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Abstract: In this paper, new fuzzy numerical methods based on the fuzzy transform (F-transform
or FT) for solving the Cauchy problem are introduced and discussed. In accordance with existing
methods such as trapezoidal rule, Adams Moulton methods are improved using FT. We propose three
new fuzzy methods where the technique of FT is combined with one-step, two-step, and three-step
numerical methods. Moreover, the FT with respect to generalized uniform fuzzy partition is able
to reduce error. Thus, new representations formulas for generalized uniform fuzzy partition of FT
are introduced. As an application, all these schemes are used to solve Cauchy problems. Further,
the error analysis of the new fuzzy methods is discussed. Finally, numerical examples are presented
to illustrate these methods and compared with the existing methods. It is observed that the new
fuzzy numerical methods yield more accurate results than the existing methods.
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1. Introduction

In fact, most mathematical models in engineering and science requires the solution of ordinary
differential equations (ODEs). Generally, it is difficult to obtain the closed form solutions for ODEs,
especially, for nonlinear and nonhomogeneous cases. Many models often lead to ordinary differential
equations which consist of Cauchy problems are an important branch of modern mathematics that
arises naturally in different areas of applied sciences, physics, and engineering. Thus, many researchers
start developing methods for solving Cauchy problems are of particular importance [1–3].

FT was coined by Perfilieva as a new mathematical method was developed [4]. The core idea
of FT is a fuzzy partition of a universe into fuzzy subsets. The technique of FT has been successfully
applied into other mathematical problems as well including image processing, analysis of time series
and elsewhere [5–7]. This idea has been applied to Cauchy problems was first published as well as
other numerical classical methods [8], by proposing generalized Euler and Euler- Cauchy methods, so
that the Mid-point FT method was demonstrated in [9]. The success of these applications is due in
part to the fact that FT is capable to accurately approximate any continuous function. Thus, we will
propose new fuzzy numerical methods for Cauchy problems with help of the FT and new iterative
method.

The motivation of the proposed study comes from the papers [3,8,10]. Numeric Solution to the
Cauchy problem was considered and the authors showed that the error can be reduced by using FT
with uniform fuzzy partitions [8,9]. At the same time, [10,11], the concept of generalized fuzzy partition
was proposed. Besides others, a necessary and sufficient condition making it possible to design easily
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the generalized fuzzy partition was provided [12]. This is important for various practical applications
of FT. Further [3], the authors have proposed modifications trapezoidal rule and Adams-Moulton
methods (2 and 3-step) to solve ODEs based on the new iterative method was introduced [2].

In this paper, we discuss the problem that considered in [8,9]. The triangular and raised cosine
generating function was replaced by new representations formulas for generalized uniform fuzzy
partition of FT such as power of the triangular and raised cosine generating function. We study
approximation properties of the FT based on powers of triangular and raised cosine generalized
uniform fuzzy partition can be constructed in such way that the FT can reduce error. Also, we propose
modifications in the FT introduced by I. Perfilieva [4] with respect to new representations formulas for
generalized uniform fuzzy partition of FT and then the technique of FT is combined with traditional
methods based on the new iterative method [2,3] to solve Cauchy problems. It is observed that the
new methods proposed are more accurate results than the fuzzy approximation method [8,9].

This paper is organized as follows. In Section 2, we introduce the basic concepts and results of the
FT with respect to the generalized uniform fuzzy partition needed throughout this paper. The main
part of this paper is Sections 3 and 4, new representations for basic functions of FT, followed by the
modified one step, 2-step , and 3-step based on new representations formulas for generalized uniform
fuzzy partition of FT. In Section 5, numeric examples are discussed. Concluding remarks are presented
in Section 6.

Throughout the paper, we denote by N, N+, Z, R, and R+ the sets of natural (including zero),
positive natural, integer, real , and positive real numbers, respectively.

2. Basic Concepts

In this section, we give some definitions and introduce the necessary notation in [10], which will
be used throughout the paper. Throughout this section, we deal with an interval [a, b] ⊂ R of
real numbers.

Definition 1. (generalized uniform fuzzy partition) Let xi ∈ [a, b] , i = 1, . . . , n, be fixed nodes such that
a = x1 < . . . < xn = b, n ≥ 2. We say that the fuzzy sets Ai : [a, b]→ [0, 1] constitute a generalized fuzzy
partition of [a, b] if for every i = 1, . . . , n there exists h > 0 such that x0 = x1, xn = xn+1, [xi − h, xi + h] ⊆
[a, b] and the following conditions are fulfilled:

1. (positivity and locality) – Ai (x) > 0 if x ∈ (xi−1, xi+1) and Ai (x) = 0 if x ∈ [a, b] \ (xi−1, xi+1);
2. (continuity) – Ai is continuous on [xi−1, xi+1];
3. (covering) – for x ∈ [a, b] , ∑n

i=1 Ai(x) > 0.

Fuzzy sets A1, . . . , An are called basic functions. It is important to remark that by conditions of locality and
continuity,

∫ b
a Ai(x)dx > 0. A generalized of uniform fuzzy partition of [a, b] is defined for equidistant nodes,

i.e., for all i = 1, . . . , n − 1, xi = xi+1 + h, where h = (b− a) / (n− 1) and two additional properties
are satisfied,

4. Ai (xi − x) = Ai (xi + x) for all x ∈ [0, h] , i = 2, . . . , n− 1;
5. Ai (x) = Ai−1 (x− h) and Ai+1 (x) = Ai (x− h) for all x ∈ [xi, xi+1] , i = 2, . . . , n− 1;

then the fuzzy partition is called h-uniform generalized fuzzy partition. Throughout this paper, we will write
generalized uniform fuzzy partition instead of h-uniform generalized fuzzy partition.

Definition 2. (generating function) A function K : [−1, 1] → [0, 1] is called a generating function if it is
assumed to be even, continuous and K (x) > 0 if x ∈ (−1, 1). The function K : [−1, 1]→ R is even if for all
x ∈ [0, 1] , K (−x) = K (x).

The following definition recall the concept of generalized fuzzy partition which can be easily
extended to the interval [a, b]. We assume that [a, b] is partitioned by A1, . . . , An, according to
Definition 1.
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Definition 3. A generalized uniform fuzzy partition of interval [a, b], determined by the triplet (K, h, a), can
be defined using generating function K (Definition 2). Then, basic functions of a generalized uniform fuzzy
partition are shifted copies of K defined by

Ai (x) = K
(

x− xi
h

)
, x ∈ [xi − h, xi + h] ,

for all i = 1, . . . , n. The parameter h is called the bandwidth or the shift of the fuzzy partition and the nodes
xi = a + ih are called the central point of the fuzzy sets A1, . . . , An.

Remark 1. A fuzzy partition is called Ruspini if the following condition

Ai (x) + Ai+1 (x) = 1, i = 1, . . . , n− 1, (1)

holds for any x ∈ [xi, xi+1]. This condition is often called Ruspini condition.

3. New Representations of Basic Functions for Particular Cases

In this section, we propose two subsection, new representations of basic functions constitute
a generalized uniform fuzzy partition of interval [a, b] and then FT technique based on new
representations of basic functions.

3.1. Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition

Two types of basic functions, triangular and sinusoidal shaped membership functions, were
proposed by [4,8]. Later [13], the authors considered different shapes for the basic functions of fuzzy
partition. Furthermore, a generalized fuzzy partition appeared in connection with the notion of a
higher-degree F-transform [11]. Its even weaker version was implicitly introduced to satisfy the
requirements of image compression [14]. Recently, the different conditions for generalized uniform
fuzzy partitions was proposed by [10,12]. Table 1 provides the definition two types of generating
function, triangular and raised cosine generating functions [7,10–12,15].

Table 1. Generating functions of strong uniform fuzzy partition.

Triangular Generating Function Raised Cosine Generating Function

max {1− |x| , 0} 1
2 (1 + cos (πx))|[−1,1]

In the following, we present new representations for generating function. In particular,
we present three new representations, based on the triangular and raised cosine generating functions:
two generating function based on the triangular generating functions and one generating function
based on the raised cosine generating function.

Definition 4. (natural order triangular generating function) Let KTm
i

: R→ [0, 1], i = 1, 2, be defined by

1. KTm
1
(x) =

{
(1− |x|)m , |x| ≤ 1,

0, otherwise
= min

(
(1− |x|)m , 1

)
, (2)

2. KTm
2
(x) =

{
1− (|x|)m , |x| ≤ 1,

0, otherwise
= min

(
1− (|x|)m , 1

)
, (3)

are called power of the triangular (shaped) generating functions, when m ∈ N+.
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Definition 5. (odd natural order raised cosine generating function) Let KCm : R→ [0, 1] be defined by

KCm (x) =

{
1
2 (1 + cosm (πx)) , |x| ≤ 1;

0, otherwise.
(4)

is called power of the raised cosine generating function , when m is an odd natural number
(i.e., m = 2k− 1, k ∈ N+).

Remark 2. Particularly, we can check the validity of Equation (4) using the following relation

KCm (x) =

{
1
2 (1 + cosm (πx)) , |x| ≤ 1,

0, otherwise.

=

{
1
2
(
1 + sinm (π

2 (2x + 1)
))

, |x| ≤ 1,

0, otherwise.

Lemma 1. If KTn
i
(x) , i = 1, 2, (KCm (x)) determines power of the triangular (raised cosine) generating

functions, then

1.
∫ 1
−1 KTn

1
(x) dx = 2

n+1 , 2.
∫ 1
−1 KTn

2
(x) dx = 2n

n+1 , 3.
∫ 1
−1 KCm (x) dx = 1,

or equivalent

1.
∫ h
−h KTn

1

( t
h
)

dt = 2h
n+1 , 2.

∫ h
−h KTn

2

( t
h
)

dt = 2nh
n+1 , 3.

∫ h
−h KCm

( t
h
)

dt = h,

where 0 ≤
∣∣ 2

n+1

∣∣ ≤ 1, 1 ≤
∣∣ 2n

n+1

∣∣ ≤ 2 , h be positive real numbers, m is an odd natural number and n ∈ N+.

Proof. The proof can be easily obtained by using integration methods within the boundaries and then
substitution x = t/h .

On the basis of Definitions 4 and 5, Lemma 1, and according to Definition 3, we can also be
defined using generating function αK for α > 0 (in general, not necessarily satisfy Ruspini condition).
Thus, basic functions of a generalized uniform fuzzy partition are shifted copies of αK defined by

Ak (x, x0) = αK
(

x− x0

h
− k
)

, x ∈ [xi−1, xi+1] . (5)

In particular, let KTm
1

, KTm
2

, (and KCm) be power of the triangular (and raised cosine) generating
function defined above. We will say that a generalized uniform fuzzy partition is power of a triangular
(or of raised cosine) generalized uniform fuzzy partition if its generating function K belongs to
αKTm

1
, αKTm

2
, (or αKCm) whenever α = 1/

(∫ 1
−1 K(t)dt

)
. Indeed, the equality α immediately follows

from
∫ 1
−1 αKTm

1
(t) dt = 1 ⇒ α = 1/

(∫ 1
−1 KTm

1
(t) dt

)
. In the following, we modified the definition

a triangular and raised cosine generalized uniform fuzzy partition by propose that power of the
triangular and raised cosine generalized uniform fuzzy partitions can be simply using the equality
α = 1/

(∫ 1
−1 K(t)dt

)
.

Definition 6. Let m ∈ N+. A system of fuzzy sets {Ak | k ∈ Z} defined by

1. Ak (x, x0) = αKTm
1

(
x−x0

h − k
)

, α = m+1
2 , (6)

2. Ak (x, x0) = αKTm
2

(
x−x0

h − k
)

, α = m+1
2m , (7)
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is called power of the triangular generalized uniform fuzzy partition of the real line determined by the triplet
(KTm

i
, h, x0), i = 1, 2. Further, let m is an odd natural number. A system of fuzzy sets {Ak | k ∈ Z} defined by

3. Ak (x, x0) = αKCm

(
x−x0

h − k
)

, α = 1, (8)

is called power of the raised cosine generalized uniform fuzzy partition of the real line determined by the triplet
(KCm , h, , x0). The parameter h is bandwidth of the fuzzy partition and x0 + kh = xk.

Definition 7. Let x1 < . . . < xn be fixed nodes within [a, b] ⊂ R, such that x1 = a, xn = b and n ≥ 2.
We consider nodes x1, . . . , xn are equidistant, with distance (shift) h = (b− a) / (n− 1). A system of fuzzy
sets B1, . . . , Bn : [a, b]→ [0, 1] be power of a triangular and raised cosine generalized uniform fuzzy partitions
of [a, b] if it is defined by

Bk (x) =

{
Ak(x, a), x ∈ [a, b] ,

0, otherwise.
or equivalent Bk (x) =

αK
(

x−xk
h

)
, x ∈ [a, b] ,

0, otherwise.
(9)

where xk = a + kh. In the sequel, we denote K for a generating function determined by the Formulas (2)–(4).
Further, α, Ak(x, a), k = 1, . . . , n, are determined by the Formulas (6)–(8).

Lemma 2. If Bk (x) determines power of the raised cosine generalized uniform fuzzy partition of [a, b],
then Bk (x) satisfied Ruspini condition (1) when m (see (4) ) is an odd natural number.

Proof. Indeed, if x ∈ [a, b], there exists k ∈ {1, . . . , n− 1} such that x ∈ [xk, xk+1]. By (4) and (8),
and Remark 1, we get

Bk (x) + Bk+1 (x) = Ak(x, a) + Ak+1(x, a) = αKCm

(
x− xk

h

)
+ αKCm

(
x− xk+1

h

)
,

=
1
2

(
1 + cosm

(
π

(
x− xk

h

)))
+

1
2

(
1 + cosm

(
π

(
x− xk+1

h

)))
,

= 1 +
1
2

(
cosm

(π

h
(x− xk)

)
+ cosm

(π

h
(x− xk+1)

))
.

By the properties of trigonometric functions, notice thatcos (θ + π) = − cos (θ) , it is easy to
see that

cosm
(

π

(
x− xk

h

))
+ cosm

(
π

(
x− xk+1

h

))
= cosm

(
π

(
x− xk+1

h

)
+ π

)
+ cosm

(
π

(
x− xk+1

h

))
.

Thus, if m is an odd natural number, the result is 0.

In the following, if K is a normal generating function (i.e., K(0) = 1, not necessarily satisfy Ruspini
condition), we use generating function αK for α > 0, where (αK) (x) = α · K (x).

Lemma 3. If basic functions Bk, k = 1, . . . , n, of a generalized uniform fuzzy partition are shifted copies
of αK, α > 0, defined by the Formula (5) and moreover, K is normal as an additional condition. Then,
for each k = 1, . . . , n, Bk(xk) = α, xk ∈ [xk − h, xk + h].

Proof. A generating function K is said to be normal if K(0) = 1. By the Formula (5) and a generating
function K is normal, we get Bk (xk) = αK

(
xk−xk

h

)
= αK(0) = α > 0.

Corollary 1. Let the assumptions of Lemma 3 be fulfilled, but fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, determined
by Definition 7. Then, for each k = 1, . . . , n, Bk(xk) = α, xk ∈ [xk − h, xk + h], where α is defined by
Definition 7.
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Proof. Indeed, the proof immediately follows from Definition 7 and Lemma 3.

Corollary 2. Let the assumptions of Lemma 3 be fulfilled, but fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, determined
by Definition 3. Then, for each k = 1, . . . , n, Bk(xk) = 1, xk ∈ [xk − h, xk + h].

3.2. New FT Based Power of the Triangular and Raised Cosine Generalized Uniform Fuzzy Partition

In this subsection, we present the main principles of F-transform detailed in [8,10,11] that are
modified with respect to power of the triangular and raised cosine generalized uniform fuzzy partition.
Further, we will show that FT components with respect to power of the triangular and raised cosine
generalized uniform fuzzy partition can be simplified and approximated of an original function, say f .

Definition 8. Let f be a continuous function on [a, b] and Bk(t), k = 1, . . . , n, be power of the triangular
and raised cosine generalized uniform fuzzy partition of [a, b] , n ≥ 2. A vector of real numbers
F[ f ] = (F1, F2, . . . , Fn) given by

Fk =

∫ b
a f (t) Bk(t) dt∫ b

a Bk(t) dt
, (10)

for k = 1, . . . , n is called the direct FT of f with respect to power of the triangular and raised cosine generalized
uniform fuzzy partition Bk.

In the following, we assume a generating function K in the Formulas (2)–(4). We will simplify the
representation (10).

Lemma 4. Let f ∈ C ([a, b]) and according to Definition 7, fuzzy sets Bk, k = 1, . . . , n, n ≥ 2, be power of a
triangular and raised cosine generalized uniform fuzzy partition of [a, b] with a generating function K, then
representation (10) of direct FT can be simplified as follows for k = 1, . . . , n

Fk =

∫ 1
−1 f (th + tk)K(t) dt∫ 1

−1 K(t) dt
=

∫ h
−h f (t + tk)K( t

h ) dt∫ h
−h K( t

h ) dt
.

Proof. In this proof, we will write a generating function K instead of (2)–(4). By Definition 7, we get

Bk (t) = αK
(

t− tk
h

)
, t ∈ [tk − h, tk + h] ,

for k = 1, . . . , n , t0 = t1, tn+1 = tn , and substituting u = t−tk
h and then substituting t = s/h . Thus,

we get ∫ tk+1

tk−1

f (t) Bk(t) dt = αh
∫ 1

−1
f (th + tk)K(t) dt = α

∫ h

−h
f (t + tk)K(

t
h
) dt

∫ tk+1

tk−1

Bk(t) dt = αh
∫ 1

−1
K(t) dt = α

∫ h

−h
K(

t
h
) dt

and its corresponding results with representation (10).

Indeed, the previous lemma holds for every fuzzy partition generated by a kernel. Now, we will
simplify the above given expressions for the coefficients F[ f ] = (F1, F2, . . . , Fn) in the representation
(10) even more. This fact is very important for applications which are more flexible and consequently
easier to use.
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Lemma 5. Let the assumptions of Lemma 4 be fulfilled. Then, the coefficients F[ f ] = (F1, F2, . . . , Fn) in the
expression (10) of the FT component Fk of f as follows:

Fk =
1
h

∫ b

a
f (t) Bk(t) dt =

α

h

∫ b

a
f (t)K

(
t− tk

h

)
dt, (11)

for k = 1, . . . , n, where interval [a, b] is partitioned by power of the triangular and raised cosine generalized
uniform fuzzy partition B1, . . . , Bn and α is defined by Definition 7.

Proof. Let k ∈ {1, . . . , n} and consider set of fuzzy sets Bk(x) from power of the triangular and raised
cosine generalized uniform fuzzy partition of [a, b] in (9). We will prove the equality

∫ tk+1
tk−1

Bk(t) dt = h.
We get by virtue of Lemmas 1 and 4, and (6):

∫ tk+1

tk−1

Bk(t) dt =
∫ tk+1

tk−1

Ak(t, a), dt =
∫ tk+h

tk−h

(
m + 1

2

)
KTm

1

(
t− tk

h

)
dt = h

∫ 1

−1

(
m + 1

2

)
KTm

1
(t) dt = h,

where h is the bandwidth of the fuzzy partition and tk = a + kh. Similarly, the other Formulas (7) and
(8) will be proved and then its corresponding in the expression (10).

Lemma 6. Let f ∈ C [a, b]. Then for any ε > 0 there exist nε ∈ N and B1, . . . , Bnε be basic functions form
power of the triangular and raised cosine generalized uniform fuzzy partition of [a, b]. Let Fk, k = 1 . . . , n,
be the integral FT components of f with respect to B1, . . . , Bnε . Then for each k = 1 . . . , nε − 1 the following
estimations hold: | f (t)− Fi| ≤ ε for each t ∈ [a, b] ∩ [tk, tk+1] and i = k, k + 1.

Proof. see [4].

Corollary 3. Let the conditions of Lemma 6 be fulfilled. Then for each k = 1 . . . , nε − 1 the following
estimations hold: |Fk − Fk+1| < ε.

Proof. According to [4,16], let t ∈ [a, b]∩ [tk, tk+1]. Then by Lemma 6, for any k = 1, . . . , n− 1 we obtain
| f (t)− Fk| < ε/2 and | f (t)− Fk+1| < ε/2. Thus, |Fk − Fk+1| ≤ | f (t)− Fk|+ | f (t)− Fk+1| < ε

2 + ε
2 = ε.

The following theorem estimates the difference between the original function and its direct FT
with respect to power of the triangular and raised cosine generalized uniform fuzzy partition.

Theorem 1. Let f (t) ∈ C2 [a, b] and the conditions of Lemma 5 be fulfilled. Then for k = 1, . . . , n

Fk = α f (tk) +O
(
h2) , (12)

where α > 0 or α is defined by Definition 7.

Proof. By locality condition for Definition 1, Lemmas 3 and 5, and according to the proof of
Lemma 9.3 [8], using the trapezoid formula with nodes tk−1, tk, tk+1 to the numerical computation of
the integral, we get for α > 0

Fk =
1
h

∫ tk+1

tk−1

f (t) Bk(t) dt,

=
1
h

.
h
2
( f (tk−1) Bk(tk−1) + 2 f (tk) Bk(tk) + f (tk+1) Bk(tk+1)) +O

(
h2
)

,

= f (tk) Bk(tk) +O
(

h2
)
= f (tk) Ak(tk, a) +O

(
h2
)

,

= f (tk) αK (0) +O
(

h2
)

,

= α f (tk) +O
(

h2
)

.
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Definition 9. Let F[ f ] = (F1, F2, . . . , Fn) be direct FT of a function f ∈ C [a, b] with respect to the fuzzy
partition Bk(t), k = 1, . . . , n of [a, b]. Then, the function f̂ defined on [a, b]

f̂ (t) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
, (13)

is called the inverse FT of f .

Corollary 4. Let the assumptions of Lemma 2 and moreover, Let f̂ (t) be the inverse FT of f with respect to
power of the raised cosine generating function . Then, for all t ∈ [a, b] the following holds: f̂ (t) = ∑n

k=1 FkBk(t).

Proof. This proof immediately follows from Defintion 9, Lemma 2 and then using ∑n
k=1 Bk(t) = 1.

The following lemma estimates the difference between the original function and its inverse FT.

Lemma 7. Let the assumptions of Theorem 1 and let f̂ (t) be the inverse FT of f with respect to the fuzzy
partition of [a, b] is given by Definition 7. Then, for all t ∈ [a, b] the following estimation holds:

f̂ (t) = α f (tk) +O
(

h2
)

. (14)

Proof. Let t ∈ [a, b] so that x ∈ [tk, tk+1] for some k = 1, . . . , n. By Theorem 1,

f̂ (t)− α f (tk) =
∑n

k=1 FkBk(t)
∑n

k=1 Bk(t)
− α f (t) =

∑n
k=1 FkBk(t)

∑n
k=1 Bk(t)

− ∑n
k=1 α f (tk) Bk(t)

∑n
k=1 Bk(t)

=
∑n

k=1 (Fk − α f (tk)) Bk(t)
∑n

k=1 Bk(t)
= O

(
h2
)

.

Corollary 5. Let the assumptions of Lemma 7, then
∣∣∣ f̂ (t)− f (t)

∣∣∣ < ε.

Proof. The proof easily follows from the proof of Lemma 7 and then using Lemma 6 as follows:∣∣∣ f̂ (t)− f (t)
∣∣∣ = ∑n

k=1 |Fk − f (t)| Bk(t)
∑n

k=1 Bk(t)
< ε.

Remark 3. According to the Definitions 1 and 2, if the normality is considered to be an additional
condition for generating function (i.e., K(0) = 1) and generalized uniform fuzzy partition of [a, b] satisfies
Ak(xk) = α, α > 0, then it is easy to see that the inverse FT f̂ (tk) = Fk for all k = 1, . . . , n. This is true for
Definition 7. Moreover, if orthogonality condition (Ruspini condition (1)) is replaced by covering condition in
Definition 1 and generalized uniform fuzzy partition of [a, b] satisfies Ak(xk) = α = 1, then it is easy to also
see that the inverse FT f̂ (tk) = Fk for all k = 1, . . . , n. This is true for Formula (8) only.

Important property of the direct FT as well as inverse FT is their linearity, namely, given
f , g ∈ C [a, b] and α, β ∈ R, if h = α f + βg, then F [h] = αF [ f ] + βF [g] and ĥ = α f̂ + βĝ. In the
next section, we present new fuzzy numerical methods based on the FT and a new iterative method to
numeric solution of the Cauchy problem.

4. New Fuzzy Numerical Methods for Cauchy Problem

Consider the initial value problem (IVP) for the Cauchy problem:

y′ = f (t, y), y(t1) = y1, a = t1 ≤ t ≤ tn = b. (15)
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where y1 ∈ R and f is continuous function on [a, b] × R and satisfies Lipschitz condition. In fact,
the analytical solution of problem (15) is often difficult and sometimes impossible to obtain. Instead,
numerical analysis is interested with obtaining approximate solutions with errors within reasonable
bounds. Thus, a usage of fuzzy numerical methods seems to be suitable.

In [8,9], the authors have presented Euler method and Mid-point rule, based on FT to numeric
solution of Cauchy problem (15). A new iterative method (NIM) has been proposed for solving linear
(nonlinear) functional equations, ordinary differential equations and delay differential equations [2,3].

In this section, we present three new schemes to solve Cauchy problem (15), that use the FT and
NIM. Our motivation stems from the classical approach, trapezoidal rule (1-step) and Adams Moulton
methods (2 and 3-step). For the rest of this paper, suppose that we are given the Cauchy problem (15),
where the function f on [a, b] are sufficiently smooth and we assume that all necessary requirements
for constructing the FT of the solution of Cauchy problem (15) are fulfilled. Now, we present numerical
Scheme I, II, and III. The first scheme uses 1-step method, while the second one uses 2-step method,
and the third uses 3-step method.

4.1. Numeric Scheme I: Modified Trapezoidal Rule Based on FT and NIM for Cauchy Problem

In the present subsection, we will construct a numeric scheme of the more advanced method
known as the Trapezoidal Rule. Recall that it is a one-step method with second-order accuracy, which
can be considered as a Runge–Kutta method. We propose modification of trapezoidal rule based on
FT and NIM for solving Cauchy problem. Modification of the trapezoidal rule can be improved by
the FT to solve Cauchy problem (15). We contributed to numeric methods of Cauchy problem (15)
by scheme provides formulas for the FT components, Yk, k = 2, . . . , n− 1, of the unknown function
y(t) with respect to choose some power of the triangular (or raised cosine) generalized uniform fuzzy
partition, B1, . . . , Bn, of interval [a, b] with parameter h to approximate solution of Cauchy problem (15).
The first, choose the number n ≥ 2 and compute h = (b− a) / (n− 1), then construct the generalized
uniform fuzzy partition of [a, b] using Definition 7. Note that each function Bk spans over three nodes
tk−1, tk, tk+1, k = 2, . . . , n− 1. Nevertheless, Bk(tk−1) = Bk(tk+1) = 0 and Bk(tk) = 1. Now, we apply
the FT and NIM to Cauchy problem (15) and obtain the numeric Scheme I for k = 1, . . . , n − 1 as
follows (see [3,8] for technical details):

Y1 = y1,

Y∗k+1 = Yk + hFk/2,

Y∗∗k+1 = Y∗k+1 + hF∗k+1/2,

Yk+1 = Yk + h
(

Fk + F∗∗k+1
)

/2,

(16)

where

Fk =

∫ b
a f (t, Yk)Bk(t)dt∫ b

a Bk(t)dt
, F∗k+1 =

∫ b
a f (t, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, F∗∗k+1 =

∫ b
a f (t, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
. (17)

In the sequel, the approximate solution of Cauchy problem (15) can be obtained using the inverse
FT as follows:

yn(t) =
n

∑
k=1

YkBk(t). (18)

4.2. Numeric Scheme II: Modified 2-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem

The Scheme I uses 1-step method for solving Cauchy problem (15). In this subsection, we improve
2-step Adams Moulton method using FT and NIM for solving Cauchy problem (15). The 2-step
Adams Moulton method can be improved to effectively approximate the solution of (15) by the FT
components, Yk, k = 2, . . . , n− 1, of the unknown function y(t) with respect to choose some power of
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the triangular (or raised cosine) generalized uniform fuzzy partition (9). Let Y1 = y1 and Y2 = y2 if
possible; otherwise, we can compute FT component Y2 from numeric Scheme I. Analogously to [3,8],
we apply the FT and NIM to Cauchy problem (15) and obtain the numeric Scheme II in the following
form for k = 2, . . . , n− 1:

Y∗k+1 = Yk + h (8Fk − Fk−1) /12,

Y∗∗k+1 = Y∗k+1 + 5hF∗k+1/12,

Yk+1 = Yk + h
(
8Fk − Fk−1 + 5F∗∗k+1

)
/12,

(19)

where

Fk−1 =

∫ b
a f (t, Yk−1)Bk−1(t)dt∫ b

a Bk−1(t)dt
, Fk =

∫ b
a f (t, Yk)Bk(t)dt∫ b

a Bk(t)dt
,

F∗k+1 =

∫ b
a f (t, Y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, and F∗∗k+1 =

∫ b
a f (t, Y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
.

Then, obtain the desired approximation for y by the inverse FT (18) applied to [Y1, . . . , Yn].

4.3. Numeric Scheme III: Modified 3-Step Adams Moulton Method Based on FT and NIM for Cauchy Problem

In this subsection, we improve 3-step Adams Moulton method using FT and NIM for solving
Cauchy problem (15). The 3-step Adams Moulton method can be improved to effectively approximate
the solution of (15) by the FT components, Yk, k = 2, . . . , n− 1, of the unknown function y(t) with
respect to choose some power of the triangular (or raised cosine) generalized uniform fuzzy partition
(see Definition 7), B1, . . . , Bn, of interval [a, b] with parameter h = (b− a) / (n− 1) , n ≥ 2. Let Y1 = y1,
Y2 = y2 and Y3 = y3 if possible; otherwise, we can compute FT components Y2 and Y3 from numeric
Scheme I. Now, we apply the FT and NIM to Cauchy problem (15) and obtain the following numeric
Scheme III for k = 3, . . . , n− 1 (see [3,8] for technical details):

Y∗k+1 = Yk + h (19Fk − 5Fk−1 + Fk−2) /24,

Y∗∗k+1 = Y∗k+1 + 9hF∗k+1/24,

Yk+1 = Yk + h
(
19Fk − 5Fk−1 + Fk−2 + 9F∗∗k+1

)
/24,

(20)

where

Fk−2 =

∫ b
a f (t, Yk−2)Ak−2(t)dt∫ b

a Ak−2(t)dt
, Fk−1 =

∫ b
a f (t, Yk−1)Ak−1(t)dt∫ b

a Ak−1(t)dt
, Fk =

∫ b
a f (t, Yk)Ak(t)dt∫ b

a Ak(t)dt
,

F∗k+1 =

∫ b
a f (t, Y∗k+1)Ak+1(t)dt∫ b

a Ak+1(t)dt
, and F∗∗k+1 =

∫ b
a f (t, Y∗∗k+1)Ak+1(t)dt∫ b

a Ak+1(t)dt
.

In the sequel, the inverse FT (18) approximates the solution y(t) of the Cauchy problem (15).

4.4. Error Analysis of Fuzzy Numeric Method for Cauchy Problem

In this subsection, we present error analysis for numeric scheme I only, because the technique of
error analysis for rest numeric schemes (Schemes II and III) can be obtained analogously. Consider
the Formula (16). If y(tk) = yk and Yk denote the exact solution and the numerical solution and
substituting the exact solution in the Formula (16), we get

y∗k+1 = yk + hFe
k /2,

y∗∗k+1 = y∗k+1 + hFe∗
k+1/2,

yk+1 = yk + h
(

Fe
k + Fe∗∗

k+1
)

/2,

(21)
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where

Fe
k =

∫ b
a f (t, yk)Bk(t)dt∫ b

a Bk(t)dt
, Fe∗

k+1 =

∫ b
a f (t, y∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
, Fe∗∗

k+1 =

∫ b
a f (t, y∗∗k+1)Bk+1(t)dt∫ b

a Bk+1(t)dt
,

(22)
and the truncation error Tk of the Scheme I is given by

Tk =
yk+1 − yk

h
− 1

2
(

Fe
k + Fe∗∗

k+1
)

. (23)

Rearranging (16), we get

0 =
Yk+1 −Yk

h
− 1

2
(

Fk + F∗∗k+1
)

. (24)

If we denote the error ek+1 = Yk+1 − yk+1 and subtracting (24) from (23), so:

Tkh = ek+1 − ek −
h
2
(Fk − Fe

k )−
h
2
(

F∗∗k+1 − Fe∗∗
k+1
)

. (25)

Lemma 8. Let f is assumed to be sufficiently smooth function of its arguments on [a, b] and satisfies the
Lipschitz condition with the constant L with respect to y, then we get for k = 1, . . . , n,

|ek+1| ≤ |ek| (1 + c) + Th and
∣∣∣Fe

k − Fe∗∗
k+1

∣∣∣ ≤ LhM2

where c = hL + h2L2

2 + h3L3

8 , T = max
1≤k≤n

|Tk|, M2 is upper bound for f , and Fe
k , Fe∗∗

k+1 are determined by

Formula (22).

Proof. By hypothesis, f satisfies the Lipschitz condition and using Lemma 5, Formulas (16), (17), (21)
and (22), we get

|Fk − Fe
k | ≤

1
h

∣∣∣∣∫ b

a
f (t, Yk)Bk(t)dt−

∫ b

a
f (t, yk)Bk(t)dt

∣∣∣∣ ≤ L |ek|∣∣F∗k+1 − Fe∗
k+1
∣∣ ≤ 1

h

∣∣∣∣∫ b

a
f (t, Y∗k+1)Bk+1(t)dt−

∫ b

a
f (t, y∗k+1)Bk+1(t)dt

∣∣∣∣ ≤ L
∣∣Y∗k+1 − y∗k+1

∣∣
∣∣F∗∗k+1 − Fe∗∗

k+1
∣∣ ≤ 1

h

∣∣∣∣∫ b

a
f (t, Y∗∗k+1)Bk+1(t)dt−

∫ b

a
f (t, y∗∗k+1)Bk+1(t)dt

∣∣∣∣ ≤ L
∣∣Y∗∗k+1 − y∗∗k+1

∣∣
∣∣Y∗k+1 − y∗k+1

∣∣ ≤ |(Yk + hFk/2)− (yk + hFe
k /2)| ≤ |ek|

(
1 +

hL
2

)
∣∣Y∗∗k+1 − y∗∗k+1

∣∣ ≤ ∣∣(Y∗k+1 + hF∗k+1/2
)
−
(
y∗k+1 + hFe∗

k+1/2
)∣∣ ≤ |ek|

(
1 +

hL
2

)2

|ek+1| ≤ |ek|+
hL
2
|ek|+

hL
2

∣∣y∗∗k+1 −Y∗∗k+1
∣∣+ Th

≤ |ek|+
hL
2
|ek|+

hL
2
|ek|

(
1 +

hL
2

)2
+ Th

= |ek|
(

1 + hL +
h2L2

2
+

h3L3

8

)
+ Th
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Furthermore, by using | f (t, y(t))| ≤ M2, we get

∣∣Fe
k − Fe∗∗

k+1
∣∣ = ∣∣∣∣1h

(∫ b

a

(
f (t, yk)− f (t + h, y∗∗k+1)

)
Bk(t)dt

)∣∣∣∣
=

∣∣∣∣1h
(∫ b

a

(
f (t, yk)− f (t, y∗∗k+1) + f (t, y∗∗k+1)− f (t + h, y∗∗k+1)

)
Bk(t)dt

)∣∣∣∣
≤ L

∣∣yk − y∗∗k+1
∣∣

=
Lh
2

∣∣−Fe
k − Fe∗

k+1
∣∣

=
Lh
2

∣∣∣∣1h
∫ b

a

(
f (t, yk) + f (t, y∗k+1)

)
Bk(t)dt

∣∣∣∣
≤ LhM2

This completes the proof.

Theorem 2. Consider the the numeric Scheme I (16), where f ∈ C2 [a, b] and satisfies the Lipschitz condition
with the constant L with respect to y. Then, the solution Yk, k = 1, . . . , n, obtained by the numeric scheme I (16)
for solving Cauchy problem (15) satisfies

|ek| = |Yk − yk| ≤
hM
2L

ekc, (26)

where c = hL + h2L2

2 + h3L3

8 , M1, M2 are upper bound for f ′, f , respectively, on [a, b], and M1 + M2L = M.

Proof. By hypothesis, y′′ exists and bounded on [a, b] with max
a≤t≤b

|y′′ (t)| = M1 by assuming that

f ∈ C2 [a, b]. Then, using Lemma 8, (23) and Taylor’s theorem for k = 1, . . . , n− 1, we get

Tk =
yk+1 − yk

h
− 1

2
(

Fe
k + Fe∗∗

k+1
)

=
1
2

hy′′ (ξk) + f (tk, yk)−
1
2
(

Fe
k + Fe∗∗

k+1
)

=
1
2

hy′′ (ξk) + f (tk, yk)− Fe
k +

1
2

Fe
k −

1
2

Fe∗∗
k+1

=
1
2

hy′′ (ξk) +
1
2
(

Fe
k − Fe∗∗

k+1
)

where ξk ∈ [tk, tk+]. Now, using Lemma 8

T = max
1≤k≤n

|Tk| ≤
1
2

h
∣∣y′′ (ξk)

∣∣+ LhM2

2

≤ h
2
(M1 + LM2) =

hM
2

Now, by virtue of Lemma 8 and we have used e1 = 0, (1 + c)k ≤ ekc, we get for k = 1, . . . , n

|ek| ≤
(1 + c)k − 1

c
Th ≤ (1 + c)k

L + hL2

2 + h2L3

8

T

≤ T
L

ekc ≤ hM
2L

ekc

where c = hL + h2L2

2 + h3L3

8 . Thus, if the step length h → 0, then for all k, the error,|ek| converges to
zero. So the method is convergent. This completes the proof.
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5. Numerical Examples

In this section, we present examples of the Cauchy problem (15).

Example 1. Consider the following initial value problem with initial conditions y (0) = 1 and with a smooth
right-hand function

y′(t) = t2 − y, t ∈ [0, 2] . (27)

Example 2. Consider the Cauchy problem (15) with oscillating right-hand function. We take f (t, y) = 1+
2y cos

(
t2)+ sin

(
2t2) , t(π

2 ) = 2.1951, a = π
2 and b = 3π

2 .

The results are listed in Tables 2–4 by fuzzy numerical methods proposed in this paper with
respect to case KT201

1
and Table 5 by fuzzy numerical methods proposed in this paper with respect

to case KT1
1
, KT3

1
, KT201

1
, KC1 . The Euclidean distance is given by Norm `2 defined as ‖Y− y(t)‖2 =√

∑k (Yk − y(tk))
2 and mean square error (MSE) defined as MSE = 1

n (‖Yk − y(tk)‖2)
2. This is an

easily computable quantity for a particular sample. Concluding remarks are summarized as follows:

• In view of Table 2, a comparison between the Euler method (Euler-FT) [8], the Mid-point rule
(Mid-FT), Scheme I and II [9] and three new schemes (16), (19) and (20) in this paper for Example 1.
We can easily observe from Table 2, the better results (in comparison with the Euler-FT method [8])
are obtained by the three new schemes in this paper and the best result (in comparison with
the Scheme I, II and II) is obtained by the Scheme III. Also, the better results (in comparison
with the Mid-point rule (Mid-FT), Scheme I and II [9]) are obtained by the Scheme II (19) and
Scheme III (20) in this paper where all fuzzy numerical methods used the FT components and the
best approximation is shown by the Scheme III (20) with FT components.

Table 2. Comparison of numeric results for Example 1. The columns contain the exact and seven
approximate solutions of the Cauchy problem (27) with a smooth right-hand function: the first three
approximate solution is obtained by the three new schems ((16), (19) and (20)), the fourth approximate
solution by the Euler-FT [8] with FT components and the last three by the schemes are proposed in [9].
The best approximation is shown by the Scheme III proposed above (20) with FT components.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III

Euler-FT
in [8]

Mid-FT
in [9]

Scheme I
in [9]

Scheme II
in [9]

0 1 1 1 1 1 1 1 1
0.1 0.905163 0.905350 0.905163 0.905163 0.900166 0.905162 0.904392 0.904297
0.2 0.821269 0.821605 0.821322 0.821269 0.811316 0.8213 0.819722 0.819741
0.3 0.749182 0.749630 0.749274 0.749221 0.734351 0.749235 0.746860 0.747182
0.4 0.689680 0.690208 0.689798 0.689742 0.670083 0.689786 0.686592 0.687391
0.5 0.643469 0.644047 0.643602 0.643546 0.619241 0.643611 0.639629 0.641061
0.6 0.611188 0.611788 0.611324 0.611271 0.582484 0.611397 0.606615 0.608821
0.7 0.593415 0.594012 0.593543 0.593495 0.560402 0.593665 0.588129 0.591239
0.8 0.590671 0.591243 0.590781 0.590741 0.553528 0.590998 0.584697 0.588828
0.9 0.603430 0.603956 0.603513 0.603483 0.562342 0.603799 0.596795 0.602053
1 0.632121 0.632581 0.632168 0.632149 0.587274 0.632571 0.624851 0.631332

1.1 0.677129 0.677507 0.677132 0.677127 0.628714 0.677618 0.669253 0.677045
1.2 0.738806 0.739085 0.738757 0.738768 0.687009 0.739381 0.730353 0.739535
1.3 0.817468 0.817635 0.817360 0.817388 0.762475 0.818075 0.808466 0.819111
1.4 0.913403 0.913443 0.913229 0.913276 0.855394 0.914099 0.903881 0.916053
1.5 1.026870 1.026772 1.026624 1.026692 0.966021 1.027588 1.016856 1.030615
1.6 1.158103 1.157857 1.157779 1.157869 1.094586 1.158915 1.147625 1.163024
1.7 1.307316 1.306911 1.306909 1.307022 1.241294 1.308138 1.296400 1.313489
1.8 1.474701 1.474127 1.474205 1.474343 1.406331 1.47562 1.463372 1.482195
1.9 1.660431 1.659681 1.659842 1.660006 1.589864 1.661347 1.648715 1.669312
2 1.864665 1.863636 1.863899 1.864097 1.779378 1.865684 1.852585 1.874993
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• In Tabel 3, a comparison of MSE and a comparison of Norm `2 for Examples 1 and 2. We can easily
observe, the best results are obtained by the three new schemes in this paper and the better results
(in comparison with the other numerical classical methods) are obtained by all fuzzy numerical
methods used the FT components except Euler-FT [8] for these examples.

Table 3. The values of MSE and Norm `2 for Example 1– 2.

Method
Ex.1 Ex.2

Norm `2 MSE Norm `2 MSE

Proposed Scheme I 2.21945× 10−03 2.34569× 10−07 3.42892× 10−01 5.59882× 10−03

Proposed Scheme II 1.28684× 10−03 7.88551× 10−08 3.76033× 10−01 6.73336× 10−03

Proposed Scheme III 9.28253× 10−04 4.10311× 10−08 2.15401× 10−01 2.20942× 10−03

Euler-FT [8] 2.20790× 10−01 2.32134× 10−03 3.74484× 10+00 6.67801× 10−01

Mid-FT [9] 2.56525× 10−03 3.13357× 10−07 6.73731× 10−01 2.16149× 10−02

Scheme I [9] 3.54973× 10−02 6.00026× 10−05 8.42893× 10−01 3.38319× 10−02

Scheme II [9] 1.90439× 10−02 1.72701× 10−05 5.90233× 10−01 1.65893× 10−02

Trapezoidal Rule 4.30423× 10−02 8.82208× 10−05 1.93095× 10+00 1.77551× 10−01

2-Step Adams Moulton 3.49968× 10−02 5.83228× 10−05 1.85289× 10+00 1.63485× 10−01

3-Step Adams Moulton 3.14968× 10−02 4.72405× 10−05 1.57237× 10+00 1.17732× 10−01

• In view of Table 4, a comparison between the three new schemes (16), (19) and (20) in this paper
and the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams Moulton Method
based on Euler method for Example 2. We can easily observe from Table 4, the better results
are obtained by the three new schemes in this paper and the best result (in comparison with the
Scheme I, II and II) is obtained by the Scheme III.

Table 4. Comparison of numeric results for Example 2. The columns contain the exact and six
approximate solutions of the Cauchy problem (27) with oscillating right-hand function: the first
three approximate solution is obtained by the three new schems ((16), (19), and (20)), the last three
approximate solution by the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams
Moulton Method. The best approximation is shown by the Scheme III proposed above (20) with
FT components.

ti Solution y(t) Proposed
Scheme I

Proposed
Scheme II

Proposed
Scheme III Trap 1 2-Step Adams 2 3-Step Adams 3

1.570796327 2.195062 2.195062 2.195062 2.195062 2.195062 2.195062 2.195062
1.727875959 1.883281 1.894259 1.883281 1.883281 1.860613 1.883281 1.883281
1.884955592 1.485003 1.511046 1.490853 1.485003 1.454428 1.463813 1.485003
2.042035225 1.185605 1.224868 1.191621 1.184830 1.172418 1.163839 1.177378
2.199114858 1.206758 1.256721 1.208147 1.202292 1.205264 1.180648 1.194336
2.35619449 1.688183 1.733796 1.675538 1.676788 1.638071 1.613025 1.638504

2.513274123 2.546629 2.558069 2.508798 2.525411 2.371288 2.370415 2.421052
2.670353756 3.420051 3.381690 3.362740 3.396118 3.110292 3.151241 3.228492
2.827433388 3.817594 3.751660 3.766365 3.802239 3.459038 3.534435 3.617396
2.984513021 3.479187 3.451288 3.463039 3.476930 3.153857 3.226956 3.285059
3.141592654 2.711291 2.760842 2.722280 2.707811 2.480046 2.498676 2.521585
3.298672286 2.305201 2.404556 2.301686 2.280860 2.168197 2.117053 2.127181
3.455751919 2.871345 2.942818 2.810863 2.818639 2.622265 2.558398 2.599754
3.612831552 4.080085 4.035446 3.952587 4.015230 3.555034 3.556356 3.660448
3.769911184 4.767095 4.645081 4.647076 4.733825 4.104830 4.188576 4.317767
3.926990817 4.209785 4.184589 4.183879 4.213375 3.643127 3.728492 3.801548
4.08407045 3.258243 3.383482 3.263962 3.224157 2.935940 2.895967 2.895039

4.241150082 3.481873 3.609332 3.386338 3.370921 3.111499 2.989980 3.008814
4.398229715 4.873146 4.799588 4.642440 4.733200 4.094280 4.055938 4.179701
4.555309348 5.501192 5.331327 5.311775 5.444657 4.561691 4.652699 4.813484
4.71238898 4.498591 4.551357 4.485128 4.493916 3.817903 3.867167 3.912209

1 Trapezoidal Rule; 2 2-Step Adams Moulton Method; 3 3-Step Adams Moulton Method.
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• In Tabel 5, a comparison between computation errors for three schemes based on the FT with
respect to the power of the triangular and raised cosine generalized uniform fuzzy partition
determined by Formula (9), where the advantage of the KTm

1
for Examples 1 and 2 is evident.

Table 5. The values of MSE and Norm `2 for Examples 1 and 2 by the three schemes with respect to
the power of the triangular and raised cosine generalized uniform fuzzy partition are proposed in this
paper. The best approximation is shown by using KT201

1
.

Proposed Scheme Case
Ex.1 Ex.2

Norm `2 MSE Norm `2 MSE

I

KT1
1

7.81857× 10−03 2.91095× 10−06 6.38151× 10−01 1.93922× 10−02

KT3
1

5.06528× 10−03 1.22176× 10−06 4.65538× 10−01 1.03203× 10−02

KT201
1

2.21945× 10−03 2.34569× 10−07 3.42892× 10−01 5.59882× 10−03

KC1 6.96371× 10−03 2.30920× 10−06 5.79002× 10−01 1.59640× 10−02

II

KT1
1

5.92425× 10−03 1.67127× 10−06 5.45616× 10−01 1.41761× 10−02

KT3
1

3.58895× 10−03 6.13360× 10−07 4.29959× 10−01 8.80307× 10−03

KT201
1

1.28684× 10−03 7.88551× 10−08 3.76033× 10−01 6.73336× 10−03

KC1 5.18129× 10−03 1.27837× 10−06 5.01710× 10−01 1.19864× 10−02

III

KT1
1

5.31047× 10−03 1.34291× 10−06 4.42442× 10−01 9.32167× 10−03

KT3
1

3.09350× 10−03 4.55702× 10−07 2.88083× 10−01 3.95199× 10−03

KT201
1

9.28253× 10−04 4.10311× 10−08 2.15401× 10−01 2.20942× 10−03

KC1 4.59684× 10−03 1.00624× 10−06 3.84860× 10−01 7.05320× 10−03

This constitutes an important improvement to previous methods which do not provide such
information except in the methods such as Euler-FT proposed in [8] and Mid-FT , Scheme I,
and Scheme II [9] for Cauchy problems by the more efficient way of computation approximate
solutions. Thus, this study will be of particular importance.

6. Conclusions

We extended applicability of fuzzy numeric methods to the initial value problem (the Cauchy
problem). We proposed three new numeric methods based on the FT and NIM and then analyzed
their suitability. We considered in the case of the generalized uniform fuzzy partition is power of the
triangular (raised cosine) generalized uniform fuzzy partition and showed that the newly proposed
schemes outperform the Euler-FT [8] and Mid-FT , Scheme I, and Scheme II [9] especially on examples
where the generalized uniform fuzzy partition is power of the triangular generalized uniform fuzzy
partition by using generating function (2). Alos, the newly proposed schemes in this paper outperform
the Trapezoidal Rule, 2-Step Adams Moulton Method and 3-Step Adams Moulton Method. Moreover,
we proved that the Scheme I determines an approximate solution which converges to the exact
solution. This constitutes an important improvement to previous results were coined by I. Perfilieva [8].
To conclude previous sections, the proposed schemes are more accurate and stable. In particular, these
schemes can be used for solving initial value problem.
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