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Abstract: In this paper, we establish the existence of piece wise (PC)-mild solutions (defined in
Section 2) for non local fractional impulsive functional integro-differential equations with finite delay.
The proofs are obtained using techniques of fixed point theorems, semi-group theory and generalized
Bellman inequality. In this paper, we used the distributed characteristic operators to define a mild
solution of the system. We also discussed the controversy related to the solution operator for the
fractional order system using weak and strong Caputo derivatives. Examples are given to illustrate
the theory.
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1. Introduction

Fractional calculus has gained considerable popularity and importance during the past four
decades because fractional derivatives provide an excellent tool for the description of the memory and
hereditary properties of various processes. Fractional differential equations produce many applications
in many physical phenomena such as seepage flow in porous media and in fluid dynamic traffic
models. The most important advantage of using fractional differential equations in these and other
applications is their non local property. Also, the study of fractional differential equations has gained
considerable importance due to their application in various fields including bio-engineering, mechanics,
electrical networks, control theory of dynamical systems, viscoelasticity and so on. Viscoelasticity
and related phenomena are of great importance in the study of the mechanical properties of material,
especially biological materials. Certain materials show some complex effects in mechanical tests,
which cannot be described by a standard linear equation (SLE) mostly owing to shape memory effect
during deformation. Recently, researchers have been applying fractional calculus in order to probe
the viscoelasticity of such materials with high precision. Fractional calculus is a powerful tool for
modeling complex phenomenon. More specifically, modeling of the shape memory phenomena with
this powerful tool is studied from different perspectives, as well as presenting physical interpretations.
There are different models to evaluate and predict the constitutive equation in the viscoelastic system,
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these models are commonly composed of a different combination of springs and dampers elements.
For example, two well-known models are the Maxwell and Kelvin models. The method of distributed
characteristic operators is more efficient for defining a mild solution of such systems.

Fractional Calculus is a new powerful tool which has been recently employed to model complex
biological systems with non-linear behavior and long-term memory. In recent years, there has been a
significant development in fractional differential equations involving fractional derivatives, see the
monographs of [1–5] and [6–8]. In Refs. [9–11], authors have studied existence of mild solutions of
some semi-linear neutral fractional functional evolution equations with infinite delay with nonlocal
conditions. Vijayakumar et al. [12,13] discussed the approximate and exact controllability of fractional
neutral integro-differential inclusions with state dependent delay.

The study of impulsive differential equations is linked to their utility in simulating processes
and phenomena subject to short time perturbations during their evolution. The perturbations are
performed discretely and their duration is negligible in comparison with the total duration of the
processes and phenomena. Integro-differential equations play an important role in many branches
of linear and non linear functional analysis and their applications in the theory of engineering,
mechanics, physics, chemistry, biology, economics, and electrostatics. In recent years, impulsive
integro-differential equations have become an important object of investigation stimulated by their
numerous applications to problems in mechanics, electrical engineering, medicine, biology, ecology
and so forth [14–19]. Gürbüz studied the estimation and behavior of a class of fractional type rough
higher order commutators, sublinear operators, and multi-sublinear operators on generalized weighted
Morrey spaces [20–25].

The dynamics of many evolutionary processes from various fields such as population dynamics,
control theory, physics, biology and medicine undergo abrupt changes at certain moments of time
like earth quack, harvesting, shock and so forth. These perturbations can be well approximated as an
instantaneous change of states or impulses. These processes are modeled by impulsive differential
equations.

The advantage of using non local conditions is that they are measurable at more places and these
can be incorporated to get better models. The non local Cauchy problem for the abstract evolution
differential equation was first studied by Byszewski [26]. For the importance of non local conditions in
different fields, we refer the reader to Refs. [11,27,28].

Recently, in Ref. [29], the authors studied the existence of mild solutions for impulsive fractional
semi-linear integro-differential equations using the Banach contraction principle and Schaefer’s fixed
point theorem. They have considered the system without delay and without non local condition.
Our work generalizes the work done in Ref. [29] with abstract formulation. According to our
knowledge this is an untreated article in the literature.

Motivated by the above mentioned paper, we study the existence of mild solutions for non local
impulsive fractional semi-linear integro-differential equations of the form

CDq
0,tx(t) =

CDq
t x(t) = Dq

t x(t) = Ax(t) + f
(

t, xt,
∫ t

0
h(t, s, xs)ds,

∫ b

0
k(t, s, xs)ds

)
, (1)

x(0) = x0 + g(x) ∈ X, (2)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, · · · , m; t ∈ J = [0, b], t 6= tk, (3)

where CDq
t is the Caputo fractional derivative of order q, 0 < q < 1, with lower limit zero, the histories

xt : (−r, 0] → X are defined by xt(θ) = x(t + θ) belongs to a Banach space X. A : D(A) ⊂ X → X
is the infinitesimal generator of a strongly continuous semi-group (T(t))t≥0 of a uniformly bounded
operator on X, and A is a bounded linear operator. f : J × X × X × X → X is jointly continuous,
h, k : J × J × X → X are continuous, Ik : X → X are impulsive functions, 0 = t0 < t1 < · · · < tm <

tm+1 = b, ∆x|t=tk = x(t+k )− x(t−k ), x(t+k ) = lim
h→0+

x(tk + h) and x(t−k ) = lim
h→0−

x(tk + h) represent the

right and left limits of x(t) at t = tk, respectively. Our method avoids the compactness conditions on
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the semi-group {T(t)}t≥0, and some other hypotheses are more general compared with the previous
research papers.

System {(1),(2),(3)} described above fits to the mechanical system with impact, the biological
phenomenon involving thresholds, the bursting rhythm models and industrial robotics, and many
more. In particular, the above mentioned system {(1),(2),(3)} and its piecewise (PC)-mild solution
(in Section 2) is helpful to generate the tuning and auto-tuning of fractional order controllers for
industry applications. Monje et al. [30] design the fractional order PIλDµ controllers to ensuring a
robust performance of the controlled system with respect to gain variations and noise, without using
the delay part but can be generalized in a more specific way using the delay for a closed loop and the
open loop systems. System {(1),(2),(3)} can also be analyzed for a finite time stability test procedure for
robotic system where it appears a time delay in fractional control system (refer [31]) but with impulses.

In Section 2, we give some preliminary definitions and lemmas that are to be used later to prove
our main results. In Section 3, the existence of PC-mild solutions for system {(1),(2),(3)} with non-local
conditions is discussed. The results are obtained by using the Banach contraction principle and
Schaefer’s fixed point theorem. An example is given in Section 4 to illustrate the application of our
main results.

2. Preliminaries

Symbols:

1. X: Banach Space;
2. PC[J, X]: piece-wise continuous function from [J, X];
3. A(t): infinitesimal generator of a strongly continuous semigroup T(t);
4. Iα f (t): fractional integral of order α for a function f ;
5. (R−L)Dα: Riemann-Liouville (R-L) fractional derivative of order α > 0, n− 1 < α < n, n ∈ N;
6. CDq

t : Caputo fractional derivative of order q, 0 < q < 1;
7. CDα

s f (t): strong Caputo derivative of order α > 0.

Let us consider the set of functions PC[J, X] = {x : J → X|x ∈ C[(tk, tk+1), X] and there exists
x(t+k ) and x(t−k ), k = 0, 1, 2, · · · , m and x(t−k ) = x(tk)}, endowed with the norm ||x||PC = sup

t∈J
||x(t)||.

It is easy to know that (PC[J, X], ||.||PC) is a Banach space. Throughout this paper, let A be the
infinitesimal generator of a C0 semi-group (T(t))t≥0 of a uniformly bounded operators on X and let
LB(X) be the Banach space of all linear and bounded operators on X. For a C0 semi-group (T(t))t≥0,
we set M1 = sup

t∈J
||T(t)||LB(X).

For each positive constant r, set Br = {x ∈ PC[J, X] : ||x|| ≤ r}.
Let us recall the following known definitions. For more details, see Ref. [32].

Definition 1. The fractional integral of order α with the lower limit zero for a function f is defined as

Iα f (t) =
1

Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, t > 0, α > 0, (4)

provided the right hand-side is point-wise defined on [0, ∞), where Γ(·) is the gamma function, which is defined
by Γ(α) =

∫ ∞
0 tα−1e−tdt.

Definition 2. The Riemann-Liouville (R-L) fractional derivative of order α > 0, n− 1 < α < n, n ∈ N, is
defined as

(R−L)Dα
0+ f (t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

0
(t− s)n−α−1 f (s)ds, (5)
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where the function f (t) has absolutely continuous derivative up to order (n− 1).

Definition 3. The (strong or classical) Caputo derivative of order α for a function f ∈ L1([0, ∞), R) given on
the interval [0, ∞) is defined by (if it exists)

CDα
s f (t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds, t > 0, n− 1 < α ≤ n, n ∈ N. (6)

Remark 1.

1. R-L and Caputo are just two different operators that are related to each other in a quite simple way. Quite
a few details about this are given in the book by Diethelm [2]. There we can also see the exact description of
when they are equivalent. The most important difference between them is, of course, the structure of their
kernels (i.e., the set of functions that is mapped to zero). Depending on what we want from our operator,
one of them or the other one may be the right choice for us. We are using here Caputo because the derivative
of a constant is zero for Caputo but not for R-L.

2. If a derivative of Caputo type is used instead of R-L type then initial conditions for the corresponding
Caputo fractional differential equations can be formulated as for classical ordinary equations, namely
x(0) = x0.

3. One has to make sure to use a constant function and the Heaviside unit step. They must be considered
different so they must have different fractional derivatives. The Heaviside unit step is expected to have a
non zero fractional derivative. If one given derivative gives zero it is useless due to the importance it enjoys
in practice and its relation with the Dirac delta.

Definition 4. The (weak or generalization of classical) Caputo derivative of order α for a function f ∈
L1([0, ∞), R) given on the interval [0, ∞) is defined by (if it exists)

CDα
w f (t) = CDα f (t) = Dα

(
f (t)−

n−1

∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < α ≤ n, n ∈ N. (7)

Remark 2.

1. If f (t) ∈ Cn[0, ∞), then

CDα
w f (t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds = In−α f (n)(t) = CDα

s f (t), t > 0, n− 1 < α ≤ n. (8)

Note that for strong Caputo derivative in Definition 3, f ∈ Cn([0, ∞), R) is not necessarily required.
In fact, f (n) ∈ L1([0, ∞), R), for example, f (n−1) be of bounded variation, can guarantee the existence of
Dα

s f (t) on [0, ∞).
2. The Caputo derivative of a constant is equal to zero.
3. If f is an abstract function with values in X, then integrals which appear in Definitions 1 and 2 are taken

in Bochner’s sense.



Appl. Syst. Innov. 2019, 2, 18 5 of 17

Definition 5 ([33]). By a PC-mild solution of the Equations {(1),(2),(3)} we mean that a function x ∈ PC[J, X]

which satisfies the following integral equation:

x(t) =



T (t)(x0 + g(x)) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ [0, t1],

T (t)(x0 + g(x)) + T (t− t1)I1(x(t−1 )) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (t1, t2],
...

T (t)(x0 + g(x)) +
m

∑
k=1
T (t− tk)Ik(x(t−k )) +

∫ t

0
(t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (tm, b],

(9)

where T (.) and S(.) are called characteristic solution operators and given by

T (t) =
∫ ∞

0
ξq(θ)T(tqθ)dθ, S(t) = q

∫ ∞

0
θξq(θ)T(tqθ)dθ, (10)

and for θ ∈ (0, ∞),

ξq(θ) =
1
q

θ
−1− 1

q vq(θ
− 1

q ) ≥ 0, vq(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq), (11)

where ξq is a probability density function defined on (0, ∞), that is

ξq(θ) ≥ 0, θ ∈ (0, ∞) and
∫ ∞

0
ξq(θ)dθ = 1. (12)

Remark 3. Controversy on the solution operator, Definition 5, based on Definitions 3 and 4:

1. In this paper, we emphasize that we use the generalized Caputo derivative with the lower bound at zero
for Equation (1). However, we have not chosen the classical Caputo derivative and have not changed it in
each sub-interval for the Equation (1), where the impulses start at the lower bound tk. Obviously, we mean
keeping a different one, in each of the impulses the lower bound is at zero. Moreover, Definition 5 is more
reasonable since the generalized Caputo derivative in Equation (1) should be fixed at the lower bound at
zero once we set the initial time at zero. So we do not expect to change the lower bound again and again in
the definition of Caputo derivative for the same equation.

2. We use Definition 4 (generalized Caputo derivative), where the integrable function f can be discontinuous.
Definition 4 is more general with respect to Remark 2 (1) (relationship between strong and weak Caputo
derivatives). So the result would be wrong if we have used a strong Caputo derivative.

3. Finally, we would like to mention the recently published paper written by Liu and Ahmed [34], where the
formula of solutions for semi-linear impulsive fractional Cauchy problems (see (20) in Ref. [34]) coincided
with ours (see Definition 5), if one imposes that the semi-linear term and the impulsive term have the same
expression in the given interval.

Remark 4. Problems associated with impulsive effects and hereditary properties are modeled by impulsive
delay differential equations. So we use impulsive finite delay system {(1),(2),(3)} and the solution is a piecewise
continuous with discontinuities at impulses time. So, here the mild solution is called PC-mild solution. (As we
know a function x is continuous is said to be a mild solution. A function x which is differential almost everywhere
on [0, T] is called a strong solution. Clearly, every strong solution is a mild solution, since differentiability
implies continuity).
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Definition 6 ([35]). Let X be a Banach space, a one parameter family T(t), 0 ≤ t < +∞, of bounded linear
operators from X to X is a semi-group of bounded linear operators on X if

1. T(0) = I, (here I is the identity operator on X);
2. T(t + s) = T(t)T(s) for every t, s ≥ 0, (the semi-group property).

A semi-group of bounded linear operator, T(t), is uniformly continuous if lim
t↓0
||T(t)− I|| = 0.

Lemma 1 ([35]). Linear operator A is the infinitesimal generator of a uniformly continuous semi-group if and
only if A is the bounded linear operator.

Lemma 2 ([36]). (Schaefer’s fixed point theorem) Let X be a Banach space and F : X → X be a completely
continuous operator. If the set

E(F) = {x ∈ X : x = λFx f or some 0 ≤ λ ≤ 1} . (13)

is bounded, then F has at least a fixed point.

Lemma 3 ([33]). The operator T (t) and S(t) have the following properties:

1. For any fixed t ≥ 0, T (t) and S(t) linear and bounded operator, i.e., for any x ∈ X,

||T (t)x|| ≤ M1||x||, ||S(t)x|| ≤ qM1

Γ(1 + q)
||x||. (14)

2. {T (t), t ≥ 0} and {S(t), t ≥ 0} are strongly continuous.
3. {T (t), t ≥ 0} and {S(t), t ≥ 0} are uniformly continuous, that is, for each fixed t > 0, and ε > 0,

there exists h > 0 such that

||T (t + ε)− T (t)|| ≤ ε, f or t + ε ≥ 0 and |ε| < h, (15)

||S(t + ε)− S(t)|| ≤ ε, f or t + ε ≥ 0 and |ε| < h. (16)

3. Existence Results

In this section, we give the existence of mild solutions of the system {(1),(2),(3)}. To establish our
results, we introduce the following hypotheses:

(H1) f : J × X× X× X → X is continuous, and there exist functions µ1, µ2, µ3 ∈ L[J, R+] such that

|| f (t, x1, x2, x3)− f (t, y1, y2, y3)|| ≤ µ1(t)||x1 − y1||+ µ2(t)||x2 − y2||+ µ3(t)||x3 − y3||,
xi, yi ∈ X, i = 1, 2, 3.

(H2) h, k : J × J × X → X is continuous and there exist Mh, Mk > 0 such that

||h(t, s, x1)− h(t, s, y1)|| ≤ Mh||x1 − y1||,
||k(t, s, x1)− k(t, s, y1)|| ≤ Mk||x1 − y1||, x1, y1 ∈ X.

(H3) g : PC([0, b], X) is continuous and there exists a constant G > 0 such that

||g(x)− g(y)|| ≤ G||x− y||, ∀x, y ∈ PC([0, b], X)

||g(0)|| ≤ k1.

(H4) The function Ik : X → X are continuous and there exists ρk > 0 such that

||Ik(x)− Ik(y)|| ≤ ρk||x− y||, x, y ∈ X, k = 1, 2, · · · , m.
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(H5) The function Ωm(t) : J → R+ is defined by

Ωm(t) = M1(G + mρm) +
M1bq

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)
,

where 0 < Ωm(t) < 1, t ∈ J.
(H6) The constants Ωu and Ω′m(t) : J → R+ are defined by

Ωu = M1K(G + mρm) +
M1bqK

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)
Ω′m(t) = M1(G + mρm) +

M1bq

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)
+

M1bqΩu

Γ(1 + q)

and 0 < Ω′m(t) < 1, t ∈ J.

Theorem 1. If the hypotheses (H1)–(H5) are satisfied, then the nonlocal fractional impulsive integro-differential
Equations {(1),(2),(3)} has a unique mild solution x ∈ PC[J, X].

Proof. Define an operator N on PC[J, X] by

(Nx)(t) =



T (t)(x0 + g(x)) +
∫ t

0 (t− s)q−1S(t− s)

f
(

s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ
)

ds, t ∈ [0, t1],

T (t)(x0 + g(x)) + T (t− t1)I1(x(t−1 )) +
∫ t

0 (t− s)q−1S(t− s)

f
(

s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ
)

ds, , t ∈ (t1, t2],
...

T (t)(x0 + g(x)) +
m

∑
k=1
T (t− tk)Ik(x(t−k )) +

∫ t

0
(t− s)q−1S(t− s)

f
(

s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ
)

ds, t ∈ (tm, b].

(17)

We shall show that N is well defined on PC[J, X]. For 0 ≤ τ < t ≤ t1, applying (17), we obtain

||(Nx)(t)− (Nx)(τ)|| ≤ ||T(t)− T(τ)|| ||x0 + g(x)||

||
∫ t

0
(t− s)q−1S(t− s) f

(
s, xs,

∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds||

≤ ||T(t)− T(τ)|| [||x0||+ G||x||+ k1]

+

∥∥∥∥∫ t

τ
(t− s)q−1S(t− s) f

(
s, xs,

∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥

+

∥∥∥∥∫ τ

0
(t− s)q−1 [S(t− s)− S(τ − s)]

(×) f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥

+

∥∥∥∥∫ τ

0

[
(t− s)q−1 − (τ − s)q−1

]
S(τ − s)

(×) f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥ .

We know that the inequality |tσ − τσ| ≤ (t− τ)σ for σ ∈ (0, 1] and 0 < τ ≤ t and Lemma 3, it is
obviously that ||(Nx)(t)− (Nx)(τ)|| → 0 as t→ τ. Thus, Nx ∈ [(0, t1], X].
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For t1 < τ < t ≤ t2, we have

||(Nx)(t)− (Nx)(τ)|| ≤ ||T (t)− T (τ)|| [||x0||+ G||x||+ k]

+||T (t− t1)− T (τ − t1)|| ||I1(x(t−1 ))||

+

∥∥∥∥∫ t

τ
(t− s)q−1S(t− s)

(×) f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥

+

∥∥∥∥∫ τ

0
(t− s)q−1 [S(t− s)− S(τ − s)]

(×) f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥

+

∥∥∥∥∫ τ

0

[
(t− s)q−1 − (τ − s)q−1

]
S(τ − s)

(×) f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
ds
∥∥∥∥

It is easy to get, as t → τ, the right hand side of the above inequality tends to zero. Thus, we can
deduce that Nx ∈ C[(t1, t2], X]. By repeating the same procedure, we can also obtain that Nx ∈
C[(t2, t3], X], · · · , Nx ∈ C[(tm, b], X]. That is, Nx ∈ PC[J, X]. Take t ∈ (0, t1], then

||(Nx)(t)− (Ny)(t)|| ≤ M1G||x− y||PC +
qM1

Γ(1 + q)

∫ t

0
(t− s)q−1[

µ1(s)||xs − ys||+ µ2(s)Mhb||xs − ys||+ µ3(s)Mkb||xs − ys||
]

ds.

So we deduce that

||(Nx)(t)− (Ny)(t)||PC ≤
[

M1G +
M1bq

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)]
||x− y||PC

(18)

For each t ∈ (t1, t2], using hypotheses, and (18), we have

||(Nx)(t)− (Ny)(t)||PC ≤ [M1(G + ρ1)

+
M1bq

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)]
||x− y||PC

In general, for each t ∈ (ti, ti+1], using (H5)

||(Nx)(t)− (Ny)(t)||PC ≤ [M1(G + mρm)

+
M1bq

Γ(1 + q)

(
µ1(t) + µ2(t)Mhb + µ3(t)Mkb

)]
||x− y||PC

≤ Ωm(t)||x− y||PC.

From the assumption (H5) and in the view of the contraction mapping principle, N has a unique fixed
point x ∈ PC[J, X], that is
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x(t) =



T (t)(x0 + g(x)) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ [0, t1],

T (t)(x0 + g(x)) + T (t− t1)I1(x(t−1 )) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, , t ∈ (t1, t2],
...

T (t)(x0 + g(x)) +
m

∑
k=1
T (t− tk)Ik(x(t−k )) +

∫ t

0
(t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (tm, b],

(19)

is a PC-mild solution of Equations (1)–(3).

Next theorem is based on Schaefer’s fixed point theorem, let us list the following hypotheses:

(H7) f : J × X× X× X → X is continuous and there exist functions c1, c2, c3, c4 ∈ L(J, R+), such that

|| f (t, x, y, z)|| ≤ c1(t) + c2(t)||x||+ c3(t)||y||+ c4(t)||z||, t ∈ J, x, y, z ∈ X.

(H8) h, k : J × J × X → X is continuous and there exist functions d1, d2, d3, d4 ∈ C(I, R+), such that

||h(t, s, x)|| ≤ d1(s) + d2(s)||x||
||k(t, s, y)|| ≤ d3(s) + d4(s)||y||, x, y ∈ X.

(H9) There exist Φk ∈ C[J, R+], such that

||Ik(x)|| ≤ Φk(t)||x||, x ∈ X.

(H10) For all bounded subsets Br, the set

Πh,δ(t) =
{
Tδ(t)(x0 + g(x)) +

∫ t−h

0
(t− s)q−1Sδ(t− s)F(s)ds

+
m

∑
k=1
Tδ(t− tk)Ik(x(t−k )) : x ∈ Br

}

is relatively compact in X for arbitrary h ∈ (0, t) and δ > 0, where

Tδ(t) =
∫ ∞

δ
ξq(θ)T (tqθ)dθ, Sδ(t) = q

∫ ∞

δ
θξq(θ)T (tqθ)dθ.

(H11) For all bounded subsets Br, the set

Π′h,δ(t) =
{
Tδ(t)(x0 + g(x)) +

∫ t−h

0
(t− s)q−1Sδ(t− s)F(s)ds

+
m

∑
k=1
Tδ(t− tk)Ik(x(t−k )) : x ∈ Br

}

is relatively compact in X for arbitrary h ∈ (0, t) and δ > 0.

Theorem 2. If the hypotheses (H6)–(H10) are satisfied, then the non local fractional impulsive
integro-differential Equations (1)–(3) has at least one mild solution x ∈ PC[J, X].
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Proof. From Theorem 1, the operator N is defined as follows:

(Nx)(t) =



T (t)(x0 + g(x)) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ [0, t1],

T (t)(x0 + g(x)) + T (t− t1)I1(x(t−1 )) +
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (t1, t2],
...

T (t)(x0 + g(x)) +
m

∑
k=1
T (t− tk)Ik(x(t−k )) +

∫ t

0
(t− s)q−1S(t− s)

f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (tm, b].

(20)

We shall prove the result in following steps:

Step 1: Continuity of N on (ti, ti+1] (i = 0, 1, 2, · · · , m)

Let xn, x ∈ PC[J, X] such that ||xn − x∗||PC → 0 (n → +∞), then r = supn||xn||PC < ∞ and
||x∗||PC < r, for every t ∈ (ti, ti+1] (i = 0, 1, 2, · · · , m), we have from (19)

||(Nxn)(t)− (Nx)(t)|| ≤ M1G||xn − x||

+

∥∥∥∥∥ m

∑
k=1

T(t− tk)Ik(xn(t−k ))−
m

∑
k=1

T(t− tk)Ik(x(t−k ))

∥∥∥∥∥
+

qM1

Γ(1 + q)

∫ t

0
(t− s)q−1

∥∥∥∥ f
(

s, xns ,
∫ s

0
h(s, τ, xnτ )dτ,

∫ b

0
k(s, τ, xnτ )dτ

)
− f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥ ds.

Since the functions f , Ik and g are continuous,

f
(

s, xns ,
∫ s

0
h(s, τ, xnτ )dτ,

∫ b

0
k(s, τ, xnτ )dτ

)
→

f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)
, n→ ∞. (21)

By conditions (H7)–(H8) we know that∥∥∥∥ f
(

s, xns ,
∫ s

0
h(s, τ, xnτ )dτ,

∫ b

0
k(s, τ, xnτ )dτ

)
− f

(
s, xs,

∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥
≤ c1(s) + c2(s)||xns ||+ c3(s)

∥∥∥∥∫ s

0
h(s, τ, xnτ )dτ

∥∥∥∥+ c4(s)
∥∥∥∥∫ b

0
k(s, τ, xnτ )ds

∥∥∥∥
+c1(s) + c2(s)||xs||+ c3(s)

∥∥∥∥∫ s

0
h(s, τ, xτ)dτ

∥∥∥∥+ c4(s)
∥∥∥∥∫ b

0
k(s, τ, xτ)ds

∥∥∥∥
≤ 2c1(s) + c2(s) (||xn||+ ||x||) + 2c3(s)

∫ s

0
d1(s) + c3(s)

∫ s

0
d2(s) (||xn||+ ||x||) ds

+2c4(s)
∫ b

0
d3(s)ds + c4(s)

∫ b

0
d4(s) (||xn||+ ||x||) ds

≤ 2c1(s) + 2c3(s)
∫ s

0
d1(s)ds + 2c4(s)

∫ b

0
d3(s)ds

+

(
c2(s) + c3(s)

∫ s

0
d2(s)ds + c4(s)

∫ b

0
d4(s)ds

)
(||xn||+ ||x||)
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≤ 2c1(s) + 2c3(s)
∫ s

0
d1(s)ds + 2c4(s)

∫ b

0
d3(s)ds

+

(
2c2(s) + 2c3(s)

∫ s

0
d2(s)ds + 2c4(s)

∫ b

0
d4(s)ds

)
r.

Hence,

(t− s)q−1
∥∥∥∥ f
(

s, xns ,
∫ s

0
h(s, τ, xnτ )dτ,

∫ b

0
k(s, τ, xnτ )dτ

)
− f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥ ∈ L1[J, R+]. (22)

By the Lebesgue dominated convergence theorem, we get

∫ t

0
(t− s)q−1

∥∥∥∥ f
(

s, xns ,
∫ s

0
h(s, τ, xnτ )dτ,

∫ b

0
k(s, τ, xnτ )dτ

)
− f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥ ds→ 0. (23)

It is easy to get

lim
n→∞

||(Nxn)(t)− (Nx)(t)||PC = 0. (24)

Thus N is continuous on (ti, ti+1], (i = 0, 1, 2, · · · , m).

Step 2: N maps bounded sets into bounded sets in PC[J, X].

From (20) we get

‖(Nx)(t)‖ ≤ ||T (t)|| ||x0 + g(x)||+ qM1

Γ(1 + q)∫ t

0
(t− s)q−1

∥∥∥∥ f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥ ds

+m||T (t− tk) Ik(x(t−k ))||. (25)

and we know that∥∥∥∥ f
(

s, xs,
∫ s

0
h(s, τ, xτ)dτ,

∫ b

0
k(s, τ, xτ)dτ

)∥∥∥∥
≤ c1(s) + c3(s)

∫ s

0
d1(τ)dτ + c4(s)

∫ b

0
d3(τ)dτ

+

(
c2(s) + c3(s)

∫ s

0
d2(τ)dτ + c4(s)

∫ b

0
d4(τ)dτ

)
||x||

≤ Ψ1(s) + Ψ2(s)||x||.

From the above we get,

||(Nx)(t)|| ≤ M1 (||x0||+ G||x||+ k1) + mM1Φk||x||

+
bq M1

Γ(1 + q)

∫ t

0
(Ψ1(s) + Ψ2(s)||x||)ds.
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Thus for any x ∈ Br = {x ∈ PC[J, X] : ||x||PC ≤ r} ,

||(Nx)(t)|| ≤ M1 (||x0||+ k1) +
bq M1

Γ(1 + q)

∫ b

0
Ψ1(s)ds

+

(
G + mM1Φk +

bq M1

Γ(1 + q)

∫ t

0
Ψ2(s)ds

)
r

= γ1. (26)

Hence ||(Nx)(t)|| ≤ γ1, (i.e.,) N maps bounded sets to bounded sets in PC[J, X].

Step 3: N(Br) is equicontinuous with Br on (ti, ti+1] (i = 0, 1, 2, · · · , m).

For any x ∈ Br, t′, t′′ ∈ (ti, ti+1] (i = 0, 1, 2, · · · , m), we obtain

||(Nx)(t′′)− (Nx)(t′)|| ≤ ||T (t′′)− T (t′)|| ||x0 + g(x)||

+

∥∥∥∥∫ t′′

0
(t′′ − s)q−1S(t′′ − s)F(s)ds−

∫ t′

0
(t′ − s)q−1S(t′ − s)F(s)ds

∥∥∥∥
+

∥∥∥∥∥ m

∑
k=1
T (t′′ − tk)Ik(x(t−k ))−

m

∑
k=1

T(t′ − tk)Ik(x(t−k ))

∥∥∥∥∥ ,

after some calculation, we have

≤ ||T (t′′)− T (t′)|| ||x0 + g(x)||+ m||T (t′′ − t′)|| ||Ik(x(t−k ))||

+

∥∥∥∥∫ t′′

t′
(t′′ − s)q−1S(t′′ − s)F(s)ds

∥∥∥∥
+

∥∥∥∥∫ t′

0

[
(t′′ − s)q−1 − (t′ − s)q−1

]
S(t′′ − s)F(s)ds

∥∥∥∥
+

∥∥∥∥∫ t′

0
(t′ − s)q−1 [S(t′′ − s)− S(t′ − s)

]
F(s)ds

∥∥∥∥ .

Using T (t) and S(t) is uniformly continuous and the well known inequality |t′σ − t′′σ| ≤ (t′′ − t′)σ

for σ ∈ (0, 1] and 0 < t′ ≤ t′′

lim
t′′→t′

∥∥(Nx)(t′′)− (Nx)(t′)
∥∥ = 0. (27)

Thus N(Br) is equi-continuous with Br on (ti, ti+1] (i = 0, 1, 2, · · · , m)

Step 4: N maps Br into a precompact set in X.

Define Π = NBr and Π(t) = {(Nx)(t) : x ∈ Br} for t ∈ J. Set Πh,δ(t) =
{
(Nh,δx)(t) : x ∈ Br

}
;

where

Πh,δ(t) =
{
Tδ(t)(x0 + g(x)) +

∫ t−h

0
(t− s)q−1Sδ(t− s)F(s)ds +

m

∑
k=1
Tδ(t− tk)Ik(x(t−k )) : x ∈ Br

}
. (28)

From Lemma 3 (2), (3) and (H10), we can verify that the set Π(t) can be arbitrary approximated by the
relatively compact set Πh,δ(t). Thus, N(Br)(t) is relatively compact in X.
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Step 5: The set E = {x ∈ PC[J, X] : x = λNx f or 0 < λ < 1} is bounded.

Let x ∈ E, then

x(t) =



λT (t)(x0 + g(x)) + λ
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ [0, t1],

λT (t)(x0 + g(x)) + λT (t− t1)I1(x(t−1 )) + λ
∫ t

0 (t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, , t ∈ (t1, t2],
...

λT (t)(x0 + g(x)) + λ
m

∑
k=1
T (t− tk)Ik(x(t−k )) + λ

∫ t

0
(t− s)q−1S(t− s)

(×) f (s, xs,
∫ s

0 h(s, τ, xτ)dτ,
∫ b

0 k(s, τ, xτ)dτ)ds, t ∈ (tm, b].

(29)

From (30) we know

||x(t)|| ≤ λM1 (||x0||+ k1) +
bq M1

Γ(1 + q)

∫ b

0
Ψ1(s)ds

+λ

(
G + mM1Φk +

bq M1

Γ(1 + q)

∫ t

0
Ψ2(s)ds

)
||x(t)||. (30)

Obviously there exists λ sufficiently small such that ρ = 1−M1k1λ− λG− λmM1Φk > 0 and then
we get

||x(t)|| ≤ λM1

ρ
||x0||+

λbq M1

ρΓ(1 + q)

∫ b

0
Ψ1(s)ds (31)

+
λbq M1

ρΓ(1 + q)

∫ t

0
Ψ2(s)||x(s)||ds. (32)

Let

Q = λM1ρ||x0||+
λbq M1

ρΓ(1 + q)

∫ b

0
Ψ1(s)ds, f (t) =

λbq M1

ρΓ(1 + q)

∫ t

0
Ψ2(s)ds. (33)

It is clear that f (t) is non negative continuous function on [0,+∞), generalized Bellman inequality
implies that

||x(t)|| ≤ Qe
∫ t

0 f (s)ds ≤ Qe
∫ b

0 f (s)ds = C0; (34)

where C0 is a constant. Obviously, the set E is bounded on (ti, ti+1], (i = 0, 1, 2, · · · , m). Since N is
continuous and compact. From the Schaefer’s fixed point theorem, N has a fixed point which is a
PC-mild solution of {(1),(2),(3)}. This completes the proof.

4. Example

1. Consider the following fractional partial functional mixed differential equations with impulsive
conditions of the form
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Dq
t (z(t, η)) =

∂

∂η
z(t, η) + Φ

(
t, z(t, η − r),

∫ t

0
h1(t, v(x, η − r))ds,

∫ b

0
k1(t, v(x, η − r))ds

)
,

for (t, η − r) ∈ [0, T0]× (0, π), t 6= T0

2
(35)

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T0 (36)

z(0, η) = z0(η) + g(z(t, η)), 0 < η < π (37)

∆z|
t= T0

2
= I1

(
T−0
2

)
(38)

where T0 > 0, 0 < q < 1, Dq
t is a Caputo fractional partial derivative of order q ∈ (0, 1). To write the

system (35)–(38) to the form {(1),(2),(3)}, we take

(i) Let X = L2([0, π]) as the state space and z(t, ·) = {z(t, η) : 0 ≤ η ≤ π} as the state;
(ii) A : D(A) ⊂ X → X is defined as A f = f ” with domain

D(A) =
{

f ∈ X : f ′, f ′′ ∈ X are absolutely continuous, f (0) = f (π) = 0
}

.

Then A is the infinitesimal generator of a strongly continuous semi-group {T(t) : t ≥ 0} in L2[0, π].
Moreover T(·) is also strongly continuous such that ||T(t)|| ≤ M1 for each t ≥ 0. A can be written as

Ax = −
∞

∑
n=1

n2(x, en)en, x ∈ D(A), where en(x) =
√

2
π sin(nx), n ∈ N is an orthonormal set of eigen

functions of A.

Furthermore, for x ∈ X, we get T(t)x =
∞

∑
n=1

exp
(
−n2t

)
(x, en)en. We define the operators

f : J × X× X× X → X, g : J2 × X → X, and k : J2 × X → X by

xt = z(t, n− r), h(t, s, xs) = h1(t, v(x, n− r)), k(t, s, xs) = k1(t, v(x, n− r)).

Obviously, h1, k1 satisfy Lipschitz condition (H2), g satisfies Lipschitz condition (H3), and I1 satisfies
Lipschitz condition (H4). All together satisfy (H1). Also it is easy to verify conditions (H5) and (H6).

Thus functions Φ, h1, k1, g and I1 of the system (35)–(38) satisfies the hypotheses of the Theorems
1 and 2. Thus all the conditions of Theorems 1 and 2 are satisfied. Therefore the system (35)–(38) can
be written to the abstract form {(1),(2),(3)}. That phenomenon models Equations (35)–(38). Hence, we
conclude that the system (35)–(38) has a mild solution.

2. Consider the following numerical fractional partial functional differential equations with
impulsive conditions of the form

CD
3
2 x(t) =

1
(t + 63)

|x(t)|
1 + |x(t)| +

e−t

(62 + et)

|x(t/2)|
1 + |x(t/2)| +

1
63

∫ t

0

( e−s

7

) |x(s2)|
1 + |x(s2)|ds, t ∈ [0, 1],

∆x|t=tk = Ik(x(t−k )), k = 1, 2, · · · ; x(0) = x0 + g(x).

Above system can be written as an abstract formulation of system {(1),(2),(3)}.

5. Conclusions

Here, we have established the existence of PC-mild solutions for non local fractional impulsive
functional integro-differential equations with finite delay. The proofs are obtained using the Banach
contraction principle and a fixed point theorem due to Schaefer with generalized Bellman inequality.
We have used the distributed characteristic operators to define the mild solution of the system. We took
care of all the controversy related to the solution operator (refer to Remark 3), which has not been
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discussed in the literature. Distributed characteristics for fractional systems are a powerful tool for
modeling complex phenomena. More specifically, modeling of the shape memory phenomena with this
powerful tool is studied from different perspectives, as well as presenting some physical interpretation.
Using the proposed method, we can evaluate different models and predict the constitutive equation in
the viscoelastic system; these models are commonly composed of a different combination of springs
and dampers elements.

We have also considered a bounded linear operator which gave the standard semi-group in the
exponential form, but one can consider an unbounded operator and prove the results in future work.
For this we refer to the techniques given in Refs. [37,38]. The same problem can also be extended
for the Trajectory controllability problem, which is a new direction to the field of fractional order
differential and partial differential equations with its numerical approach, refer to Ref. [39]. It is always
interesting to verify analytical and numerical results.

System (1) can be extended to couple systems of nonlinear fractional equations with slit-strips-type
integral boundary condition (we refer to Ref. [40] and references cited therein), which may enhance a
new direction in the field of fractional order systems.
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