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Abstract: Ubiquitous intelligence of Internet of Things (IoT) objects and new sensors provide
innovative solutions for a variety of health issues. Unintentional child poisoning represents an
increasingly important health issue worldwide, partially because of an increase in the use of drugs
and food supplements. Although child-resistant bottle caps have probably saved many lives, they
are not foolproof and do not provide warnings for parents and caregivers when children try to
access the bottles. In this paper we present a design, implementation, and feasibility analysis
of an intelligent “safe pill bottle” that can identify when a child is trying to open a bottle and
then generate an immediate warning to deter a child from opening the bottle and send alerts
to parents/guardians. The bottle controller uses capacitive sensing to identify the class of user.
We present the results of pilot testing with eight adults and eight children using neural networks
(NN). With 474 bottle-opening events, our NN had 96.4% accuracy of predicting whether the user
was a child or an adult. Preliminary results demonstrate that smart pill bottles may be an effective
tool to prevent unintentional child poisoning.

Keywords: poisoning prevention; child safety; smart pill bottle; IoT; sensing; neural networks; user
identification; biometric identification

1. Introduction and Background

Unintentional child poisoning of children under six years of age represents nearly 50% of the
2.4 million poisoning exposures reported to US poison control centers annually [1,2]. Moreover, not
all exposures of children ages 0-5 years are reported to poison control centers, so existing numbers
are believed to be underestimates. Currently used child-resistant caps have proven to be an efficient
method of saving young children’s lives, but they are not foolproof. Federal regulations permit
child-resistant caps to be used if they are opened by 20% of children ages 42-51 months within 10 min
(16 CFR 1700.20). Furthermore, child-resistant caps are frustrating to many consumers, including
elderly and disabled individuals.

There are at least two primary reasons for high child poisoning rates. First, medications are more
available than ever in our homes. The presence of prescription drugs, over-the-counter medicines,
vitamins, herbs, and dietary supplements near young children is extremely common, and the simple
presence of dangerous items in the home increases the odds of young children encountering them and
unintentionally poisoning themselves [3]. Second, because of our fast-paced lifestyles, adults might
forget to properly store medicine away from children’s reach, or a parent or grandparent might forget
a pill bottle is in a handbag or briefcase. Young children who discover medicine while adults were not
looking comprise 95% of unintentional medication overdose ER visits [4].
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New sensing technologies and biometric identification may detect a variety of hazardous events.
Biometric authentication could ensure that the right person is accessing the right data. The most
popular biometric authentication methods include fingerprint authentication based on 2D image
processing techniques to extract unique physiological features of the user [5]. Palm features, such as
palm prints and palm-vein networks have been proposed [6,7]. Zhang et al. proposed a technique using
3D surface curvature maps for feature extraction [8]. All methods demonstrate that hand geometry
and surface curvature influence the contact area with an object and allow for unique identification of
the user. Changes in contact area and pressure influence capacitance of the skin to object interface [9].
We propose a new method of identification of the class of users and detection of critical events when a
child is trying to open a pill bottle.

The Internet of Things (IoT) introduced a paradigm where everyday objects feature identification,
sensing, networking, and processing capabilities that allows them to communicate with one another
and with other devices and services over the Internet [10]. Ubiquity of IoT sensors and services
provides an opportunity for new devices and services. Smart pill bottles, such as the AdhereTech smart
pill bottle [11], are increasingly used for monitoring of drug compliance. We plan to expand the existing
functionality of connectivity of the smart pill bottle with detection of critical events to prevent child
poisoning. The same technology can be used to reduce child poisoning from other household products.
Our preliminary results demonstrated feasibility of use of capacitive measurement to identify the class
of user (child vs. adult) [12].

Widespread use of capacitance-based human—computer interfaces motivates the integration of
capacitance measurement interfaces in a number of commercially available microcontrollers. As an
example, the microcontroller NXP MKL26Z64VFT4 used in the Teensy LC sensor platform [13] supports
capacitive measurements from up to 11 pins with a default accuracy of 0.02 pF and a measurement
time in the order of 1 millisecond. The microcontroller features low power consumption, a small
48QFN package, and a low price, thus making it suitable for embedded IoT platforms.

Herein, we describe a pilot study with the prototype safe bottle [12] to demonstrate the
effectiveness of our system design for the real-time generation of warnings. Our sample comprised
16 participants: eight children and eight adults. The primary hypothesis of our study was that the
system can properly detect users as a child (less than 10 years old) or an adult (more than 20 years old).

2. Materials and Methods

We implemented the prototype safe bottle with 15 capacitive segments around a standard pill
bottle. The capacitive sensors were made of copper tape strips insulated with clear plastic tape. The first
prototype featured 5 segments and provided insufficient resolution. Therefore, we implemented a
second prototype with 15 capacitive segments, as shown in Figure 1.

Inside the bottle we placed an embedded microcontroller board and a battery. To facilitate
measurements from multiple segments at a high sampling rate, we used two microcontroller
boards: Teensy 3.2 [14] was used to measure capacitance from 6 channels and Teensy 3.6 [15] to
measure capacitance from 9 channels and save data to an on-board microSD card. Capacitance
was sampled at 50 Hz throughout the experiment. Teensy 3.6 served as the master controller that
initiated measurements in each cycle and collected measurements from the slave board using serial
(UART) communication.
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Figure 1. Safe bottle prototype.

In the pilot experiment we collected real-time measurements of capacitance to detect two classes of
users: children (in our pilot experiment, ages 5 to 10 years old), and adults (over 20 years old). We asked
16 participants—eight adults and eight children—to open and shut the bottle 30 times, simulating
taking a pill out of the bottle. We recruited participants as volunteers from our circle of friends and
collaborators, in many cases using children and adults from the same family to represent a realistic
use case scenario. Participants represented a range of racial, ethnic, and cultural groups. The average
age and standard deviation of adult users was 33 £ 14.9 years, and for children 7.5 £ 1.5 years.
The experimental protocol was approved by the IRB at the University of Alabama at Birmingham
(approval number IRB-300000806).

The capacitance of all segments was constantly recorded with a sampling frequency of 50 Hz.
Subjects were not instructed how to hold or open the bottle, as we wished to capture their natural
patterns of bottle use. We collected a total of 474 events during the experiment, 29.6 events per user.
Two hundred and forty-eight events were from adult users and 226 events from child users.

2.1. Signal Processing and Feature Selection

All signals were collected by the embedded controller and stored on the microSD card for
postprocessing. All processing was performed off line using Matlab 2017b.

A typical example of the change of capacitance on two out of 15 segments during bottle opening
is shown in Figure 2. As shown, depending on the contact area between the capacitive segment and
the palm or fingers, the capacitance of segments increases from approximately 25 pF to 3643 pF.
A time sequence of contact with different sensor segments can be also seen; in this case, segment seven
(57) is touched first and released later. Segment capacitance fluctuates somewhat during the event,
depending on the contact area and pressure. Figure 2 illustrates the change of capacitance for two
segments only (S6 and S7); similar patterns of change during bottle handling event can be seen in all
15 segments. Both signals are filtered using a 3-point median filter to remove high frequency noise.



Appl. Syst. Innov. 2018, 1,13 40f 11

45

Capacitance S6
Capacitance S7

Capacitance [pF]

| | | | | |
0 1 2 3 4 5 6
time [s]

Figure 2. Pattern of capacitance change on two segments during bottle opening.

The user’s contact pattern can be characterized using the relative change of segment capacitance
caused by contact with the palm or fingers. Each segment has a different default capacitance, as shown
in Figure 2. Therefore, we calculate the relative change of capacitance CR; for each segment i (C;) using
default capacitance (Cdef;) before the touch, via Equation (1):

Ci - Cdefi

CR; = Cdef, @

Total capacitance C; of all N segments is calculated as:

15
Cr=Y." CR. @)

The start of an event is recognized as a change of total capacitance greater than the threshold,
which in our case is 20% higher than the default capacitance C;. The region of interest (ROI) for each
touch event is selected as the 500 ms period from the start of touch. We save the relative change of
capacitance for each segment and characterize each event using the following parameters:

e tRCC—total relative change of capacitance as the sum of all relative changes CR;,i=1... N
e CRmax=max(CR;),i=1... N
e CRN;—normalized change of capacitance

CR;

RN; =
C ! CRmax ’

i=1.N 3)

e tRCCN—normalized total relative change of capacitance, calculated as sum of all normalized
changes of capacitance according to Equation (3)
e mspos—mid-segment position, calculated as a center of gravity of the sorted set of relative

capacitances CRgyyt
Y CRsort; i .
mspos = =————, 1 = 1..N. 4
P Y CRsort; @
Since touch capacitance depends on skin properties and current conditions, touch capacitance
can be significantly different in the case of wet hands compared with contact with dry hands for the
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same user. Therefore, we use normalized changes according to Equation (3) and tRCCN to determine
parameters that depend on touch area, not skin condition.

An example of the absolute change of capacitance (C; — Cdef;) for a child and an adult for each
segment is shown in Figure 3. As shown, the smaller child’s hand is in contact with a smaller number
of segments. Smaller contact area from the child also generated smaller change of capacitance on
segments in contact with the palm or fingers. Note that because of the circular pattern of capacitive
segments, with no markers on the bottle (as shown in Figure 1), each touch event will have a different
distribution of values between segments, even for the same hand contact pattern with the bottle. That is
the reason why we use sorted sets of relative changes (CRq,+) to generate the pattern, independent of
the relative position of the bottle during opening, as defined in Equation (4).
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Figure 3. An example of the absolute change of capacitance during opening of the bottle for an adult
and a child.
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Each user generates a specific touch pattern described with our set of parameters (Equations 1-4).
As an illustration, a sorted set of normalized changes of capacitance for an adult and a child is
represented in Figure 4. It can be seen that the adult has a larger contact area and more segments with
significant changes than the child. The extracted parameter mspos represents the “center of gravity”
of the change and the distribution of segments during a touch event. In this example, normalized
change of capacitance for the 3 segments with the largest contact area has a similar change as the
remaining 12 segments for a child (exact value is 3.29). For the same example, the adult has contact
with more sensors, and therefore relative change of 5 segments is similar to the change of the remaining
10 segments (exact value is 5.17). Both values of mspos in Figure 4 were calculated according to
Equation (4).
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Figure 4. Sorted and normalized capacitance of all segments and calculated values of mspos for an
adult and a child; figure represents the same data set from Figure 3.

2.2. User Identification

Our preliminary investigation demonstrated effectiveness of user classification using both
Support Vector Machines (SVM) and neural networks (NN), with the two techniques yielding similar
performances [12]. Since NN had a slightly better performance and are suitable for embedded
implementation, we present in this paper only the NN method of user class identification.

The extracted parameters demonstrate significant variability between users and even for different
events from the same user. An example of the relationship between tRCC and tRCCN is presented in
Figure 5. Because of the overlap of values, it is necessary to use multi-parameter user identification.
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Figure 5. Change of tRCC and tRCCN for adults and children.
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We used a 2-layer NN with 12 nodes in the first layer and one node in the second layer.
All processing was performed using the NN toolbox in Matlab. In addition to the previously described
parameters, we improved the performance by introducing two additional parameters:

e  CCdiff—difference of total capacitance from average total capacitance for all children (CCmean):
o CAdiff—difference of total capacitance from average total capacitance for all adults (CAmean):

Values of CCdiff and CAdiff are calculated using total capacitance Ct, adult group capacitance
threshold CAthresh, and group capacitance means CCmean and CAmean using the following pseudo code:

if Ct < CAthresh
CCdiff = Ct—CCmean
CAdiff =0 5)
else
CCdiff =0
CAdiff = Ct—CAmean

Therefore, the NN feature set we used for class identification contains five parameters, defined as:

(tRCC | tRCCN | mspos | CCdif f | CAdiff) 6)
3. Results

The average values and the standard deviation of the main event parameters are presented in
Table 1. Although the mean values demonstrate significant differences between groups, individual
events demonstrate significant variance, even for the same user. Therefore, we used multi-parameter
user classification.

Table 1. Average values of main event parameters; all values represent mean + standard deviation.

Child Adult

tRCC 5.92 +2.40 18.85 £+ 5.07
tRCCN 490+ 1.16 6.83 = 1.58
midpos 3.79 £0.71 5.40 + 0.56

We selected the first eight subjects (four adults and four children) to train NN, and the remaining
eight subjects to test the network. During training, 80% of events were used to train NN, 15% for
validation, and 5% for testing. The confusion matrix for the testing set is presented in Table 2.

Table 2. Confusion matrix of the testing set of eight subjects (four adults and four children)

Adult 118 (524%)  2(0.9%) 98.3%/1.7%

Output Class Child 6 (2.7%) 99 (44%) 94.3%/5.7%
Total 95.2%/4.8% 98% /2% 96.4%/3.6%
Adult Child Total
Target Class

We also trained and tested a neural network with all events from all 16 subjects. The neural
network was trained with 70% of the events, validated with 15%, and tested with 15% of the events.
The confusion matrix for that test is shown in Figure 6. The receiver operating characteristic (ROC)
performance of the test is shown in Figure 7.
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Figure 6. Confusion matrices of the neural networks (NN) trained and tested with all events.

Training of the NN was performed off-line to optimize NN weights for classification, with bias for
maximum accuracy for detection of children. NN weights were then implemented on an embedded
microcontroller for real-time classification of an event. Processing time for a selected set of features is
less than 1 ms. Therefore, total processing latency is 500 ms for data collection, and 1 ms for signal
processing and classification, which allows the controller to work in real-time and generate timely
warnings without delay. A long data collection window is necessary for a stable input data signal, as
can be seen in Figure 2, but subsequent prototypes will be able to implement an on-bottle warning
that is generated immediately to deter a child and to send a message to supervising adults through

Wireless Local Area Network.
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Figure 7. The receiver operating characteristic (ROC) performance of NN trained and tested with all events.

4. Discussion

Results from this preliminary study of 16 participants demonstrate the feasibility of the proposed
concept of a “safe bottle” that can recognize the class of user as a child or an adult. Accuracy of the
NN was approximately 97%, with an error rate of just 3%. Furthermore, we emphasize that the safe
bottle is intended primarily to protect children 0-5 years of age from unintentional poisoning, and
our pilot test used for pragmatic reasons (availability, developmental maturity to complete the task)
children with an average age of children 7.5 years (range = 5-10). We greatly outperformed our initial
goal of less than 10% of errors for children ages 0-5.

Ultimately, we envision the use of “smart bottles” as devices that can replace or supplement
current child-resistant lids on pill containers. We are unaware of any similar such initiatives in the
field to improve the safety of children; the closest comparator we have located is a proposal, not yet
prototyped to our knowledge, to use biometric characteristics such as fingerprints to restrict the use of
firearms [16].
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As our prototype moves into implementation, an embedded controller will be placed at the
bottom or the side of the pill bottle, separate from pills in the bottle; this model replicates existing
smart pill bottles from Adhere Tech [11]. Since medical or advertising labels can be taped over the
sensors without changing their performance, safe pill bottles would look identical to currently-used
standard pill bottles. Given the frequency of unintentional child poisoning, and the fact that the current
technology of child-resistant caps is imperfect, smart bottles may offer an alternative that provides
greater protection and higher efficacy than currently used strategies.

Smart bottle technology is not without limitations. There will be an increase in price per bottle,
primarily because of the price of the embedded controller. Capacitive sensors can be taped onto the
bottle or integrated in the bottle during injection molding of the plastic bottle. Although costs are likely
to decrease over time, and re-usable bottles could easily be manufactured (consider the precedent of
reusable glass bottles in many eras and jurisdictions), some consumers and manufacturers are likely to
continue to choose the lowest-cost legal strategies to reduce the child poisoning risk, which currently
are child-resistant caps. As costs decrease, industry and consumer decisions may change, as evidenced
by the early commercial success of the Adhere Tech bottle [11].

Engineering limitations exist also. Current processing of the event and selection of the region
of interest can be significantly improved. We currently use only 0.5 s at the beginning of the event
to detect the average of values in the region of interest. However, sophisticated pre-processing can
significantly improve noise immunity in recorded signals. Furthermore, our pilot test did not provide
enough data for training of the neural network. We expect to conduct additional tests in the future.

Finally, there is potential to improve our use of neural networks. NN allow analysts to set the
thresholds for class separation. The results presented for our experiment used the default NN threshold
of 0.5. Sensitivity analyses suggest that modified thresholds would reduce the number of events when
children are detected as adults, but would also increase the number of errors when adults are detected
as children, or “false alarms.” Increased false alarms where adults are incorrectly classified as children
might be preferred in our system over errors where children are misidentified as adults. With larger
datasets, NN could be retrained based on feedback from users, thus optimizing performance for a
given group of users.

5. Conclusions

Smart objects in the IoT age can provide better solutions for important problems. We presented
data demonstrating the feasibility of using a safe pill bottle to prevent unintentional child poisoning.
Our pilot study indicates that the approach is feasible, suggesting a safe pill bottle integrated into
an IoT system [17] could provide warnings to parents and caregivers, reducing unintentional child
poisoning risk. Similar methods can be embedded into other everyday objects that could potentially
harm children, including cleaning fluids; alcohol, nicotine, or marijuana products; fuels; and so
on. Ultimately, intelligent bottle designs might detect all critical events, such as children trying to
access dangerous products, and generate aural and visual warnings to deter children. The bottle
could also communicate information about events to a central server that would immediately notify
parents/guardians about possibly critical events using preconfigured messages and modalities.
The server would also store data for identification of patterns and re-conceptualization of potential
poisoning situations. We plan future work along these lines, including system integration and
additional optimization of processing to reduce the number of critical errors.
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