 697 28.2
6 1922 460 23.9
7 813 158 19.4
8 523 96 18.3
9 540 83 15.4

Total 30301 8152 26.9
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3.2. Taxa Represented in the Collection

The total collection contains nine taxa, as shown in Table 3. All of these are found
widely in the eastern woodlands [33]. Basic ecological principles suggest that individual
species would not be expected to occupy exactly the same niche [55] (pp. 230–266), [56]
(pp. 16–21); therefore, the number of observed taxa alone suggests habitat diversity in the
immediate site vicinity. As turtle species have specific habitat preferences [33], turtle taxa
should thus be sensitive indicators of environmental conditions in the site vicinity. Table 3
summarizes the general habitats for each taxon. Individual species may have seasonal
and ontogenetic habitat preferences. Additional environmental factors and behavioral
characteristics are mentioned when relevant in the following discussion, as are some
taxonomic issues impacting taxon identifications used here.
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Table 3. Summary of turtle species and habitats.

Common Name Scientific Name Characteristic Habitat

Snapping Chelydra serpentina Slow-moving shallow water, soft bottom with aquatic vegetation [33] (p. 115)

Eastern Box Terrapene carolina Open mesic woodland [33] (p. 411)

Common Musk Sternotherus odoratus Slow-moving shallow rivers and ponds with soft bottom [33] (p. 526)

Eastern Mud Kinosternon subrubrum Slow moving, shallow water, soft bottom with aquatic vegetation [33] (p. 501)

Smooth Softshell Apalone nutica Medium and large rivers [33] (pp. 614–615)

Spiny Softshell Apalone spinifera Rivers, side channels, and ponds [33] (p. 624)

Northern Map Graptemys geographica Large bodies of water, rivers and lakes, with basking sites [33] (p. 295)

False Map Graptemys pseudographica Large bodies of water, rivers and lakes, with basking sites and vegetation [33] (p. 327)

Pond Slider Trachemys scripta Ponds and slow rivers, 1 to 2 m deep, with aquatic vegetation [33] (p. 447)

Painted Chrysemys picta Slow-moving shallow water, soft bottom, with vegetation [33] (p. 188)

3.3. Taxa Composition through Time

Of primary interest as an indication of environmental shifts are taxon frequency
distributions through time. The basic question is whether taxon composition is the same in
all levels, and if not, if differences are related to environmental changes.

Varying total counts among levels obscures trends and differences for individual taxa.
To simplify, some taxa were combined in Table 4 and Figure 4. Kinosternidae are one group.
For Emydidae, those other than box turtles were combined as slider, map, and painted
(Trachemys, Chrysemys, and Graptemys). Snapping and softshell turtles were combined for
reasons other than taxonomy as discussed below. Levels 7–9 were combined because of low
counts. Table 5 is the resulting matrix collapsed into four taxa and eight levels. Figure 5
shows these four taxa by cumulative percentage by level.

Table 4. Turtle taxon counts by level.

Level

Taxa PZ 1 2 3 4 5 6 7 8 9

T. carolina 78 88 99 95 48 32 25 12 12 7
T. scripta 11 11 8 5 7 8 3 6 0 1

G. geographica 3 1 2 2 1 3 0 1 0 0
C. picta 28 30 30 38 26 18 12 1 1 1

G. psedographica 5 8 11 4 6 1 4 2 0 0
Slider/Map/Painted 5 6 11 12 9 4 2 0 0 2

C. serpentina 6 19 9 13 8 8 5 0 5 1
K. subrubrum 19 15 29 34 15 19 8 5 1 0

S. odoratus 7 15 22 13 14 9 2 2 1 0
Kinosternidae 78 155 178 174 132 95 54 18 14 8

Apalone 7 7 6 13 3 2 1 0 0 0
Unknown 972 1168 1206 1015 617 498 344 111 62 63

Table 5. Combined taxon counts and percentage by level.

T. carolina Slider/Map/Painted Chelydra/Trionychidae Kinosternidae

Level ct % ct % ct % ct %

PZ 78 32 52 21 13 5 104 42
1 88 25 56 16 26 7 185 52
2 99 24 62 15 15 4 229 56
3 95 23 61 15 26 6 221 55
4 48 18 49 18 11 4 161 60
5 32 16 34 17 10 5 123 62
6 25 22 21 18 6 5 64 55

7–9 31 31 15 15 6 6 49 49
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Figure 5 shows that, in all levels, mud/musk family Kinosternidae is the most common
recognized taxon. Admittedly, grouping mud Kinosternon subrubrum and musk Sternotherus
odoratus turtles together may obscure some environmental conditions because their habitats
differ. Musk turtles S. odoratus are rarely found away from permanent water, and mud
turtles K. subrubrum favor temporary pools formed during flood times [57,58].

The distribution of mud K. subrubrum and musk S. odoratus is more closely examined
later. Overall, mud is more common, the taxon adapted to temporary pools, whereas musk
turtles stuck to permanent pools. C. picta and T. scripta require permanent water too. These
aquatic turtles may be seen traveling overland looking for water if unusually dry conditions
eliminate their normal pools [58] (p. 248), [59] (p. 52).

Turning to the slider, map, painted group, painted Chrysemys picta is the most com-
mon species in the group. Included in the slider, map, painted group is red-eared slider
Trachemys scripta. At the time of analysis, T. scripta was included in the Pseudemys genus [34]
(p. 188). Within the Graptemys genus, the Mississippi map turtle, either as species Grapte-
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mys kohnii [34] (p. 174) or subspecies of Graptemys pseudogeographica [33] (p. 327) is not
distinguished. It cannot be concluded that it is absent.

As a possible indication of relatively dry conditions, the frequency of box turtle
Terrapene carolina is examined by depth. Even though it showed a substantial percentage of
identified turtle taxa in all levels, box turtle had its lowest representation of around 20% in
levels 4 and 5. This would be just as the dense mollusk shell zone begins, in other words,
about 5500 to 6000 BP. Box turtle is slightly more common in the combined three lowest
levels compared to levels 4 and 5 at the base of the shell zone. The box turtle percentage in
the three lowest levels was similar to that of the PZ, but far from dominant vouching for
open water both early and late.

Both snapping turtle Chelydra serpentina and softshell turtle Trionychidae (Apalone)
are minority taxa that are also associated with aquatic environments. The two species
of softshell, A. nutica and A. spinifera, are not distinguished here, although their habitats
slightly differ. Snapping turtle elements are about twice as frequent as softshell. Even
though both of these taxa are far less common than others, their distribution is of interest. As
is discussed later, snapping and softshell turtles are likely to play an important subsistence
role. They are present throughout the midden ranging from a maximum of 7.3% in level 1
to a minimum of 3.7% in level 2.

For more formal quantitative analysis and in order to avoid low cell counts, some
taxa in Table 6 were combined as in Table 4. In Table 6, observed counts are compared to
the expected values calculated from marginal totals. Testing the levels, as samples were
drawn from a single population, provides support for significant differences in midden
composition. The χ2 total of 40 for the table exceeds the 1% probability level of 39 for 21
degrees of freedom. Individual cells contributing to the χ2 total are of interest as these
support some previous subjective observations from examining Table 4.

Table 6. Combined taxon frrequency by level.

observed

Taxon PZ 1 2 3 4 5 6 7–9
T. carolina 78 88 99 95 48 32 25 31

Slider/Map/Painted 52 56 62 61 49 34 21 15
Chelydra/Apalone 13 26 15 26 11 10 6 6

Kinosternidae 104 185 229 221 161 123 64 49

expected

T. carolina 58.5 84 96 95.4 63.7 47.1 27.5 23.9
Slider/Map/Painted 41 59.3 67.7 67.3 44.9 33.2 19.4 16.9

Chelydra/Apalone 13 19.1 21.8 21.7 14.5 10.7 6.3 5.4
Kinosternidae 133.9 192.5 219.6 218.5 145.8 107.9 62.9 54.8

χ2 cell values

T. carolina 6.5 0.19 0.09 0 3 4.8 0.32 2.1
Slider/Map/Painted 2.9 0.18 0.48 0.59 0.37 0.02 0.13 0.21

Chelydra/Apalone 0 2.49 2.12 0.85 0.84 0.04 0.01 0.07
Kinosternidae 6.67 0.03 0.4 0.03 1.58 2.1 0.02 0.61

Total χ2 = 40.54; p 0.05 = 32.67; p. 0.01 = 38.93

PZ stands out from the other levels, contributing a substantial part of the χ2 total. The
highest χ2 values for individual cells are in the PZ for box, T. carolina, and Kinosternidae.
Observed counts are too high for T. carolina and too low for Kinosternidae. This inverse
relationship makes sense. However, the observed slider, map, painted count is high as
well for these clearly aquatic species. The PZ is composed of a considerable Woodland
and emergent Mississippian component, so the observation that it is distinct from the
Middle Archaic levels is ambiguous, as subsistence shifts or environmental changes could
be the cause.
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In fact, ignoring the PZ χ2 value reduces the overall value below the 5% probability
level. Nevertheless, other high χ2 cell values highlight some differences among levels.
Notable are high χ2 values in levels 4 and 5. These levels are at the base of the shell zone.
In these levels, T. carolina is under-represented and Kinosternidae slightly over-represented.
This would be consistent with a shift to aquatic resources associated with initial shell
deposition about 5500 to 6000 BP.

The lowest level shows a high χ2 value for T. carolina. High counts for T. carolina
could be interpreted as indicating relatively dry conditions, but it could simply be a result
of a rather small samples in levels 7 to 9. Lastly, high χ2 values for C. serpentina and
Trionychidae in levels 1 and 2 are puzzling if not contradictory. In the shell zone, an
abundance of snapping and softshell turtles might be expected as in level 1, but in level 2,
the observed count is lower than expected. Perhaps this is simply a result of low overall
counts for snapping and softshell turtles.

A simple way to summarize is to compare T. carolina and Kinosternidae alone. These
two taxa account for 77% of elements identified by taxa. Table 7 shows that the ratios of
T. carolina to Kinosternidae increase from the lowest level to a maximum in levels 4 and 5,
the base of the shell zone, and then decrease in the PZ. The ratio is nearly equal to 1 in the
PZ and the two lowest levels. Otherwise, Kinosternidae outnumber T. carolina elements
by at least 2 to 1, with a maximal ratio over 3 in levels 4 and 5. There are three evident
zones: PZ, occupation after 4000 BP; shell zone, from 6000 to 4000 BP; and the lowest levels
containing the initial midden deposition beginning about 7500 BP.

Table 7. T. carolina and Kinosternidae counts by level.

Taxa PZ 1 2 3 4 5 6 7 8 9 Total

T. carolina 78 88 99 95 48 32 25 12 12 7 496
Kinosternidae 104 185 229 221 161 123 64 25 16 8 1136

Kino/T. c. 1.33 2.1 2.31 2.33 3.35 3.84 2.56 2.08 1.33 1.14 2.29

4. Discussion
4.1. Environment and Subsistence

Box turtles T. carolina might simply be casually collected while engaging in other
upland subsistence activities. If so, their frequency may be a general indication of upland
as opposed to lowland subsistence activity. The shifts of box turtle percentage relative to
everything else suggest that, during the middle of the occupation, span activities were
slightly more lowland-focused compared to the initial occupation in the three lowest levels
and the PZ.

Box turtles are common in the Ozark uplands, but what habitat is optimal for them?
They seasonally use both oak–hickory forest and grassland [60]. Grassland is frequented in
late spring and early fall, when conditions are less dry and temperature mild. Woodland
habitats are preferred in the early spring, summer, and late fall, where organic litter and
moister conditions provide shelter from extreme temperatures.

These seasonal habitat preferences have implications for longer-term vegetation shifts
and related climatic shifts. Contrary to intuitive inference, the expansion of upland grass-
land and more open woodland logically associated with more xeric conditions may be
detrimental to box turtle populations. Associated with more xeric conditions, the increased
frequency of wildfires would reduce ground-level herbaceous vegetation and organic litter
needed for shelter during seasons of temperature extremes. Fires during warmer months
when box turtles are active have a direct adverse impact [61]. Interestingly enough, Ozark
wildfires in historic times were largely anthropogenic and likely so in prehistory [62].

Turtles have a large biomass in freshwater habitats, which may have rendered them
attractive to exploitation by prehistoric people [32,63–66]. Desirability as a food source may
have varied among species. Snapping turtle C. serpentina and softshell Apalone may have
been preferentially sought for food, as they are captured even today by market hunters [34]
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(p. 189), [67]. Because of the unossified carapace of softshell turtles Apalone [68] (p. 175),
they may be under-represented in bone samples relative to other turtles. The subsistence
importance of snapping turtle C. serpentina because of its relatively large size may be
under-represented by simple bone count. Adult snapping turtle carapace length ranges
from 200 to 300 mm, and weight ranges from 4.5 to 16 kg [34] (p. 147). About half the live
weight is edible [67] (pp. 8–9), [68] (p. 45).

Other turtles Graptemys, T. scripta, and rather small C. picta are perfectly edible [68]
(pp. 113, 121, 138, 169), although T. carolina perhaps less desirable [68] (p. 95). In compari-
son, for edibility, Kinosternidae are held in low esteem and are small [34] (pp. 157, 160), [68]
(pp. 55, 67). Adult mud turtle K. subrubrum carapace length is 75 to 121 mm [34] (p. 157)
and adult musk turtle S. odoratus carapace length is 80 to 115 mm [34] (p. 161). A study
of turtles captured in a pond in Jersey County, Illinois showed a mean living weight for
S. odoratus of 256 g compared to a mean of 3274 g for C. serpentina [69]. Moreover, when
handled, musk turtle S. odoratus, commonly called stinkpot, can release a foul-smelling
glandular secretion [33] (pp. 333–334), [68] (p. 53).

Although cut marks or abrasion evident on the interior of some turtle shell fragments
may have been the result of cutting meat away from the carapace, close inspection suggests
purposeful modification at times (Figure 6). Turtle shells sometimes supplied small bowls
or dippers used for food preparation and serving. Therefore, it is likely that the capture of
small turtles may have been enhanced by their value as containers in addition to whatever
their food value or yield was [70].
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As ectothermic (cold-blooded) animals, ambient temperature restricts the seasonal
activity of turtles, although this may not necessarily prevent human exploitation. Even
though the annual active season varies somewhat among species, turtles would generally
be active during the frost-free period of the year, April through October. It cannot be
assumed that turtles were only captured during the warmer months. They might have also
been retrieved from their overwinter hiding places. In fact, in the early 20th century, market
hunters captured snapping turtles C. serpentina in late fall and winter in places where they
congregated to hibernate [67] (p. 5). Aquatic turtles hibernating on bottom mud in shallow
water could be collected, although that would require wading around in cold water in the
winter. Mud turtle K. subrubrum activity is further limited by the existence of temporary
pools. They hide in burrows when seasonal ponds dry out [58] (p. 248). Burrowing renders
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them less visible to exploit on the surface in midsummer, but they could still be extracted
from underground.

As shown here, turtles throughout the Holocene were subject to human predation. The
impact of human predation on the turtle population structure and community composition
cannot be assumed to have been trivial in prehistory. Even with high biomass, overexploita-
tion is possible because predation may disproportionately impact these long-lived animals.
Turtle populations may be slow to recover from unsustainable levels of predation [71,72].

Beyond direct human predation, within the Holocene, midcontinental ecosystem hu-
mans were part of multiple and complex systemic interactions [73]. Vegetation composition
is partly a response to human activities [74] (p. 347), [75] (p. 1125), [76]. Anthropogenic
fires could enhance climatic shifts promoting more xeric vegetation conditions, thus both
directly and indirectly impacting the box turtle population.

4.2. Comparison to Other Archaeological Sites

As archaeological collection methods among sites may not be consistent, multiple site
comparisons are deferred. Nevertheless, a couple of examples have clear environmental
relationships that are worth considering here. The faunal assemblage of Tick Creek Cave in
Phelps County is an instructive contrast [70]. Tick Creek is a tributary of Gasconade River,
joining it about 75 km upstream, that is, south of Missouri valley, so it is well within the
Ozark upland. Tick Creek is not a large watershed, draining about 51 km2 (20 mi2). The cave
is located toward the headwaters of the stream, about 9 km upstream from its confluence
with the Gasconade River [77] (p. 3). At the cave, the watershed area including tributaries
joining immediately downstream is about 19 km2. As springs exist in the watershed, area
alone is not a totally accurate indicator of stream size, yet the creek at the cave is not large.
Near the cave, the creek valley is about 200 m wide but widens just downstream to about
300 m. In spite of its small upland stream location, bone fishhooks were found at Tick
Creek Cave.

Turtle bone accounts for about 6% of total fauna in Archaic levels, certainly a lower
proportion than that at Lepold. Of the turtle bone, box T. carolina accounts for about 90%,
a much higher proportion than that observed at Lepold. The difference seems consistent
with the more limited local riverine and pond habitats in the upland terrain surrounding
Tick Creek Cave compared to those in the vicinity of the Lepold site.

The bluegrass site is in a small upland watershed about 350 km to the northeast in
Warrick County, Indiana. There, turtle is a prominent component of the archaeofauna,
dominated by box turtle T. carolina, and with Kinosternidae also present [78] (pp. 326–328).
Stafford et al. [78] (p. 331) recognized extensive small-animal use, including turtle, at some
Archaic middens in the Midwest. They attributed this pattern to tht exploitation of smaller
watersheds where aquatic resources especially large fish would be less inherently abundant.
The Lepold site bordering a small stream flood plain about 1 km wide also seems to fit
such a pattern.

4.3. Comparison to Taxon Composition of Living Communities

How does the taxon composition observed in this excavated sample compare to the
taxa represented in modern living habitats? Comparison is subject to biases of both the ar-
chaeological sample and methods used to sample modern turtle communities. Researchers
taking a census of turtles recognize the significant impact of collecting method and season,
and explicitly describe thw capture method and sampled habitats [69,79].

Direct analogy from modern study areas to prehistory is difficult. Researchers study-
ing turtles recognize that the small remnants of the original ecosystem available for study
were modified by past human activity and are not isolated from surrounding extensively
modified areas [64,66,80]. In fact, some turtle studies used ponds constructed for stock wa-
tering or recreation [32,65,81]. Such studies elucidate the habitat preferences for individual
species and communities.
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Reviewing 20 Midwestern turtle communities, Dreslik and Phillips [79] (p. 151) found
collections to be dominated most often by sliders T. scripta and to a lesser extent painted
C. picta. The Lepold turtle assemblage shows an interesting contrast. Even though painted
C. picta is fairly common in the Lepold turtle fauna, slider T. scripta far from dominates the
collection. In the excavated Lepold sample, even if those only identified as slider, map, or
painted are all assumed to be T. scripta, the range among levels is from 5.5% in level 6 to
12.8% in levels 7 to 9 (Table 8). Instead, mud and musk Kinosternidae dominate the Lepold
turtle fauna, even more than painted C. picta.

Table 8. Maximal T. scripta and percentage of total excluding T. carolina by level.

Taxa PZ 1 2 3 4 5 6 7–9

Max. poss. 16 17 19 17 16 12 5 9
Percent 9.5 6.4 6.2 5.5 7.2 8.7 5.5 12.8

Total count 169 267 306 308 221 137 91 70

Because painted turtle C. picta outnumbers T. scripta in the Lepold collection, a habitat
difference is likely related. C. picta favors permanent, small shallow ponds [32] (p. 161),
whereas T. scripta is associated with deeper, a meter or more, and larger bodies of water [32]
(p. 162). An instructive study by Cagle [32] (pp. 157, 161) of Elkville Lake in southern
Illinois yielded a high percentage of both and C. picta and S. odoratus, and a relatively low
percentage of T. scripta. The lake is shallow and vegetated with a mud bottom. During a
time of low water, turtles were collected simply by wading around and catching them. Here,
the low representation of T. scripta probably derives from a preference for deeper water.

T. scripta is the most common species in the aquatic turtle communities of Allred
Lake and Big Oak Lake in southeast Missouri, 18 and 114 km from the Lepold site [65,66].
Modern anthropogenic habitat disturbances impact these locations. Even though one is an
artificial pond within a small remnant of lowland forest [65], this may be comparable to the
formation of a new cut-off lake in prehistoric times.

Musk turtle S. odoratus, even though commonly observed in modern living samples,
is only captured in high frequency in shallow vegetated ponds [32] (p. 161). In contrast,
mud turtle K. subrubrum favors temporary ponds [57,58]. In the Lepold collection, mud is
overall much more common with 145 compared to 85 musk. However, as Table 9 shows,
the ratio varies among levels. In levels 1, 2, and 5, they are nearly or equally frequent, but
otherwise mud clearly outnumbers musk. No trend is evident through time. The presence
of both mud and musk turtles indicates that both seasonal overflow ponds and permanent
ponds existed throughout the sequence.

Table 9. Distribution comparison of mud and musk turtles.

Taxa PZ 1 2 3 4 5 6 7–9

K. subrubrum 19 15 29 34 15 19 8 6
S. odoratus 7 15 22 13 14 9 2 3
Ratio K/S 2.7 1 1.3 2.6 1.1 2.1 4 2

In sum, the high frequency of musk S. odorous and painted C. picta indicates the
presence of shallow ponds. Some of these ponds are seasonal, as indicated by the high
frequency of mud turtle K. subrubrum. Other taxa indicate that riverine habitat was also
present throughout the Middle Holocene. No uniform directional shift of the taxon compo-
sition through time is evident, but this is not to say climatic conditions were stable for the
whole interval.

5. Conclusions

Turtles are both diverse and frequent within the fauna represented at this location
on the Ozark margin. The common occurrence of aquatic turtles in all levels indicates
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that permanent water was always in the vicinity between 7500 and 4000 BP. However,
aquatic turtle taxon frequencies vary through time. Two clearly edible taxa, C. serpentina
and Apalone, even though present only in low frequencies, occur throughout the midden.
The aquatic taxa present suggest that, both permanent and seasonal floodplain overflow
ponds were in the vicinity, although those of riverine (softshell) and upland (box) habitats
are also represented.

For the turtles, three zones are evident in the midden. These are most clearly expressed
by contrasting frequencies of box, T. carolina, and, Kinosternidae, mud and musk turtles.
The ratios of T. carolina to Kinosternidae increase from the lowest level to a maximum
at the base of the shell zone, and then decreases in the PZ. The lowest levels, represent
occupation early in the Middle Archaic and initial midden deposition about 7500 BP. The
shell zone from about 6000 to 4000 BP has the maximal aquatic or lowland orientation
represented by the higher frequency of Kinosternidae compared to T. carolina. The PZ after
4000 BP contains mixed occupation debris of the Woodland, emergent Mississippian and
Late Archaic periods.

The most common taxa, mud and musk Kinosternidae, could only be collected in
the lowland in contrast to T. carolina probably is the main if not sole upland species. If
exploitation of both taxa is interpreted to be incidental and expedient, then the relative
proportion may generally represent aquatic or generally lowland as opposed to upland
resource use intensity. The further question is whether the observed shifts in resource use
are related to environmental shifts. More intensive use of aquatic resources represented by
the shell zone began about 6000 BP long after initial occupation of the site in Dalton times,
and when more intensive occupation indicated by midden deposition began about 7500 BP.

Within a wider climatic context, the midden deposition apparently occurred during an
interval generally dryer than that of today, but of declining severity through time. Perhaps
the period of maximum aridity predated the initial midden deposition. Occupation intensity
increased at the site and a shift to the use of more lowland resources occurred as conditions
ameliorated and generally shifted to more resemble those of today by about 4500 BP.
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