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Abstract: Lower back musculoskeletal disorders are pervasive in workplaces. In the United States
alone, the total cost of such injuries exceed $100 billion a year. The lower-back injury rate in the
healthcare sector is one of the highest among all industry sectors. A main risk factor for lower-back
injuries is the use of improper body mechanics when doing lifting and pulling activities. In healthcare
venues, nursing homes in particular, nursing assistants are on the front line to take care of patients.
Even in places where ceiling-mounted lifting equipment is installed, they are still required to handle
the patient for bedside care, such as sliding the sling underneath the patient, scooping up the patient,
putting on compression socks, etc. To help nursing assistants get into the habit of using proper body
mechanics, we designed and implemented a privacy-aware compliance tracking system (PACTS).
PACTS can track a nursing assistant for possible violation of proper body mechanics while doing
bedside care and provide realtime feedback via a smart wearable device such as a smart watch worn
by the nursing assistant. The system was deployed in a local nursing home for an 80-day field study
in six rooms with seven participating nursing assistants. The test exposed several issues with the
original design of the system. The primary issue is how to balance the privacy requirement and the
usability of the system. Over-emphasizing the former would negatively impact the latter. This issue
is partially resolved with a leasing mechanism where the system would automatically register a
nursing assistant within the lease period once she or he has manually registered with the system.

Keywords: human activity tracking; microsoft kinect; smartwatch; smartphone; gesture recognition;
human computer interaction

1. Introduction

Lower back musculoskeletal disorders are pervasive in workplaces. In the United States alone,
the total cost of such injuries exceed $100 billion a year [1]. The lower-back injury rate in the healthcare
sector is one of the highest among all industry sectors. A main risk factor for lower-back injuries is
the use of improper body mechanics when doing lifting and pulling activities [2,3]. In healthcare
venues, nursing homes in particular, nursing assistants are on the front line to take care of patients.
Their lower-back injury rate is more than seven times as high as the average for all workers
(249 per 10,000 in healthcare compared to 34 per 10,000 [4]). Even in places where ceiling-mounted
lifting equipment is installed, they are still required to handle the patient for bedside care, such as
sliding the sling underneath the patient, scooping up the patient, putting on compression socks,
etc. To help nursing assistants get into the habit of using proper body mechanics, we designed
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and implemented a privacy-aware compliance tracking system (PACTS). PACTS can track a nursing
assistant for possible violation of proper body mechanics while doing bedside care and provide
realtime feedback via a smart wearable device such as a smart watch worn by the nursing assistant.
The system can be deployed into multiple rooms in a nursing home, and can follow a particular nursing
assistant when she or he goes to different rooms to take care patients. The system was deployed in a
local nursing home for an 80-day field study.

Human motion tracking in PACTS is via the computer vision technology using inexpensive
commercial-off-the-shelf Microsoft Kinect sensor. Enabled by the Microsoft Kinect Software
Development Kit (SDK), PACTS can track up to two users with one Kinect for Xbox/Windows,
and up to four users with one Kinect for Xbox One with full skeleton joint positions [5]. The accuracy
of the Kinect sensor for human motion tracking has been well-established [5,6]. However, this does
not mean that it is straightforward to design a Kinect-based system for our purpose.

There are two obvious challenges. First, while it is straightforward to use Kinect and its SDK
to track human motion, additional mechanisms are required for Kinect-based systems to be used in
healthcare venues because of the privacy of the patients must be respected and Kinect-based tracking is
promiscuous, i.e., everyone who is in the view of the Kinect sensor might be tracked. Second, a major
challenge of using the computer vision technology in nursing homes is to ensure reliable human
motion tracking despite possibly severe occlusions caused by furniture such as bed, couch, walker,
and wheelchair. Fortunately, in our target venue, only the nursing assistant’s lower extremity is often
occluded and, hence, the occlusion does not preclude us from detecting back-bending activities because
we can use the hip center and the should center joints to estimate the trunk orientation with respect to
the floor.

On detection of a non-compliant activity that may increase the risk of lower-back pain, we must
also design an effective intervention mechanism that alerts the nursing assistants about the event, but
does not interfere with their job activities. During the field testing, we encountered another challenge
not expected at the beginning, that is, how to balance the need for privacy protection and the usability
of the system. Making the privacy protection stronger will inevitably reduce the usability of the system.

PACTS incorporates several innovative mechanisms to cope with these challenges:

• A privacy-aware mechanism that ensures only the consented users will be tracked even when she
or he works in several different rooms during her/his shift, which protects the privacy of patients
and other unrelated persons who might come to the view of the Kinect sensor.

• An occlusion-resilient human activity tracking mechanism that works well in crowded rooms in
nursing homes.

• A mechanism to deliver personalized and discreet alerts to the user on detection of a non-compliant
activity in realtime.

• A lease-based mechanism that strikes a good balance between meeting the privacy requirement
and the usability of the system.

2. Background and Related Work

There is a vast literature on human activity tracking using computer vision. For a comprehensive
review of the research on human activity tracking using Microsoft Kinect, readers are referred
to [5,7]. Human activity recognition is typically accomplished via two approaches: (1) learning based;
and (2) rule based. The learning-based approach relies on the existence of pre-collected and pre-labeled
data for training or template comparison [8,9]. The main benefit of the learning-based approach is that
no expert knowledge is needed to define the activity to be recognized. The downside is the lack of
precise information such approach can provide. Quite often, the detection (i.e., the classification) of
an activity is insufficient. For example, on the back-ending activity, the degree of bending contains
very valuable information that should be recorded and reported. The rule-based approach requires
expert knowledge on the activity to be detected, and it also requires test runs to find the right error
bounds on the activity detection. The rule-based approach is less computationally intensive and could
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capture precise information regarding the detected activity, such as the back-flexion angle. For PACTS,
we choose to follow a rule-based approach that we developed previously [6,10–12]. It fits better
with the requirement for PACTS than a competing rule-based approach [13] because our rule-based
framework could dynamically determine the starting and ending frame of an activity, and it can be
integrated seamlessly with our alerting mechanism.

Alerts/alarms have been well studied in the field of network/computer security (e.g., intrusion
detection) [14–16] and medicine [17–19]. The main research objective on alerts/alarms generation is
to establish the boundary for the normal condition. In the area of medicine, because the target is the
individual patient’s condition, the decision on when to generate an alarm is even more challenging
than that for intrusion detection because the boundary conditions for different patients may vary
significantly. The alert generation problem in our study roughly belongs to the area of medicine,
although in our system an alert is triggered based on how a worker moves instead of based on his/her
vital signs. Alert/alarm generation typically follow the following three approaches: (1) rule based;
(2) model based; and (3) machine-learning based.

In the rule-based approach, one or more rules are used to define normal or abnormal conditions.
In the security area, this approach has been widely used. For example, one of the most common
network-based intrusion tolerance tools, Snort, allows its users to define sophisticated rules for
alert/alarm generation [20]. In the area of medicine, rules based on threshold values for a patient’s
vital signs [17–19] or correct movements [10,11] have been used for alarm generation. A common issue
with the rule-based approach is that a large number of alerts/alarms may be generated with high
rate of false positives for a complex system. To ensure higher accuracy and reasonable alert/alarm
frequency, initial alerts/alarms are often aggregated via correlation [15,16].

In the model-based approach, a scientific model is constructed to predict the behavior of the
target system (such as a computer system, a network, or a person) based on the understanding of
the system. This approach has been used in some areas of medicine [21,22]. The challenges for this
approach include accurate understanding of the system, accurate measurement of the system output,
and making the right tradeoff between complexity and efficiency [23].

The machine-learning based approach is appropriate when the target system cannot be accurately
modeled, such as the behavior of a computer system/network [24], or some physiological processes
of a patient [25,26]. By collecting large amount of training data, statistical models can be trained
and used to predict the expected output of the target system [25–27]. It is also possible to use active
learning [28] to improve the alert/alarm accuracy by actively taking the inputs from the alert/alarm
recipient regarding their quality.

In PACTS, we combine the rule-based and model-based approaches for alert generation. A unique
characteristic of PACTS is that the target system and the intended recipient for alerts are the same
user. The rule-based approach is used to inspect individual frames with respect to the predefined key
posture specification, and the finite state machine is used to model the life-cycle of each non-compliant
activity. The combining of these two approaches ensures the generation of one alert for each
non-compliant activity.

This study is a continuation of our project started in 2015 [29,30]. Initially, the system was designed
to work in a single room only. This limitation would prevent the system from being used in practice
because a nursing assistant in a nursing home is often assigned to take care of patients in several
different rooms. We later extended the original design so that systems deployed in multiple rooms
could be federated together to enable the tracking a nursing assistant when she or he goes to different
rooms to do her/his work [31]. In this paper, we provide greater technical details on the system design
and present a more comprehensive analysis on the data obtained during the field study.
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3. System Design

In this section, we outline the system requirement and elaborate our design rationale.

3.1. System Requirement

To achieve the objective of our project in helping nursing assistants to develop the good
habit of using proper body mechanics while providing bedside care, the system should have the
following properties:

• Privacy protection. The system must track only the consented nursing assistant, not any other
person that might appear in front of the Kinect sensor, including the patient in the room. This is
essential to protect the privacy of the patients. The US federal regulation requires that an explicit
consent is required before a patient can be tracked. Because it is unlikely for a patient to agree to
be tracked all the time for any purpose, the system must provide maximum provision that he or
she is not tracked.

• Reliable non-compliance activity recognition. The rooms in a nursing home typically are crowded
with limited space. For example, a room may consist of several pieces of furniture such as
wheelchairs, tables, walkers, etc. The activity recognition algorithm must be robust despite the
occlusion caused by these pieces.

• Realtime alert. To have any positive impact to a nursing assistant, the alert should be delivered in
realtime in a way that he or she could accept when he or she performed a non-compliant activity.

• Multi-room support. A nursing assistant is typically assigned to several rooms during a shift.
To maximize the effectiveness of our system, we must be able to continuously track the nursing
assistant regardless which room he or she goes in to do his or her job duties.

• Balance the privacy protection and usability of the system. While protecting the privacy of the
patients, the system must strive to be usable by nursing assistants in a way that is too burdensome
for them to use it.

3.2. System Design Rationale

3.2.1. Privacy Protection Design

The rationale for our privacy protection mechanism has been given in our previous work [29,30,32].
We provide a brief overview here. To ensure the privacy protection, we devised a registration
mechanism where a consenting nursing assistant must make a specific pose while pressing a button
on the smartwatch. On pressing the button, the Kinect runtime would attempt to find a particular user
in its view that is making the predefined registration posture. If one and only one is found, that user is
identified to be the consenting nursing assistant. This registration posture must be a posture that is
not normally made by any nursing assistant or the patient. Hence, the system would only register the
consenting nursing assistant.

Furthermore, the system tracks a user only via the skeleton data, not the color video frames,
depth frames, or infrared frames. Our system guarantees that only the skeleton data that belong to the
tracked user are analyzed for possible non-compliance activities. Our system logs only three types of
events: (1) the registration of a user when the tracking of that particular user starts; (2) the user has
gone out of the view of the Kinect, or the user has instructed Kinect to stop tracking, when the tracking
of the user stops; and (3) when a non-compliance activity is detected.

In addition to the registration mechanism, which relies on the synchronization of two modalities,
we also considered other approaches to identify a consenting nursing assistant. One alternative approach is
the use of a marker where a nursing assistant would place the marker on her or his uniform. However, this
approach may require the marker to be visible all the time, which is not practical because a nursing
assistant could be in any position relative to the Kinect sensor. Doing so would also significantly
increase the complexity of the system because the system would have to do both skeleton tracking and
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object detection concurrently the entire time. Another alternative could be the use of NFC (near-field
communication) sensors. However, because NFC’s operating range is only up to 10 cm, we cannot use an
NFC sensor to identify which skeleton is the participating nursing assistant.

In summary, the system does not use color or greyscale frames to operate and does not record such
frames in anyway. Hence, an administrator or a hacker cannot misuse the system for any purposes
that might violate the privacy of the patients, or track a nursing assistant in a way not intended by
our design.

3.2.2. Robust Activity Recognition Algorithm Design

All non-compliance activities that a nursing assistant might engage in while performing bedside
care share the same characteristic, i.e., the back is bending too much. Hence, we use the vector
determined by the hip center joint and the shoulder center joint, and calculate the angle between
this vector and the vector perpendicular to the floor plane, which gives the back flexion angle.
This algorithm is robust again occlusion to the lower extremity of a nursing assistant; hence, it can be
reliably used in a crowded room.

3.2.3. Realtime Alert Design

On detecting a non-compliance activity, the event is delivered immediately to the smartwatch
worn by the nursing assistant, which will generate a vibration alert with a companion text display on
the watch’s screen. The vibration is discreet in that other nursing assistants or the supervisor will not
notice. We hypothesize that this form of alert will be more acceptable by users, which is confirmed by
the participants in our field study survey.

3.2.4. Multi-Room Support Design

According to our original design, each room would install one Kinect sensor (with its controlling
computer), and a dedicated smartphone would be placed in each room that communicates only with
the program running in the computer in the room. Our expectation was that the smartwatch would
automatically bind with the dedicated smartphone in the room that the nursing assistant would go
into, and unbind with the smartphone placed in the room where the nursing assistant just leaves.
Unfortunately, this design did not work because some of the rooms are fairly close to each other,
which is within the Bluetooth operating range. As the result, the smartwatch does not do automatic
hand-off from one smartphone to another.

Hence, we changed the design to the following. Each participating nursing assistant would carry
a smartphone in her or his pocket, and wear a smartwatch on her or his wrist. The smartwatch is bound
with the smartphone. The smartphone can communicate with the computer program in every room in
which PACTS has been deployed. When a nursing assistant registers with the system, the registration
request is broadcast to all rooms and the particular system that could see the nursing assistant would
process the request and respond.

This broadcast-based mechanism might appear to be inefficient because it is clearly not scalable.
We argue that this is the most desirable design for our use cases. One may suggest that the
publish-subscribe pattern could be used for better scalability. Indeed, if we were to broadcast a
message to hundreds of destinations, the publish-subscribe approach could be the only viable approach.
However, we are targeting nursing homes, which typically have 10–20 rooms that need to have PACTS
installed. This is because PACTS is designed to track bedside cares where patients cannot take care of
themselves. In a nursing home, only a small fraction of patients are in this category. Hence, we do
not need scalability. Furthermore, to enable publish-subscribe, a centralized server would be required.
To avoid making this centralized serve a single-point of failure, redundant servers would be needed,
which would require sophisticated fault tolerance mechanisms [33–38]. Such an approach would
significantly increase the cost and complexity of the system, which is neither needed nor desirable.
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In fact, broadcast-based protocols are widely used in practice for self-discovery and low-maintenance,
such as the Address Resolution Protocol (ARP) and the Dynamic Host Configuration Protocol (DHCP).

3.2.5. Design for Usability while Protecting Patient Privacy

Privacy is a double-edged sword with respect to the usability of a system. For PACTS, without
privacy protection for patients, it will not be allowed to use in nursing homes. Furthermore, without
privacy protection for the participating nursing assistants (for example, their images will not be
recorded in anyway), they will unlikely agree to be tracked. However, privacy may also negatively
impact the usability of the system.

At the beginning of the field study, a nursing assistant would have to manually register with our
system every time she or he went to a room to provide bedside care. This caused significant frustration
with them and many eventually chose not to register with the system. The nature of the patient-care
work requires the nursing assistant to move in and out of a room frequently. Even while a nursing
assistant was doing bedside care, she or he might be unregistered by our system due to temporary
occlusions by furniture or by the patient. This unexpected difficulty forced us to improve the usability
of the system while not significantly reduce the privacy protection of patients.

We decided to incorporate a lease-based mechanism into the system. Once a nursing assistant
manually registered with a KinectServer, the KinectServer grants the nursing assistant a lease. While the
lease is active, the KinectServer would automatically re-register the nursing assistant as long as
the KinectServer has detected one and only one user is present in the view of the Kinect server.
This mechanism could improve the usability of the system because the nursing assistant would be
automatically re-registered if the KinectServer accidentally unregister her/him or when the nursing
assistant goes out and in the view of the Kinect sensor. In the mean time, this mechanism does increase
the risk of privacy violation because if one nursing assistant leaves the room and a visitor goes into
the same room, the latter would be registered as the nursing assistant. However, this scenario occurs
very rarely because a visitor typically would be accompanied by a nursing assistant, at least during
the initial visit.

The lease time is critical to the success for the lease-based mechanism. If it is too long, it increases
the risk of privacy violation. If it is too short, the usability of the system will not be improved
significantly. We consulted with the administrators of the nursing home, and concluded that the lease
duration should be set to 30 min because the time corresponds to the average duration of a bedside
care session. Hence, with the lease-based mechanism, a nursing assistant would only have to manually
register with the system once for every session of bedside care. Typically, a patient only needs bedside
care during early morning when she or he is about to get up, and at night when she or he is about to
go to sleep. Hence, a nursing assistant would only need to manually register with the system once or
twice per shift.

As a pre-caution for privacy protection, we added a way for a nursing assistant to manually
terminate the lease and stop tracking when she or he knows that another nursing assistant will replace
her/him. For the Pebble smartwatch, this can be done by pressing the down button.

Before we conclude this section, we should note that there are other factors that impact the
usability of the system. For PACTS, the non-compliance activity detection accuracy also plays a big
role in the usability of the system. As evidenced in the field test, the presence of false positives and
false negatives negatively impacted the usability of our system, which we will address in future works.

4. System Implementation

4.1. System Overview

Figure 1 illustrates the PACTS system layout when deployed into multiple rooms. This version
of PACTS is built on top of our initial version of the system [32,39,40]. To deploy PACTS in a room,
one Kinect sensor and one computer are installed. The Kinect sensor is typically positioned close to
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the ceiling facing the bed where the patient will rest in. At least during the installation and initial
configuration stage, the floor of the room should be clearly visible to the Kinect sensor. The computer
runs the KinectServer process that takes input (via a USB cable) from the Kinect sensor and runs all the
control logic for user registration, human activity monitoring, and alert reporting.

KinectServer

Wifi
(HTTP/JSON)

Bluetooth

Smart Phone
(Phone App)

Smart Watch
(Watch App)

Room-1 Room-2 Room-3 Room-4 Room-5 Room-6

User-1 User-2 User-3 User-4 User-5 User-6 User-7

Figure 1. The architecture of the privacy-aware compliance tracking system.

Each user is supposed to wear a smartwatch (we use the Pebble smartwatch) and carry a
smartphone (any Android phone or iPhone running the Pebble PhoneApp would work with PACTS).
The smartwatch runs a WatchApp we developed and the smartphone runs a corresponding PhoneApp.
The smartwatch is connected with the smartphone using Bluetooth. The smartphone connects to all
deployed KinectServers via WiFi using JavaScript Object Notation (JSON) over HTTP. The primary
role for the PhoneApp is to relay messages between the smartwatch (i.e., the WatchApp) and the
KinectServer, although we do incorporate some mechanism to minimize the communication between
the smartwatch and the smartphone to reduce the power consumption on both the smartwatch and
the smartphone. The energy-saving is more important for the smartwatch because the battery on the
smartwatch is quite small compared with that of the smartphone. The PhoneApp is configured to
have the IP addresses of all KinectServers and communicate with the KinectServers periodically for
the purpose of user registration, user activity detection, and other control needs. The broadcast-based
design is necessary because the system has no prior knowledge which room a nursing assistant will go
into to work.

The KinectServer runs the main control logic of the system in each room. Hence, it is the most
complicated component of PACTS. As shown in Figure 2, the KinectServer takes two forms of inputs:

• Kinect input: The streams of the color and depth frames from connected Kinect sensors.
• Network input: HTTP requests sent by the PhoneApps over the WiFi network.

The Kinect input is used to detect user activities, including the registration gesture and the
back-bending activity. The network input contains three types of requests:

• Registration request: It is sent when a user has requested to register with the system. The response
for the request indicates whether or not the registration has succeeded. Without the lease
mechanism, this request is only initiated by the user via the WatchApp, the registration request
will be broadcast to all known KinectServers. When the lease mechanism is enabled, the PhoneApp
would periodically sends the registration request to the KinectServer that the user had manually
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registered with earlier when the user is temporarily unregistered (due to occlusion or due to
her/him stepping out of the view of the Kinect sensor).

• Activity status request: It is sent periodically once a user has registered with the system.
The response indicates whether or not a back-bending activity has just been detected.

• Stop-tracking request: It is sent when the user wishes the KinectServer to stop tracking temporarily
due to privacy concerns, for example, when she is about to give the patient a sponge-bath to make
sure that the system absolutely will not track anyone in the room. Once the stop-tracking request
is received, the KinectServer also terminates the current lease, if any, for the user.

LoggerLogger
UserUser

KinectDriver ServerTask

HTTP ServerKinect
Skeleton
Stream

Kinect 
Coordinator

User

Activity
Recognizer

Configuration

Logger

HTTP/JSON Request

Figure 2. Internal structure of the KinectServer.

Figure 3 illustrates how these types of requests interact with different components of the system.
Only the manual registration request is broadcast to all KinectServers. All other types of requests are
delivered point-to-point.

PhoneApp

KinectServer 1
RG 

Detected

KinectServer 2

KinectServer 3

WatchApp

RG not 
Detected

Registered

RR-OK

RR-
Failed

Registration
Request

Status
Request

OK

Back-Bending 
Detected

Alert

Alert

User
Left View

Unregistered

Unregistered

User Came 
Back to View

RRRR RR-OK

Registered

Figure 3. The message flow between different components of the system.

The Kinect server has a number of components:

• Server and ServerTask to handle HTTP communications. The Server component serves as the
HTTP listener for the KinectServer. Upon receiving an HTTP request, the Server creates a new
ServerTask to handle the message. Both the HTTP request and the response contain a JSON object.

• KinectDriver to handle motion sensing data from the Kinect sensor. In addition, It also handles
the user registration request in conjunction with the Activity Recognizer. If the user is properly
registered, the user is added to the User object. For each registered user, the KinectDriver tracks
her/him for possible non-compliance activities.

• Kinect Coordinator to dispatch the registration and activity requests to a particular KinectDriver
and the corresponding User.
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During KinectServer initialization, the KinectDriver registers a delegate with the Kinect Sensor
so that it can receive the skeleton stream from the Kinect runtime. For each new skeleton frame
(i.e., Kinect input), the KinectDriver first makes a copy. If the frame contains a registered user,
the KinectDriver invokes the Activity Recognizer to conduct the single-frame level non-compliant
activity detection based on what is defined in the Configuration file. The single-frame level activity
detection result is passed on to the corresponding User object, which is responsible to carry out the
activity-level activity detection.

When a request arrives at the KinectServer from the network (i.e., network input), a ServerTask
is created by the HTTP Server object to handle the message. The ServerTask passes the request to
the Kinect Coordinator to find the appropriate KinectDriver or User object to handle the request.
Then, the corresponding response will be composed and returned to the client.

4.2. User Registration Mechanism

To protect the privacy of patients, a participating nursing assistant is required to register with
the system before she or he could be tracked and receive feedback. Before the lease mechanism was
introduced, the only way to register with the system is through a manual request by pressing the
select button of the Pebble smartwatch while making a predefined gesture. Here we assume that each
participating nursing assistant is given a smartwatch exclusively (i.e., not shared with other nursing
assistant). The WatchApp generates a unique identifier to represent the user. This identifier is used in
all components of the system for the user, including the activity log for the user.

The flow control for user registration at the KinectServer is shown in Figure 4. The registration
request arriving at the KinectServer is handled by the Kinect Coordinator. First, the corresponding User
object is searched. If one is found (meaning the user has registered with the KinectServer previously),
the registration request is passed to the User object for further processing. The User object then
invokes the Activity Recognizer to check if the user is making the registration gesture based on what is
defined in the Configuration file using the most recent copy of the skeleton frame. If the registration
request is for a new user, the request is dispatched to the KinectDriver object, and the KinectDriver
subsequently invokes the Activity Recognizer to detect if any of the skeleton contained in the current
frame is making the predefined registration gesture. If successful, a User object is created for the user.
Finally, a response message is composed indicating whether or not the registration is successful, and is
sent back to the PhoneApp and eventually the WatchApp. The registration result is then displayed on
the screen of the smartwatch.

Registration 
Request

Kinect 
Coordinator User Already Exists?

Yes

Perform
Registration 

Gesture 
Recognition

No

Dispatch 
ServerTask to 

Handle it

Return 
Registration/
Identification 

Result

Is Lease Active and 
Condition Met

No

If Successful, 
Add New 
User to 
UserList

Yes Auto-Register
User

Registration 
Response

Figure 4. The flow control for user registration at the KinectServer.

The registration mechanism not only protects the privacy of the patient, it enables the system
to know who it is tracking and enables continuous tracking of a nursing assistant even when she or
he goes to different rooms for bedside (as long as all such rooms are equipped with the KinectServer.
In essence, this person-specific tracking is made possible by synchronizing two sensing modalities:
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(1) computer vision via the Kinect sensor; and (2) wearable sensing via the smartwatch worn by a user
via the predefined registration gesture.

In the current study, we choose to use a registration gesture where the left or right forearm of the
nursing assistant pointing straight upward because this gesture allows the her/him to do so using one
arm to make the gesture while pressing the select button of the smartwatch using the remaining hand.

When the lease mechanism is enabled, a user is automatically registered before the expiration of
the lease provided that the corresponding User object is found in KinectServer and there is one and
only one skeleton in the current frame.

4.3. Gesture Recognition and Activity Detection

The Activity Recognizer component in the KinectSever is used to recognize the registration
gesture and to detect predefined activities, which are defined in the Configuration file encoded in the
eXtensible Markup Language (XML). Both the gesture/activity description and the recognition engine
follow the framework that we developed previously [10–12]. In this framework, an activity can be
defined in terms of Joint Angle, Joint Distance, and Bone Orientation. The Joint Angle element defines
the relative angle between two adjacent body segments represented by three joints (one joint common
to both segments, and one each for the other end of the two segments). The Joint Distance element
defines the distance between two joints. The Bone Orientation element defines the orientation of a body
segment relative to a particular anatomical planes, such as the frontal, sagittal, or transverse plane.

The class hierarchy is shown in Figure 5. The three types of elements are represented by
three classes JointAngle, JointDistance, and BoneOrientation. They all implement the abstract class
Configuration, which defines a single method called “RecognizeGesture()”. To accommodate activities
that require the use of complex configurations that use two or more configuration elements, the Gesture
class is introduced, which contains the GestureComponents member variable. This member variable is
used to fetch and store the list of configurations for the complex gesture/activity.

- ListOfConfiguration: 
RegisterRules 

- ListOfConfiguration: 
ActivityRules 

+RecognizeGesture()

GestureRecognizer

JointAngle BoneOrientation GestureJointDistance

+RecognizeGesture()
Configuration

- ListOfConfiguration: 
GestureComponents 

+RecognizeGesture()

Gesture

Figure 5. Class diagram for the Activity Recognizer.

The GestureRecognizer class is the front-end class for gesture/activity detection. It has two key
member variables: (1) RegisterRules, which contains one or more configurations for the registration
gesture; and (2) ActivityRules, which contains the list of configurations for the activities to be detected.
The RegisterRules may define multiple alternative gestures such that if any of the gesture is made
by the user, the user is considered registered. The GestureRecognizer is created when the system is
initiated where the definitions of the gestures and activities are loaded into GestureRecognizer from
the configuration file. For the registration gesture, it is detected at the single-frame level. For the
back-bending activity, it is detected both on the single-frame level, and the activity level, which we
will elaborate further.
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In this study, both the registration gesture and the back-bending activity are defined as
BoneOrientation elements and they all use the transverse plane as the reference plane, as shown
in Listing 1. For the transverse plane, we use the Kinect floor clip plane parameters. This is not only
convenient, but also more reliable because it is independent from the user postures. The registration
gesture is described in terms of the orientation between the left arm segment from left elbow to the
left wrist and the transverse plane, which should be 0 degree relative to the axis that is perpendicular
to the transverse plane, with a tolerance of 20 degrees. The back-bending activity is defined in terms
of the angle between the vector that is perpendicular to the transverse plane, and the trunk vector
from the hip center to the shoulder center. When a standing straight up, the angle should be close to 0.
We define the minimum deviation angle of 30 degrees to declare that the user is bending her/his back
too much.

Listing 1: Definition for the registration gesture and the back-bending activity used in this study.
1 <RegisterRules>
2 <Configuration>
3 <Type>BoneOrientation</Type>
4 <AlertBody>"Registration"</AlertBody>
5 <DownstreamJoint>"WristLeft"</DownstreamJoint>
6 <UpstreamJoint>"ElbowLeft"</UpstreamJoint>
7 <Plane>"Transverse"</Plane>
8 <AlphaAngle>"0"</AlphaAngle>
9 <MaxAngleDeviation> "20" </MaxAngleDeviation>

10 </Configuration>
11 </RegisterRules>
12 <ActivityRules>
13 <Configuration>
14 <Type>BoneOrientation</Type>
15 <AlertBody>"Bend"</AlertBody>
16 <DownstreamJoint>"HipCenter"</DownstreamJoint>
17 <UpstreamJoint>"ShoulderCenter"</UpstreamJoint>
18 <Plane>"Transverse"</Plane>
19 <AlphaAngle>"0"</AlphaAngle>
20 <MinAngleDeviation> "30" </MinAngleDeviation>
21 </Configuration>
22 </ActivityRules>

For both the registration gesture recognition and the non-compliance activity detection, we depend
on the floor plane information. As illustrated in Figure 6, we can derive the vector that is perpendicular
to the floor plane, Vp. For the registration gesture recognition, we measure the angle Ag formed
between the vector from left elbow to the left wrist and Vp. For the back-bending non-compliance
activity detection, we measure the back flexion angle Ab formed between the vector from the hip center
to the shoulder center and Vp.

Floor Plane

Perpendicular 
Vector Vp

Ag

Ab

Registration
Gesture

Recognition

Bending
Detection

Figure 6. Registration gesture recognition and non-compliant activity detection.
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In earlier versions of our system, the floor plane information is obtained from every skeleton
frame for gesture/activity recognition. This requires that the floor must always be clearly visible to the
Kinect sensor. Our field study showed that this assumption does not hold because the crowded room
could prevent Kinect from determining the floor plane. If the floor plane is not visible to Kinect, no one
could register with the KinectServer and no non-compliant activity could be detected. This issue is
resolved by taking the floor parameters during the initial deployment instead of taking the parameter
from each frame. This is possible because the Kinect sensor is fixed at the wall.

4.4. Alerts and Feedback

The purpose of alerts is to remind a consented nursing assistant that she or he is doing or has just
done something wrong that could increase the risk of lower back injuries. An alert is generated at the
KinectServer when one or more correctness rules are violated, and certain conditions are met. An alert
is delivered silently to the worker in the form of a vibration and a short message explaining the nature
of the violation (such as back bending) via the WatchApp on the smartwatch. In addition to the alerts,
a user is provided with cumulative feedback about her/his performance over time such as by day or
by week.

The system can also be configured to log raw activity data in terms of joint positions for
each consented worker for institution administrators to review and verify the cumulative worker
performance. The log could also be useful for system developers to refine the detection methods for
non-compliant activities. To reduce the log space requirement, the system can be configured to log raw
data only when a violation is detected.

While our experiments show that a non-compliant activities can be reliably detected by our system,
we must follow a carefully crafted method for alert generation and delivery. For example, it would not
make any sense if we generate an alert for every frame received that contains a non-compliant posture.
For the purpose of our system, we believe that an alert should be generated at the per activity level.
As shown in Figure 7, our system generates two types of alerts: active and passive alerts. An active
alert is generated on detection of a new non-compliant activity so that the user could terminate the
activity as quickly as possible. Hence, an active alert could produce the most benefit to a user by
reducing the amount of time the user is in the wrong postures.

Be
nd

in
g/

Tw
is

tin
g 

An
gl

e

Detection
Time

Detection
Time
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Non-Compliant 

Activity
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Completion of 

Current
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Early
Termination of
Non-Compliant 
Activity due to 
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Time

S2S1

e1

e2

e4

e3

Finite State Machine
for Non-Compliant Activity

Tracking

Figure 7. Two types of alerts in our system, and the finite state machine for non-compliant activity tracking.

However, active alerts might not fit all workers and workplaces. First, some nursing assistants
may perceive an active alert a distraction and prefer to get the current pulling or lifting job done even
if she or he is doing it wrong. Second, the nature of a pulling/lifting job might not be safely terminated
once started (such as when a lifting device is used), in this case, an active alert might actually increase
safety risks. Hence, our system also offers passive alerts. A passive alert is generated and delivered to
the worker as soon as the current non-compliant activity is completed. By delivering a passive alert in
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between two pulling/lifting jobs, the nursing assistant can take time to review the alert and hopefully
remember to do the job correctly the next time.

The types of alerts for each user can be configured by choosing the corresponding alert type via
the Options menu in the WatchApp. By default, the active alert is used. Regardless of what alert type
is chosen, our system generates a single alert for each non-compliant activity.

Thus far, we have assumed that the starting and ending of a non-compliant activity can be
detected reliably and immediately. This task is also critical to ensure that one and only one alert is
generated for each non-compliant activity. We decide to use the finite state machine to track the life
cycle of a non-compliant activity. A finite state machine for each tracked user has two states as shown
on the right side of Figure 7:

• Normal state, denoted as S1. It is represented by a by a posture configuration that is within the
boundary of the requirement. In our study, it refers to the range when the user is considered to
have her/his back straight up.

• Abnormal state, denoted as S2. It is represented by a by a posture configuration that is outside
the boundary of the requirement. In our study, it refers to the range when the user is considered
to have her/his back bent too much.

To be robust against occasional jitters and measurement errors, a transition between S1 and
S2 is made only after a n consecutive frames (in our study, n = 10) have all shown the consistent
configuration. As a tradeoff for the increased robustness, the detection time for the starting and ending
of a non-compliant activity is longer. With n = 10, the detection time is 330 ms compared with 33 ms if
a single frame is used. This delay is quite acceptable because a typical non-compliant activity lasts
several seconds or longer.

5. Field Study

For the field study, we installed PACTS in six rooms at a local nursing home with seven
participating nursing assistants. All rooms are single-occupancy rooms where there is only bed
and one patient per room. The study lasted 80 days. Because one of the nursing assistants was
not assigned to the bedside care duty, only the activities of six nursing assistants were monitored.
Furthermore, the patient in one of the rooms did not require bedside care, and another room had
several deaths, which made the room unavailable for extended period of time during the field study.
Therefore, only the data collected from four rooms are worthy of analysis.

The field study exposed a number of issues with our original design. First, as we mentioned
earlier, the manual registration mechanism for privacy protection significantly reduced the usability
of the system. Second, the use of a smartphone to relay the communication between the smartwatch
and the KinectServer also created usability issues for our system. The smartphone was on the critical
path of the registration and alerting process. If the smartphone is in deep sleep and fails to relay the
registration request from the smartwatch, the nursing assistant would not be able to register with the
KinectServer.

5.1. Analysis of the Logged Data

On Day 35 of the field study, we modified PACTS with the lease-based mechanism after learning
the usability issues with our system. The raw data on the total registered duration per room per day
in the four rooms are shown in Figure 8. The summary of the data collected is provided in Table 1.
As can be seen, only about 888 min (or 13 h) of data are logged for all four rooms. The daily average
of time monitored by PACTS is between 1 to 5 min. It is apparent that only a very small fraction of
the work done by nursing assistants were captured by PACTS. Hence, we cannot draw longitudinal
trend out of the data we have collected. Nevertheless, the mean daily registered time per room was
increased by more than five fold after the enabling of the lease-based mechanism.
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Figure 8. The total registered time per day during the entire 80-day field study in four resident rooms.
The arrows in the figures indicate the day when the lease-based mechanism was activated.

Table 1. Summary of the field study result. NCA is short for non-compliant activity.

Room Total of Registered Daily Average Before/After Total NCA Total Number
Number Time (Minutes) Lease Mechanism Time (Minutes) of NCAs

1 316.08 (daily mean 4.95) 3.02/18.78 16.74 427 (daily mean 5.3)
2 311.56 (daily mean 2.64) 1.56/7.11 2.04 575/7.2
3 89.16 (daily mean 1.11) 0.88/5.23 19.26 345/4.3
4 171.24 (daily mean 2.14) 1.14/6.80 30.54 620/7.8

5.2. Usability Survey Result

At the end of the field test, we asked the seven participants to complete a survey. This survey has
13 questions where the participant could choose one of four answers: Yes Much/Often; Yes Somewhat;
No Not Much; and No Not At All. The participants were also encouraged to provide written comments
regarding their experience. The summary of the survey result is provided in Figure 9.
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Figure 9. Survey result.
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Question 1 is: “Did you mind wearing the smartwatch/carrying the smartphone?” Regarding
this question, two participants indicated that to some degree they feel that it is a burden to
wear the smartwatch and/or carry the smartphone, and five participants did not mind doing so.
This suggests that the far majority of participants consider this system requirement acceptable.
However, a non-negligible portion of participants do consider this requirement a burden. This result is
inline with our observation and we have plan to address this issue.

Question 2 is: “Did wearing the smartwatch itself interfere with your job duties?” Regarding
this question, only one indicated that wearing the smartwatch interfered with her job duties to some
extend. The other six participants were not bothered.

Question 3 is: “Did the manual registration step interfere with your job duties?” For this question,
one indicated that it did interfere very much, two reported it interfered somewhat, and four (i.e., more
than half) did not find it interfere with her job duties. Again, because close to half of the participants
reported that the registration step interfered with their job duties, we consider it a high priority to develop
a biometric-based method to automatically register a participant with PACTS in the near future.

Question 4 is: “Did you ever have problems getting the phone to ’wake up’, connect to the
internet, and/or getting the watch face activated/to the correct screen?” For this question, four out of
seven reported that they encountered this problem sometimes. This shows that indeed the use of a
smartphone to bridge the communication between the smartwatch and the KinectServer is problematic.
We have plan to switch to Android smartwatch that can connect to the KinectServer directly via WiFi
to eliminate this problem.

Question 5 is: “Did the smart watch/phone maintenance (picking it up in the morning, charging,
taking on and off, etc.) interfere with your job duties?” Regarding this question, only one participant
indicated that these activities interfered with her job duties somewhat. Five participants felt the
maintenance activities did not interfere with their job duties at all.

Question 6 is: “Did the vibrating watch help you know when you were using poor body mechanics
during bedside care?” For this question, all seven participants indicated that the vibration-based alert
helped them to realize that they made a mistake when they used poor body mechanics. Five of them
strongly agreed that it helped. Even though it is a small sample, the survey did confirm that our design
for alert delivery method is useful.

Question 7 is: “Do you think this system would be helpful when first learning good body
mechanics?” For this question, only one participant indicated that PACTS is not much useful for
first learning good body mechanics. Five expressed that the system is a great help in learning good
body mechanics.

Question 8 is: “Do you think that using the smart watch/Kinect system resulted in any changes in
your using correct body mechanics during your job tasks?” Only two participants expressed negative
opinions. One indicated that “not so much” and the other one believed that it did not help at all.
Five participants (62.5%) have positive opinions. Two of them believed that the system helped them
very much, and three said that the system helped them somewhat.

Question 9 is: “Was the vibration a good way to be notified when you were doing something
incorrectly?” This question is rather similar to question 6, but the opinion is slightly less enthusiastic
with one indicating that vibration is not at all a good way to be notified. The other six participants are
positive about the alert delivery method (five very positive, and one somewhat).

Question 10 is: “Did the watch ever vibrate when you thought you were moving correctly?”
All seven participants reported that they have experienced false positives from our system. Four of
them indicated that this occurs very often. This shows that it is challenging to design the activity
detection algorithm that works in a crowded room with unpredictable orientation of the user. We plan
to enhance our current algorithm with a machine-learning based approach [9,41–44] by utilizing all
joints in the upper extremity.

Question 11 is: “If so, was this a problem for you?” This question is a continuation of question 10
and is relevant to all seven participants. Four participants expressed that the false positive is a problem
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for them. This shows that it is urgent to develop a better activity detection algorithm that minimize
false positives.

Question 12 is: “Did you ever feel like you were doing incorrect movements without any
feedback (vibration) from the smartwatch?” This question is about false negatives of our system.
Five indicated that sometimes they experience false negatives. Again, this exposed that our system
needs improvement.

Question 13 is: “Did you mind having the Kinect camera record your body positions while doing
bedside care activities?” All seven participants indicated that they do not mind having the Kinect
sensor record their body positions. This confirms the acceptability of PACTS by nursing assistants.

As can been from the survey result, all seven participants are very supportive in using PACTS
to improve their body mechanics. The survey does confirm our observation during the field test that
there are several major areas that need to be improved, particularly the manual registration and the
non-compliance activity detection accuracy. The comments left by the participants are overwhelmingly
positive. A few example comments are listed below:

• “It helps me to realize how I can hurt myself by moving residents wrong to transfer a resident”.
• “I think it would be a good idea”.
• “I think it should be repeated once it’s working properly. It would be a great source for proper

body mechanics”.
• “It was a good experience”.
• “It was nice to participate”.
• “I enjoyed the opportunity but it needs a little fixing”.
• “Thanks for thinking of ways to keep us safe”.
• “It was different and I enjoyed it”.

6. Conclusions and Future Work

In this paper, we presented the design, implementation, the result and lessons learned from a
field study of PACTS. The current version of PACTS has mechanisms to support the deployment of
the system into multiple rooms and can continuously track multiple nursing assistants while they
go to different rooms during the same shift. Furthermore, the registration gesture recognition and
non-compliant activity detection algorithm is robust again occlusions typically found in nursing
homes. A main lesson that we learned from the field study is that the usability of the system must
be improved significantly because PACTS is to be used by nursing assistants with no training in
engineering. The introduction of the lease-based mechanism improved the usability of the system.
However, the use of the smartphone as the bridge between the communication of the smartwatch and
KinectServer still proved problematic. The manual registration requirement could also be improved.
In future work, we plan to switch to Android smartwatch that is capable of communicating with the
KinectServer using WiFi so that the smartphone will not function in the critical path of the operation of
PACTS. In a lightly longer term, we aim to introduce a biometric-based auto-registration mechanism,
for example, based on speaker identification, to further improve the usability of PACTS without
compromising the privacy-protection of patients.

7. Patents

Part of this paper contains information included in a US patent application 20160381328,
titled “Systems and Methods for Privacy-Aware Motion Tracking with Notification Feedback”,
where Wenbing Zhao is the inventor [45].
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NCA Non-Compliant Activity
ARP Address Resolution Protocol
DHCP Dynamic Host Configuration Protocol
NFC Near Field Communication

References

1. Katz, J.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences. J. Bone
Jt. Surg. 2006, 88, 21–24.

2. Marras, W.S.; Lavender, S.A.; Leurgans, S.E.; Rajulu, S.L.; Allread, W.G.; Fathallah, F.A.; Ferguson, S.A.
The Role of Dynamic Three-Dimensional Trunk Motion in Occupationally-Related Low Back Disorders:
The Effects of Workplace Factors, Trunk Position, and Trunk Motion Characteristics on Risk of Injury. Spine
1993, 18, 617–628.

3. Videman, T.; Battié, M.C. Spine update: The influence of occupation on lumbar degeneration. Spine 1999,
24, 1164–1168.

4. Mohammed, S.; Singh, D.; Johnson, G.T.; Xu, P.; McCluskey, J.D.; Harbison, R.D. Evaluation of occupational
risk factors for healthcare workers through analysis of the Florida Workers’ Compensation Claims Database.
Occup. Dis. Environ. Med. 2014, 2, 77.

5. Lun, R.; Zhao, W. A Survey of Applications and Human Motion Recognition with Microsoft Kinect. Int. J.
Pattern Recognit. Artif. Intell. 2015, 29, 1555008.

6. Zhao, W.; Espy, D.D.; Reinthal, M.; Feng, H. A feasibility study of using a single Kinect sensor for
rehabilitation exercises monitoring: A rule based approach. In Proceedings of the IEEE Symposium on
Computational Intelligence in Healthcare and E-health, Orlando, FL, USA, 9–12 December 2014; pp. 1–8.

7. Zhao, W. A concise tutorial on human motion tracking and recognition with Microsoft Kinect. Sci. China
Inf. Sci. 2016, 59, 93101.

8. Lin, J.S.; Kulic, D. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 168–180.

9. Li, Y.; Luo, X.; Wang, W.; Zhao, W. Human Action Recognition with Skeleton Data Using Extreme Learning
Machine. In Proceedings of the Chinese Intelligent Automation Conference; Springer: Berlin, Germany, 2017;
pp. 449–456.

10. Zhao, W.; Lun, R.; Espy, D.D.; Reinthal, M. Rule based realtime motion assessment for rehabilitation exercises.
In Proceedings of the IEEE Symposium on Computational Intelligence in Healthcare and E-health, Orlando,
FL, USA, 9–12 December 2014; pp. 133–140.

11. Zhao, W.; Lun, R.; Espy, D.D.; Ann Reinthal, M. Realtime Motion Assessment For Rehabilitation Exercises:
Integration Of Kinematic Modeling With Fuzzy Inference. J. Artif. Intell. Soft Comput. Res. 2014, 4, 267–285.



Appl. Syst. Innov. 2018, 1, 3 18 of 19

12. Zhao, W.; Reinthal, M.A.; Espy, D.D.; Luo, X. Rule-Based Human Motion Tracking for Rehabilitation
Exercises: Realtime Assessment, Feedback, and Guidance. IEEE Access 2017, 5, 21382–21394.

13. Hachaj, T.; Ogiela, M.R. Rule-based approach to recognizing human body poses and gestures in real time.
Multimedia Syst. 2014, 20, 81–99.

14. Debar, H.; Wespi, A. Aggregation and correlation of intrusion-detection alerts. In Recent Advances in Intrusion
Detection; Springer: Berlin, Germany, 2001; pp. 85–103.

15. Morin, B.; Mé, L.; Debar, H.; Ducassé, M. A logic-based model to support alert correlation in intrusion
detection. Inf. Fusion 2009, 10, 285–299.

16. Valeur, F.; Vigna, G.; Kruegel, C.; Kemmerer, R. Comprehensive approach to intrusion detection alert
correlation. IEEE Trans. Dependable Secure Comput. 2004, 1, 146–169.

17. Hravnak, M.; Edwards, L.; Clontz, A.; Valenta, C.; DeVita, M.A.; Pinsky, M.R. Defining the incidence of
cardiorespiratory instability in patients in step-down units using an electronic integrated monitoring system.
Arch. Intern. Med. 2008, 168, 1300–1308.

18. Chipara, O.; Lu, C.; Bailey, T.C.; Roman, G.C. Reliable clinical monitoring using wireless sensor networks:
Experiences in a step-down hospital unit. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, Zurich, Switzerland, 2–5 November 2010; pp. 155–168.

19. Imhoff, M.; Kuhls, S. Alarm algorithms in critical care monitoring. Anesth. Analg. 2006, 102, 1525–1537.
20. Roesch, M. Snort: Lightweight Intrusion Detection for Networks. In Proceedings of the 13th Systems

Administration Conference, Seattle, WD, USA, 7–12 November 1999; Volume 99, pp. 229–238.
21. Hayes, D.L.; Levine, P.A. Pacemaker timing cycles. In Cardiac Pacing and ICDs; Blackwell Publishing: Malden,

MA, USA, 2002; pp. 265–321.
22. Wang, P.; Kramer, A.; Estes, N.; Hayes, D.L. Timing cycles for biventricular pacing. Pac. Clin. Electrophysiol.

2002, 25, 62–75.
23. Cobelli, C.; Carson, E. Introduction to Modeling in Physiology and Medicine; Academic Press: Cambridge, MA,

USA, 2008.
24. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection.

In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 22–25 May 2010;
pp. 305–316.

25. Becker, K.; Thull, B.; Käsmacher-Leidinger, H.; Stemmer, J.; Rau, G.; Kalff, G.; Zimmermann, H.J. Design
and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model.
Artif. Intell. Med. 1997, 11, 33–53.

26. Convertino, V.A.; Moulton, S.L.; Grudic, G.Z.; Rickards, C.A.; Hinojosa-Laborde, C.; Gerhardt, R.T.;
Blackbourne, L.H.; Ryan, K.L. Use of advanced machine-learning techniques for noninvasive monitoring of
hemorrhage. J. Trauma Acute Care Surg. 2011, 71, S25–S32.

27. King, A.; Fortino, K.; Stevens, N.; Shah, S.; Fortino-Mullen, M.; Lee, I. Evaluation of a smart alarm
for intensive care using clinical data. In Proceedings of the Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 Septermber 2012;
pp. 166–169.

28. Murukannaiah, P.K.; Singh, M.P. Platys: An Active Learning Framework for Place-Aware Application
Development and Its Evaluation. ACM Trans. Softw. Eng. Methodol. 2015, 24, 1–33, doi:10.1145/2729976.

29. Zhao, W.; Espy, D.D.; Reinthal, M.; Ekelman, B.; Goodman, G.; Niederriter, J. Privacy-Aware Human Motion
Tracking with Realtime Haptic Feedback. In Proceedings of the IEEE International Conference on Mobile
Services, New York, NY, USA, 27 June–2 July 2015; pp. 446–453.

30. Zhao, W.; Lun, R.; Gordon, C.; Fofana, A.B.M.; Espy, D.D.; Reinthal, M.A.; Ekelman, B.; Goodman, G.D.;
Niederriter, J.E.; Luo, X. A Human-Centered Activity Tracking System: Toward a Healthier Workplace.
IEEE Trans. Hum.-Mach. Syst. 2017, 47, 343–355.

31. Zhao, W.; Wu, Q.; Padaraju, V.; Bbela, B.; Reinthal, A.; Espy, D.; Luo, X.; Qiu, T. A Privacy-Aware Compliance
Tracking System for Skilled Nursing Facilities. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Banff, AB, Canada, 5–9 October 2017; pp. 3568–3573.

32. Zhao, W.; Lun, R.; Gordon, C.; Fofana, A.B.M.; Espy, D.D.; Reinthal, A.; Ekelman, B.; Goodman, G.D.;
Niederriter, J.E.; Luo, C.; et al. LiftingDoneRight: A Privacy-Aware Human Motion Tracking System for
Healthcare Professionals. Int. J. Handheld Comput. Res. 2016, 7, 1–15.

33. Zhao, W. Building Dependable Distributed Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014.



Appl. Syst. Innov. 2018, 1, 3 19 of 19

34. Chai, H.; Zhao, W. Towards trustworthy complex event processing. In Proceedings of the 5th IEEE
International Conference on Software Engineering and Service Science, Beijing, China, 27–29 June 2014;
pp. 758–761.

35. Chai, H.; Zhao, W. Byzantine Fault Tolerant Event Stream Processing for Autonomic Computing.
In Proceedings of the IEEE 12th International Conference on Dependable, Autonomic and Secure Computing,
Dalian, China, 24–27 August 2014; pp. 109–114.

36. Zhao, W. Optimistic Byzantine fault tolerance. Int. J. Parallel Emerg. Distrib. Syst. 2016, 31, 254–267.
37. Zhao, W. Performance optimization for state machine replication based on application semantics: A review.

J. Syst. Softw. 2016, 112, 96–109.
38. Zhao, W. Fast Paxos Made Easy: Theory and Implementation. Int. J. Distrib. Syst. Technol. 2015, 6, 15–33.
39. Lun, R.; Gordon, C.; Zhao, W. Tracking the activities of daily lives: An integrated approach. In Proceedings

of the Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 466–475.
40. Lun, R.; Gordon, C.; Zhao, W. The design and implementation of a Kinect-based framework for selective

human activity tracking. In Proceedings of the 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002890–002895.

41. Luo, X.; Lv, Y.; Zhou, M.; Wang, W.; Zhao, W. A laguerre neural network-based ADP learning scheme with
its application to tracking control in the Internet of Things. Pers. Ubiquitous Comput. 2016, 20, 361–372.

42. Luo, X.; Zhang, D.; Yang, L.T.; Liu, J.; Chang, X.; Ning, H. A kernel machine-based secure data sensing and
fusion scheme in wireless sensor networks for the cyber-physical systems. Future Gener. Comput. Syst. 2016,
61, 85–96.

43. Luo, X.; Deng, J.; Wang, W.; Wang, J.H.; Zhao, W. A Quantized Kernel Learning Algorithm Using a Minimum
Kernel Risk-Sensitive Loss Criterion and Bilateral Gradient Technique. Entropy 2017, 19, 365.

44. Luo, X.; Xu, Y.; Wang, W.; Yuan, M.; Ban, X.; Zhu, Y.; Zhao, W. Towards Enhancing Stacked Extreme Learning
Machine With Sparse Autoencoder by Correntropy. J. Frankl. Inst. 2017. doi:10.1016/j.jfranklin.2017.08.014.

45. Zhao, W. Systems and Methods for Privacy-Aware Motion Tracking with Notification Feedback. U.S. Patent
App. 15/190,669, 29 December 2016.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	System Design
	System Requirement
	System Design Rationale
	Privacy Protection Design
	Robust Activity Recognition Algorithm Design
	Realtime Alert Design
	Multi-Room Support Design
	Design for Usability while Protecting Patient Privacy


	System Implementation
	System Overview
	User Registration Mechanism
	Gesture Recognition and Activity Detection
	Alerts and Feedback

	Field Study
	Analysis of the Logged Data
	Usability Survey Result

	Conclusions and Future Work
	Patents
	References

