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Abstract: Usually, the optimal spinning reserve is studied by considering the balance between the
economy and reliability of a power system. However, the uncertainties from the errors of load and
wind power output forecasting have seldom been considered. In this paper, the optimal spinning
reserve capacity of a power grid considering the wind speed correlation is investigated by Nataf
transformation. According to the cost–benefit analysis method, the objective function for describing
the optimal spinning reserve capacity is established, which considers the power cost, reserve cost,
and expected cost of power outages. The model was solved by the quantum-behaved particle swarm
optimization (QPSO) algorithm, based on stochastic simulation. Furthermore, the impact of the
related factors on the optimal spinning reserve capacity is analyzed by a test system. From the
simulation results, the model and algorithm are proved to be feasible. The method provided in
this paper offers a useful tool for the dispatcher when increasing wind energy is integrated into
power systems.
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1. Introduction

Wind power, which is a green, clean, and renewable energy source, has developed dramatically.
Unlike traditional power sources, wind energy in a power system has the following characteristics:
(1) the intermittent and variable nature of wind speed causes the output power of wind farms to be
stochastic; (2) as wind farms are commonly clustered in a region rich in wind resources, wind speeds
and wind speed forecast errors of different wind farms are dependent. As wind power cannot be
predicted with great accuracy, additional spinning reserve needs to be carried in order to guarantee
the operational reliability [1]. Therefore, it is of great significance that new spinning reserve dispatch
methods capable of taking account into probabilistic and correlated characteristics of wind power
are developed.

There have been many studies on the spinning reserve of power grids with large-scale wind
power. Zhang, et al. [2] and Zhang, et al. [3] set up deterministic optimization modes for spinning
reserve capacity, where the objective function is the minimum cost to buy spinning reserve. In [4],
the system states are quickly selected by using the enumeration and simulation method, and a new
method is used to assess the operating reserve risk of the wind power system. An optimization
algorithm for the spin reserve is presented in [5] for the different demand of spin reserves under risk,
using the control performance of the generator set. However, the relationship between the abundant
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levels of spinning reserves and the reliability and economy of the power grid is not well considered.
In [6], a model of the generation and optimal coordinating dispatch reserves is built, in which the
constraint condition of the quantitative relation of the ratio between the system reserves and expected
loss of load is considered. Taking both system economy and reliability into consideration, Literature [7]
propose a conditional value-at-risk-based optimal spinning reserve model and incorporate it into the
generation scheduling model in wind power integrated systems, in order to minimize total generation
cost. Considering uncertainties in wind power and load forecasts, a multi-objective energy and
spinning reserve scheduling method for a wind–thermal power system is investigated in a market
environment [8]. Cobos, et al. [9] establishes a mathematical optimization model for the minimum
cost of conventional generators and spinning reserve, and then adopts a robust linear optimization
to get the optimal reserve capacity with the wind uncertainty, so as to guarantee the feasibility of the
optional solutions for all the realizations of the uncertain data. In [10], based on a robust optimization
approach, an energy and reserve joint dispatch model in the real-time electricity markets is presented,
considering wind power generation uncertainties as well as zonal reserve constraints under both
normal and N-1 contingency conditions.

However, the above references have not considered the influence of wind speed correlation on
the spinning reserve capacity. Li, et al. [11], Chen, et al. [12], and Xie and Xiong [13] take into account
the wind speed correlation to investigate optimal power flow, reliability assessment, and dynamic
economic dispatch of power systems with integrated wind power, respectively. These studies have
shown wind speed correlation should not be neglected when several wind farms are connected to the
same power system.

In this paper, a stochastic spinning reserve capacity optimization model is set up, taking account
into the wind speed correlation and some uncertain factors. Compared with the prior works, the major
contributions of this paper are summarized as:

(1) The wind speed correlation is considered. The Nataf transformation and Cholesky decomposition
are applied to model the correlated wind speed;

(2) An optimal spinning reserve model is proposed, aiming at the minimum generator cost,
spinning reserve cost, and expected outage cost, in which the other uncertain factors, such as
the load forecast deviation, wind power output prediction error, and forced outage rate of the
generator are all considered;

(3) The model is solved by the quantum-behaved particle swarm optimization (QPSO), based on the
stochastic simulation algorithm.

The rest of the paper is organized as follows. Section 2 addresses the modeling method of wind
speed correlation. Section 3 presents the optimization model of spinning reserve capacity. Section 4
employs the stochastic optimization algorithm, QPSO, to solve the model. In Section 5, tests and
comparisons under different wind speed correlations are demonstrated. Finally, conclusions are drawn
in Section 6.

2. The Model of Correlated Wind Speeds

2.1. Nataf Transformation

The Nataf transformation and Cholesky decomposition are used to convert non-normal relevant
variables to independent standard normal ones.

For the input speed wind vector V = [v1, v2, . . . , vm]
T, whose probability density function (PDF) fi(vi)

and marginal cumulative distribution function (CDF) Fi(vi) are known, using marginal transformations,
Liu and Der [14] obtained the jointly standard normal variate vector X = [x1, x2, . . . , xm]

T, which is
expressed as:

xi = Φ−1[Fi(vi)]i = 1, 2, · · · , m, (1)

where Φ(·) is the CDF of standard normal variable (SNV), and Φ−1(·) is the inverse CDF of SNV.
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The relationship between correlation coefficient ρij of vector V and correlation coefficient ρ0,ij of
vector X can be expressed as

ρij =
∫ +∞
−∞

∫ +∞
−∞ ( vi−µi

σi
) · ( vj−µj

σj
) fvivj(vi, vj)dvidvj

=
∫ +∞
−∞

∫ +∞
−∞ ( vi−µi

σi
) · ( vj−µj

σj
)× φ2(xi, xj, ρ0,ij)dxidxj

, (2)

where ρij of ρ0,ij of are, respectively, the elements of correlation matrix ρ of vector V and the ρ0 of
vector X, µi and σi are the mean and standard deviation of wind speed vi, respectively; φ2(xi, xj, ρ0,ij)

is the bi-dimensional standard normal PDF of zero means, unit standard deviations, and correlation
coefficient ρ0,ij.

In most engineering applications, ρ0 is a positive definite, so it can be decomposed by
Cholesky decomposition.

ρ0 = L0LT
0 , (3)

where L0 is an inferior triangular matrix.
Then, the correlated standard norm vector X is transformed into an independent standard normal

vector U = [u1, u2, . . . , um] by using L0.
U = L0

−1X (4)

Through Equations (1)–(4) above, the correlated non-normal wind speed vector V is transformed
to the independent standard normal vector U, and this is the positive process of Nataf transformation.

2.2. The Solution for the Correlation Coefficient of the Wind Speed

For the complexity of calculating Equation (2), Dagang [15] employed the integral space
transformation method to transform Equation (2) into Formula (5), as follows:

ρij =
∫ +∞
−∞

∫ +∞
−∞ ( vi−µi

σi
) · ( vj−µj

σj
) fvivj(vi, vj)dvidvj

=
∫ +∞
−∞

∫ +∞
−∞ ( vi−µi

σi
) · ( vj−µj

σj
)φ(ui)φ(uj)duiduj

, (5)

where ui, uj is the ith and jth element of the vector U, respectively, and φ(·) is the PDF.
Then, the bi-dimensional Nataf transform and Gauss–Hermite integral method are applied to

calculate the integral in Formula (5), ρ0,ij can be achieved by solving the nonlinear equation as follows:

ρ0,ij −
m

∑
l=1

m

∑
k=1

wlwk

(
vil − µi

σi

)(vjk − µj

σj

)
= 0, (6)

where m is the number of integral nodes; wl and wk are the weight values of the integral nodes l and k,
respectively; and (vil , vjk)

T is derived from Equations (7) and (8), as follows:

(xil , xjk)
T = L′0 × (zil , zjk)

T , (7)

(vil , vjk)
T = (F−1

i (φ(xil)), F−1
j (φ(xjk))), (8)

where L′0 is a bi-dimensional inferior triangular decomposition matrix, which is derived from Nataf
transformation; (zil , zjk)

T =
√

2(uil , ujk)
T; and the typical weight values wl and wk and the node values

zil and zjk can be obtained from the literature [16].

2.3. Generation of the Random Numbers of Correlated Wind Speeds

When CDFs F(V) and correlation matrix ρ of correlated wind speeds are available, the random
numbers of wind speeds can be generated by inverse Nataf transformation. The basic steps are as follows:

(1) Generate the random numbers Us of vector U;
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(2) Achieve the correlation matrix ρ0 of the correlated standard norm vector X by Equations (6)–(8),
then ρ0 is decomposed by Cholesky decomposition to get the matrix L0;

(3) Generate the random numbers Xs of vector X by Equation (4);
(4) Generate the correlated random numbers Vs of wind speed vector V by marginal transformation.

V s = F−1[Φ(Xs)]. (9)

3. Optimization Model

3.1. Objective Function

According to the cost–benefit analysis method, an objective function is built as the following,
which is the minimum cost containing the generation cost, reserve cost, and expected outage cost.

min F = f (pi,t) + g(ri,t) + Ot, (10)

f (pi,t) =
N

∑
i=1

T

∑
t=1

[aiP2
i,t + biPi,t + ci + Si,t], (11)

g(ri,t) =
N

∑
i=1

T

∑
t=1

(αi,uru,i,t + αi,drd,i,t), (12)

Ot =
T

∑
t=1

γ · Et, (13)

where N is the number of thermal power units; T is the number of the scheduling interval; f (pi,j) is the
cost of thermal power generator unit i at the time t, which includes the operating cost and start-up
fee Si,t; ai, bi, and ci are the cost coefficients of the generator unit i; Pi,t is the output of thermal power
unit i at the time t; g(ri,j)is the reserve cost; αi,u is the up spinning reserve price of the unit; αi,d is
the down spinning reserve price of the unit i; ru,i,t and rd,i,t are the up and down spinning reserve
capacities, respectively; Ot is the expected outage cost; γ is the power loss cost, which can be obtained
from statistical results; Et is the expected energy not serve (EENS) of the power system at the time t,
which can be calculated by

Et =

+∞∫
Mr

(y−Mr + ∆Pg) f (y)dy, (14)

where y is the electricity demand deviation of the whole power system, Mr is the up spinning reserve
capacity at the time t, ∆Pg is the dispatching difference of the thermal power units due to outage,
and f (y) is PDF of the electricity demand deviation y.

3.2. Constraints

Constraint conditions mainly include the power balance (Equation (15)), the generation limits
(Equation (16)), minimum running time (Equation (17)), outage time constraints (Equation (18)),
and ramping constraints (Equation (19)), which are defined as follows:

N

∑
i=1

Pi,t +
S

∑
j=1

PW
j,t = PL,t, (15)

Pmin
i,t ≤ Pi,t ≤ Pmax

i,t i ∈ N , (16)

Ton
i,t ≥ Ton

i,min, (17)

Toff
i,t ≥ Toff

i,min, (18)
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Ri,Damp ≤ Pi,t − Pi,t−1 ≤ Ri,Uamp, (19)

where S is the number of wind farms, Pw
j,t is the power output of the jth wind farm at the time t;

PL,t is the load power at t; Pmin
i,t and Pmax

i,t are the minimum and maximum available power output of
thermal power unit i at t, respectively; Ton

i,t and Toff
i,t are the operation and shutdown time, respectively,

of the unit i at t; Ton
i,min and Toff

i,min are the minimum values of operation time and shutdown time,
respectively; Ri,Damp and Ri,Uamp are the ramp-down and the ramp-up limit of the thermal power
generator i, respectively.

Due to the random and fluctuation of the wind power outputs and loads, some additional
constraint conditions should be considered. In this paper, the probability intervals of the wind
power and loads are both set as 95%, which are respectively defined as [Pmin

W,t , Pmax
W,t ] and [Pmin

L,t , Pmax
L,t ].

Furthermore, the up and down spinning reserve capacities Ru
s,t and Rd

s,t needed to supply the power
system at t are as follows: {

Ru
s,t = PW,t − Pmin

W,t + Pmax
L,t − PL,t

Rd
s,t = Pmax

W,t − PW,t + PL,t − Pmin
L,t

(20)

The up and down spinning reserve constraints of the thermal power unit are as follows:

ri,u ≤ min
{

Pmax
i − Pi,t, Ri,Uamp

}
(21)

ri,d ≥ max
{

Pi,t − Pmin
i , Ri,Damp

}
(22)

P

{
N

∑
i=1

(Pi,t + ru
i,t)di,t +

S

∑
j=1

PW
j,t ≥ PL,t + Ru

s,t

}
≥ β (23)

P

{
N

∑
i=1

(Pi,t + rd
i,t)di,t +

S

∑
j=1

PW
j,t ≥ PL,t + Rd

s,t

}
≥ β (24)

where ri,u and ri,d are the up and down spinning reserve capacity supplied by the thermal power
generator unit i, respectively; β is the confidence level of the system; di,t is the state variable of
the thermal power generator unit i, and di,t = 0 when the unit i is not scheduled to run in the
day-ahead dispatch. Otherwise, di,t is determined by the forced outage rate qi of the unit i by
Monte Carlo stochastic simulation: randomly generate a pseudo-random number δi following the
uniform distribution [0,1], if δi ≤ qi, di,t = 0, otherwise, di,t = 1.

3.3. The Prediction Deviation

In a power system that includes wind farms, the prediction deviation is mainly from the load forecast
error and the prediction error of the wind farm output. Firstly, the load forecast deviation is as follows:

∆PL,t = PL,t − PL,t, (25)

where PL,t is the forecast load and ∆PL,t is the load forecast deviation, which follows the normal
distribution N(0, σ2

L).
The wind farm output prediction deviation is

∆PW,t = PW,t − PW,t, (26)

where PW,t and PW,t are the actual and forecast values of wind farm output, respectively, and ∆PW,t
is the wind power output prediction deviation, which follows the normal distribution N(0, σ2

w).
The standard prediction deviation at the time t can be calculated as

σw,t = Kt · PW,t +
1

50
WI, (27)
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where K is the factor of wind power prediction error and WI is the total installed capacity of the wind farms.
The actual electric demand of the power system can be calculated as

P̃L,t = PL,t − PW,t = PL,t − PW,t + ∆PL,t − ∆PW,t = PQ,t + ∆PQ,t, (28)

where PQ,t is the electric demand forecast of the whole power system, and ∆PQ,t is the electric demand
deviation of the whole power system, which is assumed to follow the normal distribution N(0, σ2

Q).
The standard deviation σQ,t at the time t is

σQ,t =

√
(σL,t)

2 + (σW,t)
2 (29)

According to the Wang, et al. [17], the continuous probability density function of the electric
demand deviation is defined as

f (∆PQ,t) =
1√

2πσQ
exp(−

∆PQ,t
2

2σ2
Q

) (30)

4. Solution Algorithm

The QPSO has many advantages [18], such as global convergence, faster convergence speed,
fewer control parameters, and powerful search abilitities, so the QPSO based on the stochastic
simulation algorithm is applied to solve the optimization model in this paper.

4.1. Stochastic Simulation

The procedure of the stochastic simulation is as follows:

(1) Set the counter to N’ = 0;
(2) Randomly generate the variable samples of the thermal power output and reserve capacity,

then substitute them into Formulas (23) and (24) to test the feasibility of these samples—if they
satisfy (23) and (24), then N′ = N′ + 1;

(3) Repeat Step 2 above for N times, until N′/N > β.

4.2. Quantum-Behaved Particle Swarm Optimization

The QPSO is a probability search algorithm that introduces quantum mechanics into particle
swarm optimization (PSO). The average best position C(k) is introduced into QPSO to calculate
variables in the following iteration:

C(k) =
1
M

M

∑
i=1

pi(k) = (
1
M

M

∑
i=1

pi,1(k),
1
M

M

∑
i=1

pi,2(k), . . . ,
1
M

M

∑
i=1

pi,N(k)), (31)

where M is the number of the swarm, k is the current number of iterations, and pi is the local best
position of the swarm i.

The particle position of decision variables xi is updated through the Monte Carlo stochastic
simulation, as follows:

xi(k + 1) = pi ± λ · |C(k)− xi(k)| · ln[1/u], (32)

where u is uniform random numbers in the interval [0,1], and λ is the contraction–expansion coefficient,
which can be applied to control the convergence speed of PSO algorithm. The contraction–expansion
coefficient is defined as

λ = (1− 0.5)× (Maxiter − k)/Maxiter + 0.5, (33)

where Maxiter is the maximum number of the inner iterations.
The flow chart of the proposed QPSO based on Equations (31)–(33) is shown as Figure 1.
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Figure 1. Flow chart of the quantum-behaved particle swarm optimization (QPSO) algorithm.

The detailed procedure is as follows:

(1) Obtain the correlated wind speed data of wind farms, according to Section 2.3;
(2) Read the system data, such as the prediction values of the loads and wind power output and

the probability distribution of the prediction deviation. In addition, set the input the parameters
of the quantum-behaved particle swarm optimization algorithm, such as maximum iteration
number and particle swarm size;

(3) Initialize the population. The active power and reserve capacity of each thermal power unit are
randomly generated to form the population, which is tested according to Formulas (15)–(24);
if the population is not feasible, it will be regenerated until Formulas (15)–(24) are satisfied;

(4) Calculate the average best position of the particle swarm, according to Formula (31), and then
calculate the fitness function value of particles at the current location according to Formula (10);

(5) Update the position of the particles. The position of each particle is updated according to
Formula (32), and the limit is verified. If the decision variables are beyond their limits, the particles
are renewed. Besides, a random simulation is also employed to verify whether the particles are
satisfied with the predetermined confidence level, and if they do not satisfy the confidence level,
the particles will be renewed. Then the fitness function values of each particle are calculated.
If they are superior to the extreme value of the current particles, the individual extremum is
updated. If the individual extreme value of the population is better than the current global
extreme value, then update the global optimum;
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(6) Determine whether the convergence condition |F(k + 1)− F(k)| ≤ ε is satisfied, or if the number
of iterations is reached. If it is not satisfied, then go back to Step 4—otherwise, output the best
particle as the optimal solution.

5. Analysis of Examples

5.1. Parameter Configuration

In this paper, the test system consists of 16 thermal power units and four wind farms. The basic
data are listed in Tables A1 and A2 in Appendix A. The relationship between the wind farm power
and the wind speed is as follows:

P(v) =



0, v < vci
v−vci
vr−vci

Pr, vci ≤ v < vr

Pr, vr ≤ v < vout

0, v ≥ vout

, (34)

where Pr is the rated power of a wind farm; υci, υr, and υout are the cut-in speed, rated speed,
and cut-out speed, which are 3, 12, and 20 m/s, respectively for all wind farms. Load forecast deviation
obeys the normal distribution N(0, 202). The wind power prediction error factor is 0.02. The loss value
for outage is 500 USD/MW·h. In QPSO, the number of swarms is 40, and the maximum number of
iterations is 500, the parameter ε= 1 × 10−4.

5.2. Nataf Transformation

The wind speed distribution for every wind farm is assumed to follow the Weibull distribution,
in which the scale and shape parameters are 8 m/s and 2.2, respectively. All four wind farms are
correlated with correlation coefficient ρ, and the correlation coefficient matrix is defined as

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

 (35)

For the strong positive correlation, moderate correlation, low correlation, and negative correlation,
the correlation coefficients are set as 0.9, 0.5, 0.1, and −0.5, respectively. In this paper, five integral
nodes are selected to solve the correlation coefficient ρ0, which are listed it in Table 1.

Table 1. The correlation coefficients of wind speed.

Correlation Coefficient ρ Correlation Coefficient ρ0

0.9 0.9230
0.5 0.5125
0.1 0.1022
−0.5 −0.5118

Then the method proposed in Section 2.3 is applied to generate the random numbers of the
correlated wind speeds, in order to get the wind speed time series of all wind farms, which are shown
in Appendix B, Figure A1, and subsequently transformed them into power production to obtain the
random numbers of wind power.
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5.3. Optimal Spinning Reserve Capacity with Different Wind Speed Correlation

The installed capacity of the wind generator is 180 MW. The confidence level β is 0.9. The spinning
reserve capacities of different wind speed correlations from 15:00 to 24:00 in one day are shown in Table 2.

Table 2. Results of the spinning reserve under different wind speed correlations.

Type Spinning Reserve
(MW)

Time/h

15 16 17 18 19 20 21 22 23 24

High correlation Up 248.5 244.5 216.1 242.7 219.5 235.9 223.6 263.2 243.3 204.5
Down 173.8 162.2 165.6 137.6 185.8 137.6 128.7 170.6 151.6 111

Moderate correlation
Up 230.7 237.6 214.7 233.4 210.6 224.4 222.4 247.1 215.4 192.5

Down 164.9 150.7 159.9 116.2 159.4 127.7 122.3 157.5 140.1 92.2

Low correlation
Up 217.5 214.7 211.7 224.7 194.9 212.9 211.3 233.5 193.8 179.9

Down 152.9 134.8 152.7 101.9 146.3 116.7 115.1 149.2 121.9 88.7

No correlation
Up 212.7 206.7 210.9 220.9 190.4 208.9 210.5 228.8 188.6 172.1

Down 146.2 129.7 149.9 97.5 138.8 112.2 109.5 142.8 107.5 85.1

Negative Correlation Up 201.3 196.6 209.3 213.9 181.8 197.2 201.3 219.2 178.8 166.7
Down 134.6 118.1 145.8 86.5 117.2 110.9 98.8 137 94.2 83.88

From Table 2, it can be seen that the up and down spinning reserve capacities rise with the increase
of wind speed correlations. Wind speed with positive correlation will strengthen the synchronization
(simultaneous increase and decrease) of different wind turbines’ power output and increase the
fluctuation of total wind power output. Therefore, compared with no correlation, the power system
needs more up and down spinning reserve capacities. However, for the wind farms with negative
wind speed correlation, their outputs can be complementary, so that the wind power output of the
whole system becomes smooth. Therefore, the up and down spinning reserve capacity is smaller
than in the case without considering wind speed correlation. Hence, the wind speed correlation has
an important impact on the spinning reserve capacity of the power system with high wind power
penetration, so it should not be ignored.

5.4. The Impact of Wind Speed Correlation on Spinning Reserve under Different Wind Power Capacities

Figure 2a–d shows the up and down spinning reserve capacities with different wind speed correlations,
in which the wind power installed capacities are 180 and 360 MW, and the confidence level β is 0.9.

Figure 2 illustrates that the wind speed correlation has a greater influence on the spinning reserve
capacity with the increase of the wind power installed capacity. In particular, the wind power forecast
error will increase with time, and the wind output with positive correlation is more fluctuating;
therefore, the difference in the spinning reserve capacity between the positive and the negative
correlation becomes greater with time. Meanwhile, the up spinning reserve is more easily affected by
the wind speed correlation than the down spinning reserve. Therefore, it is necessary to consider the
influence of wind speed correlation on spinning reserve in the power system with the large-scale wind
power integration.
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Figure 2. Spinning reserve comparisons under wind speed correlation: (a) up spinning reserve capacity
with wind speed correlation under a wind power installed capacity of 180 MW; (b) down spinning
reserve capacity with wind speed correlation under a wind power installed capacity of 180 MW;
(c) up spinning reserve capacity with wind speed correlation under a wind power installed capacity of
360 MW; (d) down spinning reserve capacity with wind speed correlation under wind power installed
capacity of 360 MW.

5.5. The Effect of Wind Speed Correlation on Expected Energy Not Served

Table 3 lists the influence of the wind speed correlation on EENS, when the confidence level β is
0.9. The wind power installed capacities are 90, 180, 270, and 360 MW, respectively.

Table 3. Effect of wind speed correlation on expected energy not served (EENS).

Wind Power Installed Capacity/MW
EENS/MW·h

High
Correlation

Moderate
Correlation

Low
Correlation

Negative
Correlation

90 3.74 2.91 1.44 1.03
180 5.63 3.48 2.16 1.45
270 9.51 5.49 4.52 2.17
360 15.36 9.64 6.20 4.36

As shown in Table 3, with the increase of the wind speed correlation, the EENS increases. When the
wind speed correlation goes up, the wind farm output is more volatile, especially in the case of a high
positive correlation; in that situation, the prediction deviation of wind power becomes larger, leading to
a greater standard deviation of electricity demand in the whole power system, which gives rise to the
increase of EENS. Meanwhile, EENS goes up as the wind power capacity rises.

5.6. Optimization Results under Different Confidence Levels

As shown above in Table 4, where the wind power installed capacity is 180 MW and the wind
speed correlation is moderate, with an increasing confidence level the EENS decreases; however,
the spinning reserve capacity and the total cost rise. Therefore, it is important to choose an appropriate
confidence level to provide the trade-off between security and economy.
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Table 4. Optimal dispatch results with different confidence levels.

Confidence level 0.80 0.85 0.90 0.95
Total cost/USD 424,259 426,506 427,838.8 430,447.4

Generation cost/USD 409,212.3 414,038.8 416,662.4 420,138.6
Reserve cost/USD 6326.7 6857.2 7696.4 9159.6

EENS/MW·h 8.72 5.61 3.48 1.47
Up spinning reserve capacity/MW 3756.9 4145.3 4793.0 5712.6

Down spinning reserve capacity /MW 2917.6 3286.2 3450.6 3742.3

6. Conclusions

This paper proposes an optimal model of spinning reserve capacity with wind speed correlation,
in which the load forecast error, wind power output prediction error, and unit forced outage rate of
the uncertainty factors are considered. At the same time, the model is solved by the QPSO algorithm
based on stochastic simulation. The main conclusions of this paper are as follows:

• With an increase of wind speed correlation, the fluctuation of the wind farm output is greater,
so the spinning reserve capacity should be increased. However, when the wind speed correlation
is negative, the outputs of wind farms can be complementary, so the spinning reserve capacity
should be reduced in comparison to non-correlation;

• With the increase of wind power installed capacity, the wind speed correlation has a greater effect
on the spinning reserve capacity;

• The relationship between the total cost and confidence level of the test system was analyzed so
that the results can provide decision support for dispatchers in the balance between reliability
and economy.
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Appendix A

Table A1. Forecast load.

Time/h Load/MW Time/h Load/MW Time/h Load/MW Time/h Load/MW Time/h Load/MW Time/h Load/MW

1 960 5 840 9 1305 13 1485 17 1440 21 1380
2 900 6 870 10 1425 14 1500 18 1440 22 1395
3 870 7 960 11 1485 15 1500 19 1395 23 1305
4 840 8 1140 12 1500 16 1455 20 1380 24 1080

Table A2. Data of thermal power generators.

i Pmax
i /MW Pmin

i /MW ai bi ci Si Ton
i,min Toff

i,min Ri,Damp Ri,Uamp ffi,u ffi,d qi

1–5 20 80 0.009 8 7.884 531.3 100 5 5 20 20 1.81 0.27 0.02
6–10 55 100 0.012 9 6.373 514.5 120 3 3 30 30 1.33 0.20 0.04
11–15 75 150 0.002 3 9.616 353.1 50 2 2 70 70 1.27 0.19 0.04

16 160 350 0.002 4 9.385 368.4 80 2 2 40 40 1.57 0.22 0.08
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Appendix B

Figure A1. Wind speed time series with different correlation coefficients: (a) high correlation,
(b) moderate correlation, (c) low correlation, (d) negative correlation, and (e) no correlation.
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