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Abstract: Determining what constitutes a causal relationship between two or more concepts, and how
to infer causation, are fundamental concepts in statistics and all the sciences. Causation becomes
especially difficult in the social sciences where there is a myriad of different factors that are not
always easily observed or measured that directly or indirectly influence the dynamic relationships
between independent variables and dependent variables. This paper proposes a procedure for helping
researchers explicitly understand what their underlying assumptions are, what kind of data and
methodology are needed to understand a given relationship, and how to develop explicit assumptions
with clear alternatives, such that researchers can then apply a process of probabilistic elimination.
The procedure borrows from Pearl’s concept of “causal diagrams” and concept mapping to create
a repeatable, step-by-step process for systematically researching complex relationships and, more
generally, complex systems. The significance of this methodology is that it can help researchers
determine what is more probably accurate and what is less probably accurate in a comprehensive
fashion for complex phenomena. This can help resolve many of our current and future political
and policy debates by eliminating that which has no evidence in support of it, and that which has
evidence against it, from the pool of what can be permitted in research and debates. By defining
and streamlining a process for inferring truth in a way that is graspable by human cognition, we can
begin to have more productive and effective discussions around political and policy questions.

Keywords: causality; statistics; concept-mapping; causal graph

1. Introduction

Causal inference is a key goal for understanding the relationships among phenomena in the real
world that researchers are attempting to study [1] This becomes a challenging task when possible
causal phenomena are numerous, highly interrelated, complex, and complicated to study with
validity [2,3]. As things currently stand, there is no clear method for either promoting correct facts
and high quality and honestly treated evidence, or for eliminating incorrect facts and inferences of
poor quality, or dishonestly treated evidence from the pool of knowledge that is acceptable in policy
debates. This paper proposes a possible method to clarify researchers’ intentions and work, determine
what data are necessary to collect, guide the selection of the methodology of treating the evidence,
and produce possible counterfactual arguments that can be tested to establish a greater probability that
correct inferences are drawn from the data. The hope of this paper is to clarify what is more probably
true from what is less probably true and to streamline the pool of evidence that is permissible in
policy and political debates. High quality and honestly treated evidence gains precedence over, and is
promoted in discussions and debates, at the expense of poor quality and dishonestly treated evidence.

2. Literature Review

“Causality” is defined as “the relationship between something that happens or exists and the
thing that causes it” [4]. Determining causal relations among variables is a challenging and much
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studied topic [1,5–10]. Much of the literature on causal relations comes from the medical field of
epidemiology [11] and is used to infer causal relationships in disease diagnoses and treatment effects
of medical regimens [12]. Causality is also a much studied subject in the social sciences. Its inference is
typically derived from a statistical method or technique or qualitative analysis [6,13–17]. Testing for
Granger Causality, which is a statistical concept where variables that cause effect variables contain
information that predicts effect variables within them, has used “path diagrams” in the literature [18].
This paper specifically draws upon the concept of the “causal graph” described by Pearl [19] as the
basis of this methodology. The causal graph is used alongside “concept mapping” in order to tease
out the underlying assumptions about the nature and relationships among the variables in question.
Casual graphing and concept mapping promote better understandings of the researchers’ assumptions,
and they develop alternative counterfactual cases with different causal graphs. Causal graphing also
could help design research to test the factual and causal validity of the causal graph and, by extension,
the researchers’ concept map [20]. In summary, the researchers and other stakeholders may make
different concept maps and causal graphs according to existing methodologies. The difference with
this proposed method is that it actively seeks to remove all or parts of concept maps and causal graphs
to infer what is more probably true in the real world itself.

A “causal graph is a directed graph that describes the variable dependencies” [21]. Causal
graphs were first developed in the fields of mathematics, computer science, machine learning,
and statistics [1,22,23] but have since evolved to the study of complex phenomena, such as
epidemiology [9] and planning [21,24,25]. While causal graphs are not new tools in several academic
fields and have been used in statistical analyses for developing causal relations after the data collection,
it does not appear that they have been widely used by researchers to sketch assumptions and
hypotheses before the data has been collected.

The ideas expressed here are not new in the field of economics. One of the first two Nobel
Laureates in Economics in 1969, Jan Tinbergen, collected all proposed macroeconomic models in
the late 1930s and built models of the business cycle with a similar technique ([26] pp. 101–130).
Tinbergen “explained his model building as an iterative process involving both hypotheses and
statistical estimation” ([26], p. 103). Morgan (1990) points out that “Despite their usefulness, few
copied his graphical methods” ([26], footnote 9, p. 111).

While Tinbergen’s methods are similar to the concept of causal graph modeling that is described
here, they are not quite the same. Tinbergen was aiming to understand economies and processes
in economies, not to infer causal relations among different social, economic, ecological variables,
and factual conditions. Indeed, the method that is described in this paper is more applicable in
meta-analyses of existing studies and guiding the direction of future research, not as the centerpiece of
individual topical studies. The intention behind this method is to understand what is true and what is
not as true, and to provide a quantitative method for deriving those truths and assessing the quality of
the evidence behind them.

Another process that is similar to this one is known as “group model building” [27–29]. Group
model building is a process that was created by system dynamics researchers to facilitate diverse
stakeholders sharing information across different fields. This is done to solve problems that are
common to these stakeholders by unifying, standardizing, and connecting the information that is
presented by and for the stakeholders in question [27,29]. While this is a useful technique for helping
groups understand problems from many different angles, it is not a generalized way of inferring
causality and truth. Creating and testing different causal graphs with the evidence that is available is a
separate process that aims to produce general knowledge of empirically inferred reality. The goal with
causal graph analyses is to produce a coherent and accurate map of a given concept or problem that is
more probably true than competing alternative maps. It is the process of weeding out models that are
not supported by evidence, more than it is just the production of different models.

Most people have implicit assumptions about how the world works, in addition to possible
desires about how they would like the world to work [15,30–32]. One method for determining the
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underlying assumptions that are implicit in a research project is to map them out through a process
known as “cognitive mapping” [33–37]. Cognitive mapping has been used to understand the implicit
assumptions and decisions made by policymakers in the past [38]. Cognitive maps give rise to different
concept maps, which then are used to produce different causal graphs. It is logically plausible that the
creation of causal graphs in causal modeling is produced by the conceptual maps people make by the
same cognitive maps used by researchers, policymakers, and stakeholders. Indeed, cognitive mapping
is implicit in some research concerning Bayesian networks, which map out the probabilities that a set
of causal conditions relates to a set of observed variables [39–43]. It also has been linked to modeling
ecological systems by researchers [37].

The hypothesis that underpins this perspective is that implicit cognitive maps of researchers,
policymakers, and stakeholders alike result in the production of different conceptual maps of the world.
The interplay between cognitive maps and conceptual maps gives rise to different causal graphs being
produced through the different perceived factual “nodes” (points) and connecting “edges” (relations
or connections between factual nodes) of the researcher, policymaker, and stakeholder. This is different
from existing methods for making the goals of researchers, policymakers, and stakeholders explicit,
such as the Logic Model. Logic models display the connection between different inputs and activities
with different outputs and outcomes [44], in that this method is more free-form and allows the
cognitive maps and implicit biases to be made more readily apparent instead of confining the maps to
a preset form. Different assumptions, perspectives, levels, and degrees of awareness in the cognition
of researchers, policymakers, and stakeholders result in the perception of different “facts”, different
interpretations of those “facts”, and different edges among the “facts”. This could be done implicitly
and subconsciously by the researcher and policymaker, but it also is hypothetically possible for it to be
done deliberately through conscious choice and selection of facts, interpretations of facts, and edges
among facts [10,32,45,46].

A hypothetical example of this is between people who identify as “conservatives” and “liberals”
looking at the same situation facing their shared nation. The conservative may claim that the moral
integrity of the society is eroding as time passes, while a progressive may have a different outlook on
change and difference in a society from one time to another. The evidence suggests that people on
both sides will look for, perceive, and interpret the situation differently in mutually exclusive way.
For example, the environment cannot both be and not be affected by humans’ economic activities,
and it cannot both be and not be significant for human survival. Different problems are identified,
different choices and preferences are made, and different actions are seen as more or less acceptable
because of those differences between the general psychological phenotypes. The obvious problem
with relying on these subconscious assumptions and biases alone is that the individual person who
is making the policy decisions may not accurately understand, represent, or interpret the meaning
of the world. Without an accurate map of how the world works, policymakers are less able to make
the best possible choices for the people living in the society and for their own benefit as policymakers
making decisions that affect the world they live in. One can think back to the times before navigational
and weather/oceanographic sensory technology had advanced to the point where ships could orient
themselves accurately on Earth. Without the production of these technologies, which aid navigation
and the ability to detect and predict conditions around the ships, sailors’ lives were easily lost on the
tempestuous oceans, and valuable cargo was lost and destroyed in transit around the world more often
than now. The analogy could be carried over to the fate and condition of nations and human societies.

3. The Methodology

The goal of this paper is not to advocate a singular methodology or tool for studying complex
phenomena in our universe. Rather, the goal is to propose a new tool that can be used to help determine
the appropriate tool(s) for studying complex phenomena, and to at least partially overcome the deficits
of human cognition and perception in research and decision-making. By making the assumptions
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explicit rather than implicit in research and policy designs, we can get a firmer grip on what healthy
priorities are, and how to achieve them. Below is an example of a theoretical causal graph (Figure 1).
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Figure 1. An example of a theoretical causal graph.

where x factors cause y effect when brought together in this combination. We see that x1 causes x2
which, when combined with x3, produces y1 effect. The plus represents x2 having a positive feedback
effect on y effects (more of x2 leads to more of y1), while x3 has an unknown effect on y1. Notice the
error/unknown factors variable to account for anything else the model misses.

The methodology is simple to describe and works as follows:

1. Draw out the causal graph as the researcher perceives it to be. This is the conceptual mapping
stage, since all causal graphs are ultimately concept maps. Nodes or points in the graph are
facts or conditions, edges between the nodes are interactions and associations among the facts.
The researcher should be free to base this initial step on their own working knowledge, the existing
literature on the subject in question, and any applicable theory;

2. Consult with other researchers, policymakers, and stakeholders to develop alternative facts and
conditions and alternative ways for them to interact with each other through the interaction
edges in the graph;

3. Design research projects to test the validity of the factual nodes and interaction edges that are
produced from Steps 1 and 2:

a It is important to note that this paper is agnostic about the specifics of the designs of the
research, so long as it is logically valid and testable;

b This is where any number of qualitative and quantitative methods can be used;
c It is also a good idea to use multiple methods on the same factual node or interaction edge

to increase the probability of validity. That is often called robustness in research;

4. Out of the population of causal graphs that were created, assign equal probabilities that each one
is valid based on the total number of causal graphs that are explored.

a The probability of the population of causal graphs can never truly equal 1 for complete
validity because there is always an unknown quantity of potential error present in the
population of models, i.e., the unknown unknowns;

b The probabilities can be explicitly Bayesian, empirical Bayesian, or based on flat priors;

5. Consider the quality and source of the evidence that is presented. If quality evidence for a
particular edge or node is present, then that adds to the probability that that edge or node is true
at the expense of other edges and nodes. If there is evidence against a node or edge, it subtracts
from the probability that that edge or node is true without necessarily affecting alternative
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edges and nodes. Poorer quality evidence has less of an effect, or no effect on the probability of
demonstrating truth;

6. Alter the probability of validity for each of the graphs as evidence becomes apparent through
new research. This can be based on Bayesian updating or frequentist testing;

7. Repeat Steps 1 through 6 using a variety of techniques to examine each node and each edge in
the causal graph.

It is important to again note that this procedure is agnostic about the specific research techniques
that are used to infer causality or the truthfulness of factual nodes. Notice how the factual validity
for each of the variables (the nodes in the causal graph) and causal edges (the links in the causal
graph) are not necessarily known, and are rather hypothesized to exist based on past evidence and the
circumspection of the researcher. From this model, we can derive various other models to test for and
identify possible methods for gathering and examining the data. We can see other possible models
below (Figures 2 and 3).
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Figure 2. An alternative graph to Figure 1.
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Figure 3. An alternative graph to Figure 2.

Notice how parts of the graphs in Figures 2 and 3 changed from Figure 1, representing different
and mutually exclusive hypothetical models that may or may not be more accurate than the
original hypothesis.

These assumptions (that are different from the original causal graph) each then have their own
theoretical and observational bases and their own interpretations of what is present and happening in
the real world outside of the researcher’s perspective and assumptions. With this technique, it is also
possible to model unknown or hypothesized interactions and facts, such as the question mark between
variables x3 and y1. Other models can be constructed using all of the possibilities. For simplicity’s sake,
most of these options in the research design space have been left out. However, if the researcher(s) are
able to get the largest possible collection of causal graphs together while staying relevant to the topic(s)
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at hand, the larger design space should provide a rich environment for testing the factual assumptions
and interactions among the variables. Researchers can then work together across disciplines to
design experiments and determine which data to collect and how in order to “shave away” at the
hypothesis space of the research topic. The surviving causal graphs, which withstand the scrutiny of
the researchers’ efforts, can be said to be more probably true and valid than the other causal graphs that
have aspects that are not valid or which have little to no evidence in support of them. These surviving
causal graphs correspond to Bayesian posteriors or unrejected frequentist hypotheses, in that they are
the end products of analyses.

Figure 4 is an example of a causal graph produced to clarify questions about education policy and
the factors that link in to create academic, social, behavioral, and personal success in students. Using
various data sets and methods of estimation, the most likely causal pathways could be found. Some
researchers will add double-headed causal arrows and reversed arrows.
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Figure 4. An example causal graph for hypotheses concerning outcomes in education.

There are two ideas that can be deconstructed from taking this holistic approach to education
and educational success. The interrelated subject areas, such as the defined pedagogy, territorial
demographics, the political environment, and parental/familial conditions that the child grows up
in can be broken out from the causal graph into their own interrelated clusters as part of the larger
graph that contains the whole. This would enable collaboration among experts in these various fields
to create a more accurate model of the whole picture of how children develop, learn, and grow into
adults, which can then give us a more accurate map for helping policymakers be better able to see
where and how they might intervene in the given subject area. The second idea is that the whole causal
graph is malleable to the perspective of the researcher in question, and alternatives for hypothesis
testing can easily be developed by simply going through the graphical representation of the problem(s)
at stake to find other possibilities and alternatives. Time stamps can be added to refine the temporal
relationships among the variables.
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4. Implications of this Method for Policy Research

The implications of this method for conducting social science research would allow policy
researchers, policymakers, and stakeholders to better understand not only their own implicit,
subconscious biases and explicit conscious biases, but to move beyond those biases in order to
perceive and study our complex social and environmental worlds accurately. Communication of
divergent beliefs and models would be easier. It is feasible that policymakers, and the researchers
and stakeholders as well, will be able to move beyond disagreements over what may be just different
cognitive maps in order that better choices may be made faster, with less debate, and with greater
efficacy than would ordinarily happen without using this methodology explicitly to understand,
design, and analyze situations and conditions in our social and environmental worlds. At least,
it would be clearer what issues must be resolved and models estimated.

The methodology can also be used as a technique for holding policymakers and researchers more
accountable for their assumptions and their chosen research techniques. Even though the method
itself is agnostic about the methods that are used in research, there are practices for testing validity
and causality that are more or less effective than others. By explicitly drawing the causal graph, it is
easier to tell whether more or less appropriate methods are being used to test the nodes and causal
edges of the graph. By explicitly stating the implicit and explicit biases of the individual through the
process of mapping out their factual and causal assumptions, human societies and organizations that
adopt this method for making choices and understanding the world may be able to more effectively
understand political opponents’ concerns and perspectives, as well as to be more effectively able to
challenge those perspectives and opinions that are not based in evidence both behind closed doors
in negotiations and in front of the fora of the general public. Assumptions totally lacking empirical
verification would stand out.

The most significant benefit of using this methodology is that mutually exclusive opinions on
facts and relations can be more clearly examined. Most of the common controversies in policy debates
stem from competing, mutually exclusive ideas on how the world works, and how it ought to work
for human well-being and survival. From whether to have public sector involvement in the economy,
to the necessity of protecting the environment, the different attitudes, biases, and opinions cannot all
be called of equal value for ensuring human health and well-being. Causal graphs can be used to sort
through those differences in policy preferences and opinions to deliver a clearer picture of common
reality and what is needed for human societies at given times. Those opinions that are supported by
quality evidence can then take priority over those that simply are not, or have evidence against their
empirical validity.

5. Caveats to this Method

The most glaring problem with this methodology is that it does not give instructions on how
to collect data, what data to collect, or how to treat the data when they are collected. It may help
inform research decisions, but it does not give explicit instructions on what to use or when to use it.
This leaves the design of the experiments still open to possible researcher bias and the usual difficulties
with inferring causality with researchers who have underlying assumptions and cognitive biases that
they consciously or subconsciously prefer over other models and methods. Through explicitly stating
the researcher’s hypothesis space and cognitive bias, measures of robustness can be developed for
causal models to see if researchers are truly ruling out other possibilities or whether they are honestly
adhering to sound da identification, collection, and interpreting methods. Ignoring logical possibilities
would be much more difficult.

Another caveat to this research methodology is the possibility for aspects of the causal graphs
to change stochastically during the development of the models and throughout the experiments
and analysis of the data. That is, the structure can change. A policymaker may be in the middle of
developing a causal graph which is presently accurate, but may have dynamic aspects to it which
can change in the near to distant future as aspects of our social world (such as technology and our
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understanding of the world itself) change. In addition to these probable knowledge based changes,
there may also be some aspects of our social world which change due to aesthetic preferences or
changes in relative perspective and attitude. This further complicates the development of these causal
graphs, as the aspects and perspectives of them may change in ways that do not track neatly with
the development and production of our knowledge and awareness. What may be in fashion and
perceived of as desirable now may not be viewed as such in the near to distant future, thus altering the
perspectives on the causal graphs that are developed today or rendering them potentially useless for
achieving the goals of the society in the future. Thus, the dynamic and evolving nature of consciousness
and preferences over time may influence the development of these causal graphs, if not affect the
actual graphs themselves in the content of their facts, interpretations of facts, and interactions among
the variables. In response, more basic social factors related to group dynamics can be added to the
models, such as fundamental psychological processing common to humans. Change itself can become
a part of the model. As different edges and nodes can change over time, and their changing nature can
theoretically be observed, the changes and their effects can be noted and tested. This gives the resulting
models significantly greater empirical validity, and thus enriches our understanding of common reality
to the fullest possible extent that we can achieve.

A third possible problem with this methodology is that there is no method for keeping the model
parsimonious and simple. While this may not be a problem when working with large and complex
topics, it can be said that it is feasible that the models that researchers may make could become too
unwieldy for practical use. A simple method for resolving this while not abandoning the potential
complexity in a subject is for the researcher to narrow their focus initially to a given factual node or a
specific interaction, and then to grow the model from there, limiting it to the practical relevance of
the research in question. The researcher in question, or other researchers can then expand the web of
knowledge in other directions at future times.

6. Conclusions

This paper presents a new tool for researchers and policymakers alike for understanding
complex and interconnected topics of interest and importance to human society as a whole. Through
explicitly stating the assumptions behind the subject, researchers and policymakers can then develop
counterfactual alternative graphs for the subjects of their interest and research, identify data that is
relevant to the subject, develop methods for collecting and analyzing the data, and then systematically
shave away at factual assumptions and hypothetical interactions for which there is little to no quality
evidence. Through this deductive process of elimination, researchers and policymakers alike can
eliminate graphs for which all or parts do not have evidence, and thus, be left with a pool of
possibilities that shrinks in size and increases in the chances of being probably accurate representations
of reality itself.

It is possible that some specific aspects of the graphs may change over time with peoples’ attitudes,
preferences, and perspectives. However, it is assumed explicitly in this paper that the underlying
method of creating causal graphs with fact nodes and interaction edges can be valid throughout time,
space, and context, even if the specific models change over time. The process of shaving away at
conceptual maps with this method can produce a more robust, accurate, and complete representation
of reality that the human mind can comprehend and use for other purposes. By doing so, we can begin
to constructively resolve key policy and political debates as they arise with this common process of
gathering, analyzing, and evaluating evidence from our common reality. The political debates may be
based ultimately in values and opinions. However, not all opinions and values are of equal value for
human society’s health and well-being. This proposed method hopes to help resolve these debates for
that which is factually true and healthful, at the expense of those opinions that are not true, and are
very likely unhealthful for humans in general.
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