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Abstract: Egocentric video analysis is an important tool in healthcare that serves a variety of purposes,
such as memory aid systems and physical rehabilitation, and feature extraction is an indispensable
process for such analysis. Local feature descriptors have been widely applied due to their simple
implementation and reasonable efficiency and performance in applications. This paper proposes an
enhanced spatial and temporal local feature descriptor extraction method to boost the performance
of action classification. The approach allows local feature descriptors to take advantage of saliency
maps, which provide insights into visual attention. The effectiveness of the proposed method was
validated and evaluated by a comparative study, whose results demonstrated an improved accuracy
of around 2%.

Keywords: saliency map; local feature descriptors; egocentric action recognition; HOG; HMG;
HOF; MBH

1. Introduction

Wearable sensors with egocentric (first-person) cameras, such as smart glasses, are receiving
increasing attention from the computer vision and clinical science communities [1,2]. The technology
has been applied to many real-world applications, such as action recognition [3], that are traditionally
implemented using cameras in third-person view. Egocentric videos can also be employed jointly
with conventional third-person action recognition videos to improve recognition performance [4].
Conventional third-person video clips provide a global view of high-level appearances, while
egocentric ones provide a more explicit view of monitored people and objects by describing human
interactive actions and reflecting the subjective gaze selection of a smart glasses wearer.

For both first-person and third-person video clips, one of the key steps in action recognition is
feature extraction [5–9]. Local feature descriptors (LFDs) are commonly employed to describe a local
property of video actions (e.g., image patches) when constructing a discriminative visual representation
using the bag of visual words (BoVW) framework [10]. Typical examples of LFDs include the histogram
of oriented gradients (HOG) [11], histogram of optical flow (HOF) [12], motion boundary histogram
(MBH) [13], and histogram of motion gradients (HMG) [14]. Among these LFDs, with the exception of
HOG, gradients over time for consecutive video frames provide useful information, as the magnitude
of gradients becomes large around regions of abrupt intensity changes (e.g., edges and corners). This
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property has enabled the development of feature extraction that is more informative (in terms of shape,
object, etc.) compared with the flat regions in video frames. In addition, the gradients (for HOG and
HMG) or optical flows (for HOF and MBH) over neighboring pixels in an individual frame represent
spatial information. The temporal and spatial information combine to make LFDs effective approaches
to feature extraction.

LFDs often use bins to aggregate the gradient information or its variations and extensions. Briefly,
by partitioning the angular space over 2π, the gradient space is partitioned into multiple subspaces,
each referred to as a bin, to summarize the information carried by pixels using a weighted summation
operation. The weight of each pixel in a bin is determined by its angular distance to the bin, while the
magnitude information is derived from the gradient information. By representing visual attention,
a saliency map can effectively distinguish pixels in a frame [15] to provide key information for daily
activity recognition. Thus, saliency maps can be used to enhance the extraction of LFDs.

This paper proposes an algorithm that integrates saliency maps into LFDs to improve the
effectiveness of video analysis; the algorithm was developed on the basis of the hypothesis that
the most important interactive human actions are in the foreground of video frames. In particular,
the proposed work uses the information of saliency map to further adjust the weights applied to bin
strength calculation such that more visually important information can be considered by LFDs with
higher weights. The contributions (in meeting the objectives) of this paper are mainly twofold: (1) the
proposal of saliency map-enhanced LFD extraction approach (i.e., SMLFD), which works with HOG,
HMG, HOF, MBHx, and MBHy for video analysis, and (2) the development of an egocentric action
recognition framework based on the proposed SMLFD for memory aid systems, which is the secondary
objective of this work. The proposed work was evaluated using a publicly available dataset, and the
experimental results demonstrate the effectiveness of the proposed approach.

The remainder of the paper is organized as follows. Section 2 introduces related work. Section 3
presents the details of the proposed method for egocentric action recognition. In Section 4, the
experimentation and the evaluated results of the proposed method are demonstrated. The conclusion
is drawn in Section 5.

2. Related Work

In the research of visual action recognition, feature extraction from RGB videos has been
intensively explored [5,9,16]. Prior to the feature extraction phase, regions of interest (ROIs) can
be detected to significantly improve the efficiency of action recognition. Spatiotemporal interest
points (STIPs) [17] with Dollar’s periodic detector [18] have been commonly employed to locate ROIs.
Early local descriptors were used for feature extraction by extending their original counterparts in
the image domain [13,19,20]. The 3D versions of scale-invariant feature transform (SIFT) [19] and
HOF [12] have been proposed to speed up robust features (SURF) and improve the performance of
visual action recognition [21–23]. To discretize gradient orientations, the HOG feature descriptor
has been frequently used in the process of extracting low-level (i.e., local) features. Additionally, the
work reported in [24] extracted mid-level motion features using the local optical flow for the action
recognition task. A higher visual representation was also applied in [25] for recognizing human
activities. Recently, local features were suggested to be concatenated with improved dense trajectories
(iDT) [8] and deep features [26]. More details can be found in [27].

Several methods have been used to compute saliency maps for salient object detection and fixation
prediction. When predicting fixation, the image signature [15] significantly enhances the efficiency of
saliency map calculations [28]. The image signature was originally proposed for efficiently predicting
the location of the human eye fixation and has been successfully applied for third-person [29] and
first-person [5] action recognition. The work in [29] fused multiple saliency prediction models to
calculate saliency maps for better revealing some visual semantics, such as faces, moving objects, etc.
In [5], a histogram-based local feature descriptor family was proposed that utilized the concept of gaze
region of interest (GROI). Prior to the feature extraction stage, the RoI was obtained by expanding
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from the gaze point to the point with the maximum pixel value in the calculated frame-wise saliency
map. The extracted sparse features were then employed for egocentric action recognition. The work
reported in [5,6,15] showed that the saliency map is robust to noise in visual action recognition, and it
is able to cope with self-occlusion, which occurs in various first- and third-person visual scenes.

Once the visual features are extracted, the encoding process—an essential part of achieving
classification efficiency—is required to obtain a unique representation. There are three feature
encoding types: voting-based, reconstruction-based, and super-vector-based. Voting-based encoding
methods (e.g., [30]) allow each descriptor to directly vote for the codeword using a specific strategy.
Reconstruction-based encoding methods (e.g., [31]) employ visual codes to reconstruct the input
descriptor during the decoding process. Super-vector-based encoding methods [6,7,32] usually yield a
visual representation with high dimensionality via the aggregation of high-order statistics. The vector
of locally aggregated descriptors (VLAD) [7] and the Fisher vector (FV) [32] are widely employed
super-vector-based encoding schemes due to their competitive performance in visual action recognition.
After noting the appearance of redundancy in datasets, the authors in [6] proposed saliency-informed
spatiotemporal VLAD (SST-VLAD) and FV (SST-FV) to speed up the feature encoding process and
enhance the classification performance. The objectives were achieved by selecting a small number of
videos from the dataset according to the ranked spatiotemporal video-wise saliency scores.

A set of preprocessing (after the feature extraction phase) and post-processing (after the feature
encoding stage) techniques are also commonly applied to boost the performance of both first- and
third-person action recognition. Additionally, dimensionality reduction techniques [33,34] (e.g.,
principal component analysis (PCA), linear discriminant analysis (LDA), autoencoder, fuzzy rough
feature selection, etc.) and normalization techniques (e.g., RootSIFT, `1, `2, PN) and their combinations
(e.g., PN`2 [5,6], `1PN, etc.) have been integrated into action recognition applications. Several popular
classifiers have also been explored for recognition applications, such as linear and nonlinear support
vector machine (SVM) [14,35] and artificial neural networks (ANNs) [5,9,36]. They are usually coupled
with different frame sampling strategies (e.g., dense, random, and selective sampling) [37]. The recent
work reported in [35,38] combined multiple feature descriptors and pooling strategies in the encoding
phase, leading to improved performance.

3. Saliency Map-Based Local Feature Descriptors for Egocentric Action Recognition

The framework of the proposed saliency map-based egocentric action recognition is illustrated
in Figure 1, which highlights the proposed SMLFD feature extraction approach itself, as detailed in
Section 3.3. This framework was developed according to the principle of the BoVW approach. In the
illustrative diagram, SM-HMG is used as a representative example to demonstrate the workflow of
the proposed approach, as shown in the bottom row of Figure 1. In particular, the SM-HMG feature
extraction approach takes two consecutive frames in a 3D video matrix V as the input. Then, the motion
information between the two consecutive frames (T D) is captured via a temporal derivative operation
with respect to time t. This is followed by the calculation of gradients in the spatial x and y directions.
From this, the magnitudes and orientations of every pixel in the frame are calculated (frame-wise,
jointly denoted asM andO), thus generating the corresponding saliency map S . Then, the magnitude
response of pixels are aggregated into a limited number of evenly divided directions over 2π, i.e.,
bins. In this illustrative example, eight bins are used. This is followed by a weighting operation using
saliency information to generate a histogram of bins for each block. The final feature representation
is then generated by concatenating all the block information (18 blocks in this illustrative example)
into a holistic histogram feature vector. The key steps of this process are presented in the following
subsections. The processes of feature encoding [5–7,32], pre- and post-processing [8,14,35,39], and
classification [5,6,9,14] are omitted here as they are not the focus of this work, but these topics have
been intensively studied and are available in the literature.
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Figure 1. The framework of the proposed approach as shown in the upper row, and the outline of the
main steps of the saliency map-enhanced LFD extraction approach (SMLFD) as illustrated in the lower
row using the histogram of motion gradients (HMG) approach with 8 bins and 18 blocks.

3.1. Video Representation

An egocentric video clip is usually formed by a set of video frames, and each frame is represented
as a two-dimensional array of pixels. Thus, each video clip V can be viewed as a three-dimensional
array of pixels, with x- and y-axes representing the plane of the video frame, and the t-axis denoting the
timeline. An egocentric video clip is denoted by V ∈ Rm×n× f , where m× n represents the resolution of
each video frame, and f represents the total number of frames. Histogram-based LFDs use each pair of
consecutive frames F rj and F rj+1(1 ≤ j ≤ f − 1) to capture the motion information along the timeline
(except HOG, which does not consider the temporal information) and use the neighboring pixels
in every frame F ri(1 ≤ i ≤ f ) to extract the spatial information. In this work, all LFDs, including
HOG, HMG, HOF, MBHx, and MBHy, were enhanced by using the saliency map, yielding SM-HOG,
SM-HMG, SM-HOF, SM-MBHx, and SM-MBHy, respectively. Briefly, HOG, HMG, HOF, and MBH
represent videos using the in-frame gradient only, in-and-between frame gradient, in-frame optical
flow and between-frame gradient, and the imaginary and real parts of the optical flow gradient and
between-frame gradient, respectively.

3.2. Local Spatial and Temporal Information Calculation

SM-HOG and SM-HMG: SM-HOG calculates spatial gradient information for each input video frame
F ri. By extending SM-HOG, SM-HMG performs an efficient temporal gradient calculation between
each pair of neighboring frames (T D) prior to the entire SM-HOG process using Equation (1).

T D(j,j+1) =
∂(F rj,F rj+1)

∂t
. (1)

SM-HOF and SM-MBH: The gradients in SM-HOF are implemented using the Horn–Schunck
(HS) [40] optical flow method; the calculated flow vector

−−−−→OF j,j+1 is also used in SM-MBHx and

SM-MBHy. Because
−−−−→OF j,j+1 is a complex typed vector, SM-MBHx and SM-MBHy use its imaginary

(IF j,j+1) and real (RF j,j+1) parts, respectively.
The gradients in the x and y directions for SM-HOG, SM-HMG, SM-HBHx, and SM-MBHy are

summarized below:
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Gxk =



∂(F ri)
∂x if SM-HOG,

∂(T D j,j+1)

∂x if SM-HMG,

∂(IF j,j+1)

∂x if SM-MBHx,

∂(RF j,j+1)

∂x if SM-MBHy.

Gyk =



∂(F ri)
∂y if SM-HOG,

∂(T D j,j+1)

∂y if SM-HMG,

∂(IF j,j+1)

∂y if SM-MBHx,

∂(RF j,j+1)

∂y if SM-MBHy.

(2)

where k = i and i ∈ [1, f ] for SM-HOG, and k = j and j ∈ [1, f − 1] for the others. Please note that
the above derivative operations are usually practically implemented using a convolution with a Haar
kernel [41]. Then, the magnitudeMk and orientationOk of the temporal and spatial information about
the pixels in each frame are calculated as:

Mk =


| ~OF k| if SM-HOF,√

Gxk
2 + Gyk

2 otherwise.
Ok =


F( ~OF k) if SM-HOF,

arctan(Gyk
Gxk

) otherwise.
(3)

where |·| and F( ·) denote the magnitude and orientation of the complex-typed vector, respectively.

3.3. Saliency Map-Informed Bin Response Generation

The orientations of temporal and spatial information are evenly quantized into b bins in the
range of [0, 2π], i.e., Bq = 2π · q/b, q ∈ {0, 1, · · · , b − 1}, to aggregate the gradient information
of pixels. The original LFD methods assign the two closest bins to each pixel on the basis of its
gradient orientation, and the bin strength of each of these is calculated as the weighted summation
of the magnitude of the bin’s partially assigned pixels. Given pixel p in frame F rk with gradient
orientation op and magnitude mp, which are calculated using Equation (3), suppose that the two
neighboring bins are Bq and Bq+1. Then, the weights of pixel p relative to Bp and Bq+1 are calculated
as wpq = b(Bq+1 − op)/2π and wp(q+1) = b(op −Bq)/2π, respectively. From this, the contributions of
pixel p to bins Bq and Bq+1 are calculated as wpq ∗mp and wp(q+1) ∗mp, respectively.

Given that a saliency map represents the visual attractiveness of a frame, the saliency values are
essentially a fuzzy distribution of each pixel regarding its visual attractiveness. Therefore, the saliency
membership µAttractiveness(p) of each pixel p indicates its importance to the video frame from the
perspective of human visual attention. On the basis of this observation, this work further distinguished
the contribution of each pixel to its neighboring bins by introducing the saliency membership to the
bin strength calculation. In particular, the weights wpq and wp(q+1) of pixel p relative to its neighboring
bins Bq and Bq+1 are updated by the aggregation of its saliency membership value; that is, the
original weights wpq and wp(q+1) are updated to wpq ∗ µAttractiveness(p) and wp(q+1) ∗ µAttractiveness(p).
Accordingly, the contributions of pixel p to bins Bq and Bq+1 are updated as wpq ∗ µAttractiveness(p) ∗mp

and wp(q+1) ∗ µAttractiveness(p) ∗mp, respectively.
There are multiple ways available in the literature for the calculation of saliency maps. This work

adopted the approach reported in [15], which is a pixel-based saliency membership generation
approach proposed according to the hypothesis that the most important part or parts of an image are
in the foreground. The pseudo-code of the algorithm is illustrated in Algorithm 1. The saliency map
of a frame is denoted by S, which collectively represents the saliency value µAttractiveness(p) of every
pixel p in the frame. Briefly, each frame F ri is first converted to three color channels, Red, Green, and
Blue (RGB), denoted by FR

i ,FG
i ,F B

i , as shown in Line 1 of the algorithm. Then, the video frame Fi in
RGB is converted to the CIELAB space with L, A, and B channels [42], as indicated by Line 2. This is
followed by reconstructing the frame using discrete cosine transform (DCT) The D(·) operation and
inverse DCT D[·]−1 operation in Line 3 distinguish the foreground and background in a fuzzy way.
From this, in Line 4, the mean values of the pixels in the L, A, B channels are computed and denoted as
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F̄i; the surface is smoothed via a Gaussian kernel κg with the entry-wise Hadamard product (i.e., ◦)
operation, with output Ḟi. The final saliency map S is then obtained by normalizing each value in Ḟi
to the range of [0, 1].

Algorithm 1: Saliency Membership Calculation Procedure.

Input :F ri: the ith 2D video frame, F ri ∈ Rm×n

Output : S: saliency membership of the ith frame
Procedure getSaliencyMap(F ri)

1: Construct the RGB video frames: F ri → FR
i ,FG

i ,F B
i

2: Convert Fi in the RGB frames to LAB frames: F̃i = Rgb2Lab(Fi);
3: Reconstruct the frame F̂i by F̂i = D[sgn(D(F̃i))]

−1;
4: Calculate the LAB channel average F̄i using F̄i = F̂ L

i + F̂A
i + F̂ B

i /3;
5: Smooth the 2D single channel Ḟi by Ḟi = κg ∗ (F̄i ◦ F̄i);
6: Compute S by normalizing the Ḟi, 0 < µi

Attractiveness(p) ≤ 1, ∀p ∈ F ri;
7: return S;

The extra computational complexity of the proposed approach, compared with the original
versions, mainly lies in the calculation of the saliency map, as the saliency information is integrated
into the proposed approach by a simple multiplication operation. The computational cost of the
saliency map approach used in this work is generally moderate, as it is only a fraction of the cost of
other saliency algorithms [15].

4. Experiments and Results

As described in this section, the publicly available video dataset UNN-GazeEAR [5] was utilized
to evaluate the performance of the proposed methods, with the support of a comparative study in
reference to the GROILFD approach [5]. The UNN-GazeEAR dataset consists of 50 video clips in total,
including five egocentric action categories. The length of the videos ranges from 2 to 11 seconds, with
25 frames per second. The sample frames are shown in Table 1. All the experiments were conducted
using an HP workstation with Intel R© Xeon

TM
E5-1630 v4 CPU @ 3.70 GHz and 32 GB RAM.

Table 1. Illustrative frames of the UNN-GazeEAR dataset.

Greeting

Passing a Ball

Paying

Shaking Hands

Talking

4.1. Experimental Setup

The parameters used in [5,6,9,14,35,39] were also adopted in this work. Specifically, the BoVW
model and PCA were employed to select 72 features. The value of the normalization parameter
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of PN`2 was fixed to 0.5. A back-propagation neural network (BPNN) was used for classification
after the features were extracted. The BPNN was trained using the scaled conjugate gradient (SCG)
algorithm with a maximum of 100 training epochs. The number of neurons in the hidden layer was
fixed to 20, and the training ratio was set to 70%. The performance metric was the mean accuracy of
100 independent runs.

4.2. Experiments with Different Resolutions, Block Sizes, and Feature Encoding Methods

In this experiment, SMLFD (including SM-HOG, SM-HMG, SM-HOF, SM-MBHx, and SM-MBHy)
was applied for comparison with GROILFD [5] (covering GROI-HOG, GROI-HMG, GROI-HOF,
GROI-MBHx, and GROI-MBHy). Videos with the same down-scaled resolution (by a factor of 6), as
reported in [5], were used in this experiment as the default. Thus, each video in the dataset has a
uniform resolution of 320 × 180 pixels.

Firstly, the values of the feature extraction time TE were studied. Tables 2 and 6 show the speed
of extracting SMLFD was significantly boosted by at least 40-fold (denoted as 40×). When using a
block size of 16-by-16 spacial pixels by 6 temporal frames (denoted as [16 × 16 × 6]) for the feature
extraction, SM-HOG, SM-HMG, SM-HOF, SM-MBHx, and SM-MBHy were boosted by 40×, 41×, 43×,
41×, and 41×, respectively. When using a block size of [32 × 32 × 6], SM-HOG, SM-HMG, SM-HOF,
SM-MBHx, and SM-MBHy were boosted by 41×, 43×, 45×, 43×, and 43×, respectively. Because
GROILFD extracts the sparse features, SMLFD feature extraction needs more computational time than
GROILFD. However, VLAD and FV feature encoding methods consume similar amounts of time for
feature encoding.

Table 2. Comparison of different feature descriptors under down-scaled resolution.

FeatDesc
UNN-GazeEAR @320 × 180

[4 × 4 × 6] [8 × 8 × 6] [16 × 16 × 6] [32 × 32 × 6]

TE TV TF VLAD FV TE TV TF VLAD FV TE TV TF VLAD FV TE TV TF VLAD FV

GROI-HOG [5] 22 83 78 96.34 96.48 18 34 22 94.62 94.56 17 6 6 95.00 93.96 16 2 2 94.50 93.80
SM-HOG 76 112 148 98.46 99.80 96 25 51 96.44 97.58 91 9 9 95.38 95.34 91 2 2 95.38 95.34

GROI-HMG [5] 22 96 81 95.40 96.08 18 22 24 93.82 92.60 17 6 6 94.28 92.28 16 2 2 95.74 –
SM-HMG 70 111 91 98.32 98.74 89 23 20 96.66 97.06 86 7 7 96.22 95.86 83 2 2 94.50 95.16

GROI-HOF [5] 26 116 118 93.94 91.22 22 25 24 93.90 92.94 21 5 6 95.62 91.98 20 2 2 92.88 –
SM-HOF 77 91 112 99.28 99.20 92 20 37 97.16 95.54 90 6 9 95.50 95.34 84 2 2 93.38 93.32

GROI-MBHx [5] 41 96 89 90.72 91.80 33 31 30 93.14 92.48 32 7 7 95.88 92.12 30 2 2 94.34 –
SM-MBHx 134 113 86 97.22 96.06 166 20 28 96.58 97.46 163 8 7 94.82 96.24 156 2 2 91.78 95.70

GROI-MBHy [5] 41 120 58 93.74 91.46 33 31 41 94.66 91.20 32 7 6 95.78 93.54 30 2 2 95.20 –
SM-MBHy 134 125 130 98.98 96.68 166 23 17 97.30 96.50 163 6 5 94.42 96.26 156 2 2 95.22 92.86

TV and TF: time consumption of the VLAD (vector of locally aggregated descriptors) and Fisher vector
(FV) feature encoding methods (measured in seconds); GROI: gaze-region-of-interest; SM: saliency
map; HOF: histogram of optical flow; HOG: histogram of oriented gradients; HMG: histogram of
motion gradients; MBH: motion boundary histogram.

In terms of accuracy, the performance of SMLFD was improved significantly compared with that
using the original resolution. Furthermore, SMLFD consistently outperformed GROILFD with the
down-scaled dataset, because SMLFD constructed dense features. To investigate the trade-off between
performance and time complexity, the features encoded with a smaller number of visual words were
studied. Table 2 shows that SMLFD generally had better accuracy when using smaller block sizes (i.e.,
[4 × 4 × 6], [8 × 8 × 6], and [16 × 16 × 6]), while GROILFD outperformed when using larger ones.
Therefore, this indicates that SMLFD is a better candidate for low-resolution videos.
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4.3. Experiments with Varying Number of Visual Words for Encoding

In this experiment, the effect of varying the number of visual words used in the VLAD and FV
feature encoding scheme was investigated. Specifically, half of the visual words were used to compare
with the setting in the experiment reported in Section 4.2. The impact of feature dimensions was
also investigated when using PCA in the preprocessing phase. The results are shown in Figure 2.
The experiment used 3, 6, 9, 18, 24, 36, 48, 60, and 72 feature dimensions. SMLFD outperformed
GROILFD when using a small number of visual words for feature encoding. The best performances
that were achieved by SMLFD are summarized in Table 3. As shown in Figure 3, SM-HOG exceeded
other approaches in most cases when using block sizes of [4 × 4 × 6] and [8 × 8 × 6]. However,
SM-HMG outperformed others in most cases for a block size of [16× 16× 6].
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Figure 2. Performance comparison between local features with different feature dimensions.



Appl. Syst. Innov. 2019, 2, 7 9 of 14

Table 3. Accuracy comparison of saliency map-enhanced local feature descriptors (SMLFDs) using
different feature dimensions with various block sizes (the adopted color schemes are consist with
Figure 2).

BlockSize FeatEnc UNN-GazeEAR with SMLFD @320 × 180

3 6 9 18 24 36 48 60 72

[4× 4× 6] VLAD 93.82 95.96 97.76 97.40 99.36 98.72 99.16 99.02 98.86
FV 93.98 96.10 98.76 98.40 99.34 98.84 99.00 99.06 99.10

[8× 8× 6] VLAD 95.78 97.42 95.46 97.20 97.30 98.24 98.10 97.74 97.34
FV 95.72 96.08 98.22 97.28 97.46 96.94 96.78 97.06 96.80

[16× 16× 6] VLAD 95.88 95.68 96.24 96.50 96.68 95.92 96.04 96.08 96.52
FV 94.52 96.40 96.22 96.06 97.08 96.90 96.92 97.02 96.04
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Figure 3. Statistics of the best performance obtained for each employed block size. (·) denotes the
number of best performances that were equivalently achieved by other feature descriptors in the
SMLFD family. (a) [4× 4× 6]; (b) [8× 8× 6]; (c) [16× 16× 6].

Table 4 shows that the proposed SMLFD outperformed GROILFD. SMLFD achieved its peak
performance when using a smaller block size (i.e., [4 × 4 × 6]) while GROILFD reached its best
performance when using a larger block size [16 × 16 × 6] with VLAD and [8 × 8 × 6] with FV).
This again indicates that SMLFD and GROILFD represent families of local dense feature descriptors
and sparse feature descriptors, respectively.

Table 4. Comparison of the top performing feature descriptor with that of the other feature descriptors
for different feature encoding schemes on the UNN-GazeEAR dataset. The global best accuracies in
both (SMLFD and GROILFD) are marked with gray color.

FeatEnc FeatDesc TopAcc BlockSize FeatDim FeatDesc TopAcc BlockSize FeatDim

VLAD

SM-HOG 99.16 [4 × 4 × 6] 48 GROI-HOG [5] 96.50 [16 × 16 × 6] 18
SM-HMG 99.02 [4 × 4 × 6] 60 GROI-HMG [5] 97.32 [8 × 8 × 6] 6
SM-HOF 99.36 [4 × 4 × 6] 24 GROI-HOF [5] 95.36 [8 × 8 × 6] 18

SM-MBHx 97.16 [8 × 8 × 6] 18 GROI-MBHx [5] 96.46 [16 × 16 × 6] 6
SM-MBHy 98.24 [8 × 8 × 6] 36 GROI-MBHy [5] 96.54 [16 × 16 × 6] 24

FV

SM-HOG 99.34 [4 × 4 × 6] 24 GROI-HOG [5] 95.04 [16 × 16 × 6] 60
SM-HMG 98.76 [4 × 4 × 6] 9 GROI-HMG [5] 95.24 [8 × 8 × 6] 36
SM-HOF 98.58 [4 × 4 × 6] 72 GROI-HOF [5] 96.68 [8 × 8 × 6] 60

SM-MBHx 97.04 [4 × 4 × 6] 36 GROI-MBHx [5] 95.06 [16 × 16 × 6] 9
SM-MBHy 97.02 [16 × 16 × 6] 60 GROI-MBHy [5] 95.16 [8 × 8 × 6] 6

4.4. Experiment Using the Memory Aid Dataset

In this experiment, the trained models (with which the SMLFD features were extracted) were
applied to an untrimmed video stream that was published in [5]. Table 5 shows that the SMLFD-trained
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models possessed better performance compared with that trained using GROILFD features. In general,
SMLFD performed as well as GROILFD. Each of them had three superior performances and four
equivalent performances. Similarly, both SM-HOG and GROI-HOG achieved 100% accuracy using
FV feature encoding. The three higher results yielded by GROILFD were produced by GROI-HOG,
GROI-MBHx, and GROI-MBHy, all under VLAD feature encoding.

Table 5. Testing video stream for the memory aid system with five activities of daily living (ADLs).

FeatDesc FeatEnc

‘Passing a Ball’ ‘Shaking Hands’ ‘Talking’ ‘Paying’ ‘Greeting’

GROI-HOG [5] VLAD 3 7 3 3 3

SM-HOG VLAD 3 7 3 3 7

GROI-HOG [5] FV 3 3 3 3 3

SM-HOG FV 3 3 3 3 3

GROI-HMG [5] VLAD 3 7 3 7 3

SM-HMG VLAD 3 3 3 3 7

GROI-HMG [5] FV 3 3 3 7 3

SM-HMG FV 3 3 3 3 7

GROI-HOF [5] VLAD 3 7 3 7 3

SM-HOF VLAD 3 3 3 7 3

GROI-HOF [5] FV 3 3 3 7 3

SM-HOF FV 3 3 3 3 7

GROI-MBHx [5] VLAD 3 3 3 7 3

SM-MBHx VLAD 3 3 3 7 7

GROI-MBHx [5] FV 3 7 3 3 7

SM-MBHx FV 3 3 3 7 3

GROI-MBHy [5] VLAD 3 3 3 7 3

SM-MBHy VLAD 3 3 3 7 7

GROI-MBHy [5] FV 3 3 3 7 3

SM-MBHy FV 3 3 3 7 3

4.5. Comparison with Original Resolution

The proposed SMLFD family of local feature descriptors can achieve comparable results to
GROILFD. In this experiment, the proposed SMLFD feature descriptors were investigated by adopting
all videos from the dataset with the original resolution of 1920×1080 pixels. Given the comparison
results in Table 6, GROILFD clearly outperformed SMLFD in terms of accuracy and required time
for feature extraction. The reason for this is threefold: (1) GROILFD only proceeds with a single
connected interest region with the noise removed from the frame, whereas SMLFD deals with all the
pixels in each frame; thus, GROILFD is a faster family of feature extraction approaches; (2) SMLFD
extends LFD by introducing an additional real-time operation of calculating the frame-wise saliency
membership with a high degree of sensitivity to the resolution of the video; (3) SMLFD is not efficient in
suppressing irrelevant background and foreground noises. To conclude, SMLFD is highly scale-variant
and GROILFD is a better candidate for videos with high resolution.



Appl. Syst. Innov. 2019, 2, 7 11 of 14

Table 6. Comparison with other feature descriptors.

FeatDesc FeatType
UNN-GazeEAR @1920 × 1080

[16 × 16 × 6] [32 × 32 × 6] [64 × 64 × 6]

TE VLAD FV TE VLAD FV TE VLAD FV

GROI-HOG [5] S 865 95.60 97.28 817 94.40 95.18 802 93.94 93.74
SM-HOG D 3611 87.24 82.92 3724 88.84 84.46 3716 87.32 84.78

GROI-HMG [5] S 859 95.94 95.82 815 94.68 92.52 802 93.64 93.62
SM-HMG D 3541 88.84 84.22 3537 87.52 84.28 3542 87.54 85.64

GROI-HOF [5] S 1077 94.58 95.30 1021 96.00 94.28 1011 95.02 93.64
SM-HOF D 3878 88.06 86.68 3744 87.10 83.70 3675 86.74 85.60

GROI-MBHx [5] S 1767 92.78 95.82 1579 93.20 95.28 1559 94.50 95.08
SM-MBHx D 6688 83.68 83.00 6647 85.40 82.94 6643 85.60 86.16

GROI-MBHy [5] S 1764 97.44 94.72 1575 94.92 93.28 1558 94.10 93.98
SM-MBHy D 6678 83.26 84.20 6647 85.64 83.20 6640 85.92 84.44

D: Dense features; S : Sparse features TE: time required for feature extraction (measured in seconds).

4.6. Discussion

Egocentric videos are usually non-stationary due to the camera motion of the smart glasses or
other data-capturing devices; the experimental results of using the proposed local features indicate the
ability of the proposed approach to cope with this challenge during video action recognition. Of course,
the proposed feature descriptors also have their own limitations. For instance, the computation cost
of the proposed approach is generally higher than that of the originals. Also, the performance of
the proposed approach closely depends on the accuracy of the calculated saliency map, and poorly
generated saliency maps may significantly limit the effectiveness of the proposed approach. Of course,
there is a good selection of approaches available in the literature for saliency map calculation, and their
effectiveness in supporting the proposed approach requires further investigation.

5. Conclusions

This paper proposes a family of novel saliency-informed local feature descriptor extraction
approaches for egocentric action recognition. The performance of the proposed family of feature
descriptors was evaluated using the UNN-GazeEAR dataset. The experimental results demonstrate the
effectiveness of the proposed method in improving the performance of the original LFD approaches.
This indicates that the saliency map can be a useful ingredient for extracting local spatial and
temporal features in the recognition of first-person video actions. Possible future work includes
more large-scale applications, which are required to further evaluate the proposed approach. It would
also be interesting to investigate how the saliency map can support global feature descriptors. Another
interesting potential investigation would be broadening the applicability of the proposed feature
descriptors for object detection using an electromagnetic source [43–45] (e.g., signals, pictures of
vehicles, antennas, etc.).
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Abbreviations

The following abbreviations are used in this manuscript:

BoVW Bag of Visual Words
LFD Local Feature Descriptors
SMLFD Saliency Membership based Local Feature Descriptors
SM-HOG Saliency Membership based Histogram of Oriented Gradients
SM-HMG Saliency Membership based Histogram of Motion Gradients
SM-HOF Saliency Membership based Histogram of Optical Flow
SM-MBHx Saliency Membership based Motion Boundary Histogram (in x direction)
SM-MBHy Saliency Membership based Motion Boundary Histogram (in y direction)
GROILFD Gaze Region of Interest based Local Feature Descriptors
GROI-HOG Gaze Region of Interest based Histogram of Oriented Gradients
GROI-HMG Gaze Region of Interest based Histogram of Motion Gradients
GROI-HOF Gaze Region of Interest based Histogram of Optical Flow
GROI-MBHx Gaze Region of Interest based Motion Boundary Histogram (in x direction)
GROI-MBHy Gaze Region of Interest based Motion Boundary Histogram (in y direction)
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