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Abstract: Internet-of-Things (IoT) is an enabling technology for numerous initiatives worldwide such
as manufacturing, smart cities, precision agriculture, and eHealth. The massive field data aggregation
of distributed administered IoT devices allows new insights and actionable information for dynamic
intelligent decision-making. In such distributed environments, data integrity, referring to reliability
and consistency, is deemed insufficient and requires immediate facilitation. In this article, we introduce
a distributed ledger (DLT)-based system for ensuring IoT data integrity which securely processes the
aggregated field data. Its uniqueness lies in the embedded use of IOTA’s ledger, called “The Tangle”,
used to transmit and store the data. Our approach shifts from a cloud-centric IoT system, where the
Super nodes simply aggregate and push data to the cloud, to a node-centric system, where each Super
node owns the data pushed in a distributed and decentralized database (i.e., the Tangle). The backend
serves as a consumer of data and a provider of additional resources, such as administration panel,
analytics, data marketplace, etc. The proposed implementation is highly modularand constitutes
a significant contribution to the Open Source communities, regarding blockchain and IoT.

Keywords: precision agriculture; blockchain; internet of things; distributed; data integrity;
data monetization

1. Introduction

Internet of Things (IoT) is a rapidly evolving paradigm, ranging over multiple different vital
domains such as manufacturing, smart cities, precision agriculture, and smart hospitals addressing the
critical mission of data aggregation. Data integrity refers to the reliability and consistency of the data
over its entire lifecycle, from sensor detection to cloud storage.

In this paper, a system which ensures the integrity of IoT aggregated field data is proposed and its
corresponding alpha prototype implementation is demonstrated in the precision agriculture domain.
The system’s core is an innovative distributed ledger (DLT) implementation which securely process the
aggregated field data and its uniqueness lies in the embedded use of IOTA’s ledger, called “The Tangle”,
used to transmit and store the data. The combination of an immutable ledger of information (in our case,
sensor data) and the use of cryptographic primitives, such as public key cryptography, transforms the
IoT nodes from data collectors to data owners. The data is stored in an anonymous and secure
fashion on the ledger, while the IoT node is the sole actor that can procure access to the data streams.
This envisioned Edge-centric architecture where each IoT node is a autonomous unit in a “swarm”
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of nodes that belong to the same stakeholder and perform the same “activities” is in tune with the
latest industry advancements in the area of IoT, where progressively more activities are migrated from
the cloud to the Edge layer. The system’s Super Node (SN), aggregates the data from the sensors,
packages them into transactions and pushes them in the IOTA network. Access control to the data stored
in the Tangle is provided by the Masked Authenticated Messaging (MAM) which uses appropriate keys
to manage encrypted data streams over the Tangle. MAM, on the one hand, empowers the users to
have a fine-grained access control over sensor-owned data existing in the Tangle and on the other hand,
a sensor data marketplace can be built on top of it, exploiting the monetization of sensor data while
also acting as an incentive to further install IoT nodes. The system design was first conceptualized in
terms of architecture and envisioned functionality in previous work [1], while this publication attempts
to highlight an actual implementation. Regarding the implementation, it constitutes an alpha version
of the system which showcases the most critical aspects of the architecture as depicted in Figure 1.
Additionally, it is deployed in an actual use-case demonstrating promising results with respect to
the introduction of DLT technologies in the IoT infrastructure. The use-case comprises IoT Nodes
deployed in an actual precision agriculture farm, called IoT nodes, with the collected data send to
a gateway node functioning as an Super Node which is responsible for aggregating all sensor data into
a data log and broadcasting them over MAM.

In a nutshell, the proposed system highlights how a DLT implementation can enable new
functionality in existing IoT systems, while solving critical issues in terms of privacy and security.
Moreover, a prototype implementation is presented demonstrating its effectiveness while at the same
time enriching the open source community build around the IOTA protocol initiative [2].

The rest of the paper is organised as follows: In Section 1 we introduce the IOTA protocol
on top of which the system is built, in Section 2 we go through the state of the art regarding the
interconnection of the domains of blockchain and the Internet of Things. In Section 3 the system
architecture & implementation is introduced and described and in Sections 4 and 5 we discuss the
results and the small-scale demonstration that was conducted. Finally, in Section 6 important issues on
the use of IOTA are raised and in Section 7 we outline our conclusions.

Figure 1. High Level Architecture.

1.1. IOTA Constituents

The IOTA protocol and cryptocurrency were introduced in early 2015, illustrating the use of
a Directed Acyclic Graph (DAG) in lieu of a blockchain [3,4]. As Figure 2 depicts, IOTA’s ledger,
“The Tangle”, stores all the transactions that are issued in the network by actors called IOTA Full Nodes
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(FN). In a blockchain each block aggregates a large number of transactions and is connected to the
previous block of usually the longest chain depending on the consensus rule. In IOTA, each transaction
references two (2) other transactions in the DAG so in order to issue a transaction, an agent needs
to verify two (2) previous transactions. Albeit each transaction references directly 2 transactions,
it also references indirectly all the transactions that are referenced by those two, either directly or
indirectly. The current implementation offers a reference algorithm [5] to the FN for the choice of the
two transactions but there is no enforcement by the protocol. The protocol will give incentives to the
FN to choose transactions that are not referenced already, called “Tips”, in order for the graph to grow
organically. On top of that, IOTA is built using ternary logic, thus using trytes instead of bytes for
its various operations (e.g., hashing) [6]. Each user has a unique string formed from 81 trytes called
a seed, from which the protocol generates all the user’s private and public keys.

Figure 2. IOTA’s ledger, “The Tangle”. The graph’s edges are the transactions while the vertices
indicate the transactions that are referenced [5].

A transaction, as depicted in Figure 3, is the smallest unit of data in the IOTA protocol consisting
of 2673 trytes (1589 bytes) and can be used to transfer both value (IOTA tokens) and data (1300 bytes).
It is worth noting that as the IOTA network is enriched with new transactions, the size of the Tangle
grows substantially. For this reason, the network is currently performing network synchronization or
local snapshots at fixed time intervals, eliminating all zero transactions.

{
" hash " : tx_hash ,
" signatureMessageFragment " : s ignature_fragment ,
" address " : address ,
" value " : 0 ,
" tag " : "999999999999999999999999999" ,
" timestamp " : 1 4 8 2 5 2 2 2 8 9 ,
" currentIndex " : 0 ,
" l a s t I n d e x " : 0 ,
" bundle " : bundle_hash ,
" t runkTransact ion " : tx1_hash ,
" branchTransact ion " : tx2_hash ,
" nonce " : PoW_nonce
}

Figure 3. An indicative example of a transaction structure.

1.2. IOTA Functionality

As noticed in Figure 4, IOTA uses a seed in order to generate multiple private and public keys,
as the signing scheme of IOTA is similar to the Winternitz type signature scheme [7]. Thus, each private
key should be used only once to sign a transaction, as key re-use leads to forge-ability.
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To issue a transaction, the FN needs to perform 3 distinct actions: (i) sign the transaction using
a unique private key and store the signature in the transaction; (ii) use the reference algorithm to
choose 2 transactions; (iii) perform Proof of Work (PoW); and finally (iv) broadcast the transaction in
the network. It is worth noting that in IOTA, PoW is not used to achieve consensus but rather as a spam
counter-measure. When a FN receives a transaction from the network, it verifies the validity of the
above steps and moreover verifies the validity of all the transactions directly or indirectly referenced.
This verification includes both the validity of the transaction structure as well as the absence of conflicts.
This process is conducted each time by a different FN that has different view of the Tangle, since at
a particular time no FN knows all the transactions that are currently being issued in the network due
to lag. Consensus is achieved by collaboratively assessing the state of the Tangle as each FN verifies
a specific subset of the whole Tangle. As these subsets overlap, different FN agree on their view of
the Tangle and progressively the whole system achieves equilibrium. Thus, a transaction can have
different levels of acceptance by the network, depending on how many different nodes have accepted
it. The system will let the users to decide what acceptance level is adequate to consider a transaction
legitimate and thus proceed with the exchange of goods or services. Currently, the aforementioned
mechanism remains a concept in the IOTA white paper and network consensus is achieved using
a centralized architecture. The IOTA foundation runs a private special Node called "The Coordinator",
which issues regularly special transactions that are called “milestones”. Every transaction that is
directly or indirectly referenced by a milestone is considered as accepted. This particular irregularity is
also discussed in Section 6.

Figure 4. Generation of private and public keys from a single string called a Seed [6].

1.3. MAM Specification

IOTA is also the medium to transfer data in a fashion that ensures their integrity. Using the MAM
protocol, a mechanism called channel broadcasters, creates channels to which other mechanisms called
channel subscribers, subscribe. MAM’s latest specification is released by the ITsec lab of the Belarusian
State University [8]. As illustrated in Figure 5, each channel is divided into endpoints from which
messages are splitted into multiple packets and broadcasted. Each channel is identified by a public
key, called chid (channel-id) and corresponds to a private key used to sign endpoints and/or messages.
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Each endpoint is identified by a public key, called epid (endpoint-id), corresponding to a private key
used to sign messages. The central endpoint is the endpoint whose epid = chid.

Figure 5. Concept diagram of the Masked Authenticated Messaging (MAM) functionality [8].

1.4. MAM Protocol

MAM’s protocol consists of many different layers which are characterised by a specific state.
In order to illustrate MAM’s usage in the proposed design and implementation, it is pertinent to
reference the WOTS, MSS, NTRU, Protobuf3, and MAM2 layers. Winternitz One-Time Signatures
(WOTS) layer generates private/public keys and signatures, it verifies a signature and it recovers
a public key from a signature. As the layer’s name suggests, the signing scheme uses the Winternitz
signatures. Merklee-tree Signature Scheme (MSS layer) [9] is responsible for generating 2d signatures
of different messages, where d is asserted as d ≤ 20. A Merklee tree is a binary tree where the leaves
are the public keys of a corresponding WOTS instance, thus 2d instances, and each tree layer is hashed
until the root which stands as the public key of the whole tree. NTRU supports the use of NTRU-style
public key encryption [10]. Protobuf3 supports the higher-level encoding, decoding and cryptographic
processing of the data. In essence, Protobuf3 is a language based on the Protocol Buffers Version 2
notation [11]. MAM2 layer is responsible for the high-level operations of the protocol, like sending and
receiving messages.

While the full specification and apt description of each algorithm and data structure can be
found in the MAM specification, it is crucial to outline certain high-level algorithms. The creation
of a data stream by an agent, starts with the creation of a proper channel. When creating a channel,
the protocol creates a Merklee tree, where the Merklee Tree Root MTR = chid. The inputs of the
CreateChannel algorithm are height d (as described above) and a channel name. The output is the
chid. Having generated a channel, the agent can generate an endpoint by running the CreateEndpoint
routine, where input is a height d, a channel name and an endpoint name. The output is the epid.
Finally, in order to broadcast a message, the agent needs to procure a Header data structure comprised
of a message_id, a type_id, a session key and a KEY (optional). The session key can be encrypted using
the KEY (either using a pre-shared key or a NTRU public key). This is crucial as it grants access control
to each message, where only the key owner (either having the pre-shared key or the NTRU private key)
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will be able to decrypt the session key and access the data packets. A message, finally, has M ≥ 1 data
packets, depending on the data size.

1.5. MAM in IOTA

IOTA serves as the transport layer of the MAM data layer protocol; thus, MAM messages
are transported using the Tangle. MAM messages are split into fragments and each fragment is
encapsulated into an IOTA transaction. Transactions are divided into 2 categories: Header transactions
that encapsulate the Channel, the Endpoint and the Header data structures, and the Packet transactions
that encapsulate data packets. Transaction objects have numerous metadata but two of them are
relevant to the MAM protocol: (i) the tryte address field (81 trytes) = chid and (ii) the tryte metadata
field (27 trytes) = msgid + (0 OR packet order). Both address field and metadata field are strings made
of [X] trytes. The metadata_field is a contention of the message identifier and a “0” if it is a header
message or the packet’s number if it is a packet transaction. The latter is very important, because using
the IRI’s API, an agent can easily find all the header transactions registered to a specific address, read
the session key and then again using the metadata, find and decrypt all the transactions with the
specific msgid. The aforementioned data structures are presented below, in pseudocode. An IOTA
transaction will either have the mam_header structure or the mam_packet structure encapsulated in
the data field.

{
struct mam_endpoint {
trits name;
mam_mss mss;
};

struct mam_channel {
trits name;
trits msg_ord;
mam_endpoint_set endpoints;
trint endpoint_ord;
}

where mam_mss is a data structure that refers to a Merklee Tree which holds the signatures
as described, msg_ord a trit that is incremented each time a message is added in the channel,
mam_endpoint_set is a set of all the active endpoints in the channel and endpoint_ord is a trint that
is incremented with every endpoint added to the channel

struct mam_header {
mam_channel channel;
mam_endpoint endpoint;
mam_channel new_channel:
mam_endpoint: new_endpoint;
mam_psk psk_keys;
mam_ntru ntru_keys;
mam_msg_id msg_id;
mam_msg_id_type type;
}

where mam_channel is a reference to the mam_channel data structure (it either references the
current channel or a new one (fork), mam_endpoint a reference to the mam_endpoint data structure
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(it either references the current endpoint or a new one), mam_psk a set of the relevant Pre-Shared Keys
(PSKs) that are required to unlock the session_key, mam_ntru a set of the relevant NTRU public keys
which belong to a private key that unlock the session_key, mam_msg_id: the id of the message and
mam_msg_id_type type: a message that can either be a MAM message or a Public Key Certificate.

struct mam_packet {
context ctx;
mam_checksum checksum;
mam_payload payload;
}

where context references the current state of the MAM library (and its various layers),
mam_checksum the checksum of the packet so as the reader can verify it’s integrity and mam_payload
the payload that encapsulates a segment of the streamed data.

The above data structures are used in the MAM2 reference implementation in C and are based on
the MAM specification. The structures are different from those described in the specification as these
are the actual data structures that are encapsulated into the IOTA transactions while the others are
Protobuf3 models.

1.6. IOTA Challenges

Given the business requirements for data integrity and immutability of the gathered sensor data,
the use of a DLT is an appealing solution to an existing problem. Moreover, the usage of cryptocurrencies
empowers the system to easily perform automated M2M payments without intervention of the human
factor. The implementation concerns the precision agriculture domain, a domain where data can
be essential for certain activities, such as crop insurance. Ensuring the accuracy and consistency
of the stored data to the detected data sets is critical and requires the exploration of experimental
technologies, such as the DLT. Since, there is intention to use the ledger as an immutable storage
of sensor data, albeit a temporary one, it is expected to have several transactions per SN. This is
a restricting characteristic since most blockchain based projects have a high fee for each transaction,
spiraling the upkeep cost of the system. The IOTA protocol, on the other hand, supports transactions
with zero fees, demanding only lightweight computation (1–2 min on a PC).

Therefore, it is imperative to design and implement a system where each Super Node aggregates
sensor data and issues a bundle at the FN that is hosted in the cloud. The SNs can select how many
datasets will be encapsulated in each MAM message, varying on the granularity the system offers,
in respect to granting access to specific data. In our case, the Super Node aggregates data from all the
IoT Nodes that are placed in the field and forwards them to an Edge service on the cloud. Instead of
running an Edge service on the SN, a simulated process was chosen in order to decouple sufficiently
the two prototype implementations, the first being the prototype hardware infrastructure of the IoT
Nodes and the Super Node and the second being the IOTA data and service layer. The Edge services
process the aggregated data so each Node’s data are encapsulated into a different MAM stream.
This design choice allows the field owner to sell data streams from each Node. The implementation
also includes a data marketplace interface, where an potential user can overview the stakeholders that
use the system and make a choise to purchase access. Actually, the user purchases the necessary PSK
in order to decrypt the messages found in the already known chid of the data stream. In the future,
the implementation will support multiple authentication modes and workflows, such as the use of
Private/Public key cryptography (NTRU). This is exceptionally important as it offers a wide range of
access control to support multiple different use-cases and business requirements.
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2. Related Work

2.1. Blockchain

The blockchain is considered one of the most groundbreaking innovations of the last decade,
foreseeing a completely decentralized future where consensus and trust are built upon mathematical
models. It is essentially a distributed database of records of transactions—a ledger—where all the
nodes in the network participate actively to reach a consensus on the final status of the database,
thus the database can be publicly auditable [12]. The notion of blockchain was introduced in 2008 by
Satoshi Nakamoto [13]. It uses well known cryptographic systems, such as public key cryptography
and PoW to create a system where value can be transferred without the need for intermediaries [14].
Bitcoin was the first open source project to implement this new vertical which created the notion of
cryptocurrencies [15].

Figure 6. This diagram illustrates the general architecture of a blockchain, blocks of data that are
interlinked by using the hash of the last block as the header of the next one [16].

As blockchain started to evolve, the core concepts of Distributed Ledger Technologies are applied
to more domains, thus encouraging the emergence of new uses in Ethereum, beyond the transfer of
value, such as “smart contracts” [17]. In Ethereum, “smart contracts” stands for a code executed in every
node which “checks” certain conditions prior the transfer of funds. Once these conditions are verified
it is impossible to breach or cancel the transfer. An interesting aspect of the blockchain technology
is the scalability aspect regarding the transactions that the network can process in a secure way.
The goal is that the network reaches a consensus on whether a transaction is valid or invalid in a timely
manner, avoiding any possible misuse, such as double-spend. Although consensus is well established,
blockchain has certain specific characteristics that challenged its status quo, regarding demand for
permission-less and trustless structures [15]. For this reason, several consensus algorithms have been
proposed for use in a blockchain network. Bitcoin kick-started the research field by using PoW as
an integral part of the consensus [13]. In essence, each network node aggregates transactions from the
network in a Peer to Peer (P2P) fashion and places them in blocks. In order to attach the new block to
the last block of the chain, the node needs to become the first in the network to find the solution to
a computational puzzle, in other words, perform PoW. This chain of blocks, the blockchain itself, is
shown as a structure in Figure 6. The network agreed (consensus) that the longest chain, that with the
highest accumulated computational power, is the correct one. Thus, an entity needs to control 51% of
the computational power of the network in order to outperform each competitive node, effectively
taking over the blockchain. Albeit theoretically possible, the cost to obtain 51% is deemed exorbitant
and consequently this chain is considered as secure [18]. Moreover, there are projects using stake as
a medium of consensus, where block producers are chosen by the network based on state of funds
and network nodes’ votes, such as EOS [19]. The blockchain technology has been notably applied in
the industry sector in the form of “private blockchains”, networks where a party needs permission
to participate, thus rendering the nodes trustworthy [20]. The nodes can either belong to the same
organisation or to a consortium of organisations, where a small number of nodes (in comparison with
“public blockchains”) are required to secure the network, increasing the TPS throughput of the system
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considerably. Hyperledger fabric [21] is considered mature enough to be implemented in realistic
business scenarios that demand private blockchains.

2.2. IoT End and Super Nodes

The open source initiative is capable of supporting the free use of open source-licenses. It is
through this open source movement that the popularity of open-hardware has been triggered and
consequently made available with different options for open hardware microcontrollers-based platforms.
The question of which platform would be ideal to use, depends on the requirements of the system.
These requirements comprise power consumption, cost and type of connectivity among others.
An apposition of some of the most notable open-hardware platforms follows: Arduino Genuino 101:
The module contains two tiny cores, an x86 (Quark) and a 32-bit ARC architecture core, both clocked at
32 MHz [22]. Orange Pi: Orange Pi 3 is a single-board computer with an Allwinner H6 system-on-a-chip
(SoC) combined to a quad-core, Arm Cortex A53-based 64-bit processing cores running at 1.8 GHz
and 1GB LPDDR3 memory and a Mali T720 graphics processor [23]. Raspberry Pi 3 B+: Raspberry Pi
uses the Broadcom BCM2837B0 system-on-chip (SoC) and includes four high-performance Cortex-A53
(ARMv8) 64-bit processing cores running at 1.4 GHz with 32 kB Level 1 and 512 kB Level 2 cache
memory, a VideoCore IV graphics processor, and is linked to a 1 GB LPDDR2 (900 MHz) memory
module on the rear of the board [24]. From the above-mentioned open hardware platforms, we are
utilizing Raspberry Pi 3 B+ jointly with our proposed End Node in order to formulate the Super Node.

An IoT system can function and transfer information only when the devices are safely connected
with wires or wirelessly to a communication network. This connection is established by choosing the
appropriate type of IoT protocol based on our system’s specific requirements, like bandwidth and
power consumption. The two major M2M (Machine to Machine)/IoT protocols are the Constrained
Application Protocol (CoAP) [25], and the Message Queuing Telemetry Transport (MQTT) [26]. Both the
MQTT and the CoAP are designed as a long-term vision that will enable their use in a lightweight
environment. They both work well with low power and network constrained devices, so the choice
depends on the application use case. In our particular use case, for reasons of simplicity and fast
deployment Post Office Protocol (POP3) [27] was adopted.

Hardware-wise our proposed IoT node is built around a state-of-the-art microcontroller,
a high-performance RF and mixed-signal system, Flash/EE memory and SRAM as thoroughly described
in [28]. Its power supply system is based on an integrated boost regulator that converts DC power
from a PV cell, charging a Lithium-ion storage element for unceasing operation. Moreover, the node
provides connectors for various sensors and system debugging. Software-wise, there is no operating
system but the firmware code in C language with an approximate size of 10 Kbytes including the radio
and sensors control libraries. Its main modules are the Microcontroller and Radio Module, the Power
Supply Module and the Input/Output Module. The Microcontroller and Radio Module uses Analog
Devices ADuCRF101 microcontroller which is a fully integrated single chip data acquisition solution
designed for low power wireless applications. It features a 12-bit ADC, a low power CortexTM M3
processor from ARM R©, a 431 MHz to 464 MHz and 862 MHz to 928 MHz RF transceiver, and 128
KBFlash/EE memory packaged in a 9 mm × 9 mm LFCSP. The Power Supply Module is built around
Analog Devices ADP5090 chip which is an integrated boost regulator that converts DC power from
PV cells or TEGs. The ADP5090 provides efficient conversion of the harvested power from 16 µW to
200 mW. A 4 × 4 cm 2V monocrystalline PV panel has been used with 45 mA peak output. The PV
panel charges a 3.7 V-650mAh Li-ion battery. The output from the PV panel and the battery drives
the ADP190 (linear voltage regulator) which finally provides a 3.3 V stable output. The Input/Output
Module provides connectors for various sensors, such as I2C interface, SPI, UART, Interrupt pins,
A/D interface, and SWD for system debugging or firmware download.

In a typical deployment and depending on the appropriate configuration of the firmware, two types
of IoT nodes are distinguished: the broadcasting IoT nodes stations called Sensor nodes and a single
receiving IoT node station called centre node. The centre node is continuously in reception mode at the
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pre-set frequency channel and its serial port is always connected to any device with a full TCP/IP stack
(in our case a Raspberry Pi 3 B+), forming the Super node depicted in Figure 7. A Super node can serve
concurrently multiple end nodes. In the unfortunate event of a collision, packets of measurements are
lost but a small shift on the end nodes’ clocks ensures that such a collision will not occur during the
next broadcasting session.

Figure 7. The Super Node.

2.3. IoT Security and Privacy Challenges

Although new architectures are emerging in the field of IoT, i.e., the Edge computing paradigm,
the most common architecture is the cloud-centric one [29]. The cloud is responsible for identifying and
authenticating the various IoT devices, provisioning new ones, aggregating their data, analysing them
and providing additional services to the stakeholders. The growing number of IoT devices combined
with centralization, will almost certainly lead the process to bottleneck [30]. On top of that, IoT devices
are exceptionally prone to malicious attacks, such as hacking, remote hijacking and Distributed Denial
of Service (DDoS) [31]. In the case of a successful attack, the whole system could be in jeopardy,
which could prove extremely detrimental in domains like manufacturing industry. Even a simple
electric energy sensor could be used in order to provide burglars with sensitive information for the
absence of the occupants of a house. According to a recent EU commission report, 72% of EU residents
could be affected by this attack vector [32], as by 2020 about 72% of EU residents will own a smart
energy meter. Finally, it should be noted that the stakeholders who own the server are granted full
authority over the data, enabling them to censor, edit or even delete them. The recent event in Flint,
Michigan, USA about lead contamination of tap water, emphasised the need for data integrity in the IoT
sector. Investigators discovered that officials had tampered with water samples discarding two of them,
in an effort to adjust the report’s findings regarding the parts per billion (ppb) of lead in the water [33].

2.4. Blockchain @ IoT

A possible solution to the above mentioned challenges could be the implementation of blockchain
protocols in the IoT architecture, from the sensors to the cloud layer. Using the blockchain as a medium
to store data signatures (e.g., hashes), the stored data become immutable. In the unlikely event of data
tampering or deletion, it can easily be revealed by simply checking the hashes and their corresponding
data. Moreover, the blockchain can serve as an immutable log of events (e.g., device provisioning, data
creation), securing the network from intrusions [34]. An illustration on how blockchain can be used in the
domain of smart home to enhance security and privacy is depicted in [35]. In the design of Dorri et al.
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a blockchain is used—with elimination of PoW—merely relying on a hierarchical structure and distributed
trust to maintain the blockchain properties. The local blockchain is used to control the devices and their
data and also to create an immutable history of the devices and their actions. IOTA was the first DLT
project with IoT as the main application (hence the name IOTA). In theory, by differentiating from the
blockchain technology with the use of a DAG, it can overcome the scalability issues mentioned above
while offering adequate security during the transfer of value. It is one of the few DLT projects that
uses post-quantum cryptography, meaning that the established protocols will be secure even after the
appearance of the first quantum computers. In addition, the MAM protocol empowers the IoT system to
easily incorporate IOTA as a secure medium for data transfer, storage or as an integrity layer.

This paper builds upon the state of the art, by incorporating several innovative designs for
the future IoT system. The system features extreme battery efficiency, as well as low-cost devices.
The IOTA layer, introduces a new approach for data delivery and storage, enforcing integrity nearly
end-to-end. A low-cost system with emphasis to security has the potential to be featured in the sector
of micro-insurance where farmers purchase crop insurance for small and remote farms [36]. The data
integrity layer delivers security to both the farmer and the insurance provider, automating the refund
process based on the data gathered from the sensors or even completely automating the process with
the use of smart contracts with Qubic [37].

3. System Architecture and Implementation

3.1. System Architecture

The proposed system design and implementation comprises several subsystems, including a backend
cloud system, an Edge service, IoT nodes, and specific IOTA subsystems. Our proposed architecture shifts
from a cloud-centric IoT system, where the Super nodes simply aggregate and push data to the cloud,
to a node-centric system, where each Super node owns the data pushed in a distributed and decentralized
database (i.e., the Tangle). The backend serves as a consumer of data and a provider of additional resources,
such as administration panel, analytics, data marketplace, etc. Specifically, a narrow down approach was
followed commencing from a three-tier reference architecture proposed by Tranoris et al. [38], as shown
in Figure 8, which was modified accordingly to meet our needs.

Figure 8. The three-tier Reference Architecture.
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Figure 9 illustrates the activities diagram of a typical IoT application that was used as a template
for the implementation of our prototype [38]. The diagram was further simplified in order to keep the
complexity of the prototype low. The semantic notation submodule was removed as it was deemed
unnecessary. The MAM submodule is an addition to the generalized IoT architecture, providing
a service which is responsible for receiving the data and based on the metadata, creates the appropriate
MAM messages. This submodule is also responsible for connecting to the IOTA Full Node. The final
architecture that was adopted is shown in Figures 10 and 11.

Figure 9. Subsystems Activities Overview.

Process wise, data originated from the sensors are decoded in the Edge through specific drivers.
Afterwards, they are enriched with time stamp and node denotation metadata and saved. Local
storage not only cancels latency but in conjunction with a rule engine, it could enable intelligence.
Then the data are transmitted to the Cloud where they traverse through the same subsystems as shown
in Figure 10.

Figure 10. The Edge Super Node Module.
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The cloud module also offers a data marketplace based on IOTA as well as a dashboard for the
IoT system owner as Figure 11 depicts. Essentially, these are activities that are built on top of the Open
API. Various sub-modules were discarded as they increased the complexity of the system without
contributing to the implementation’s purpose.

Figure 11. The Edge Super Node Module.

3.2. Envisioned Core Activities

The architecture is built around 3 key activities setup phase, data log, data request which encompass
the key innovations that are illustrated in this design.

During the setup phase, IoT nodes create the proper MAM channels in order to start broadcasting
in the Tangle. Using a unique seed, the IoT node runs the createChannel(dimension) function twice.
Note that the higher the dimension of the Merklee Tree, the higher the requirement for memory.
The first channel is called status_channel, it has no endpoints other than the central and it is used to
publish status messages of 1300 bytes (1300 ASCII char) as follows:

status_message: [string node_id, integer geo_loc_lat ,
integer geo_loc_alt , integerbattery , string data_channel_chid ,
string last_msgid , string chid_PSK , string data_description ,
integer error_code].

where:

node_id: Unique id of the IoT node
geo_loc_lat: geographic location latitude
geo_loc_alt: geographic location altitude
battery: Battery level between [0, 100]
data_channel_chid: string of trytes representing channel_id
last_msgid: string of trytes representing the message_id of the last message
chid_PSK: string of the pre-shared key required to unlock the data stream
data_description: short string representing the data
(e.g.TEMPBAT|TEMP|PRES|HUMID|RAIN|TEMPSHT21|HUMSHT21 )

error_code: a unique integer that represent error messages (e.g., 103)

Each message is encrypted with an NTRU scheme, using a public_key that is shared by the
backend system. According to the above described scheme, the IoT Node ID is publicly auditable,
since it resided in the Tangle, but it is only readable by the parties that have the appropriate private key.
In our case, only the backend can read it. As such, everyone can verify its integrity and correctness,
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but only the backend can extract the sensitive information. When the channel exhausts the Merklee
Tree, the last message points to a newly generated status_chanel_chid. It is important to underline that
the IoT node is able to dynamically change the format of the offered data streams, by changing how
the sensor data logs (SDLs) are encapsulated into different channels/endpoints and the frequency of
the PSK change. All the changes are eventually mirrored in the status messages. In case a sensor needs
to be added to the system, setup phase is initiated through the functions in the setup_driver.js and its
data are stored through Mongoose in the MongoDB database.

Data Log Phase: The IoT node services are activated on event basis and read data from the sensors
that are stored in the Tangle. Before that, the data are enriched with metadata (e.g., sensor id, type, etc.)
and stored for local use (e.g., local decision-making). Then the MAM service, adhering to the business
logic encapsulates the data into data streams. In case a sensor data log (SDL) is divided into multiple
data streams, they are referred to as data log segments. Afterwards, the MAM service creates the
proper MAM Bundle where the header and packet transactions are placed and hashed. The service
then sends the MAM Bundle to an IOTA Full node in order to issue it to the network. Finally, the MAM
service updates appropriately the PSK and data_channel_chid fields of the status_message.

Each data stream can be viewed as a time series of SDLs (SDL1, SDL2, . . . SDLn) at corresponding
instances (t1, t2, ..., tn). Likewise, as PSK changes every m SDL (m ≥1), the SDL time series creates
a PSK time series (PSK1, PSK2, ..., PSKy) and a data channel chid time series (chid1, chid2, ..., chidz). In
the proposed data configuration, in n SDL there are m PSK (m≤n) and z chid (z≤m), since the chid
changes every 2d messages, where d is an arbitrary integer as mentioned in Section 1.4. All the above
are illustrated in Figure 12. Figure 12a describes the state machine of the data log phase, Figure 12b
illustrates the required activities, while Figure 12c showcases the sequence of the messages between
the actors (users and services).

(a) State Diagram
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(b) Sequence Diagram

(c) Activities Diagram

Figure 12. UML diagrams regarding the data log phase.

Data Request Activity: During the data request phase, a user accesses the marketplace and creates
an account and applying appropriate filters (e.g., data types, geolocation, etc.) reveals data streams on
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the map. The user can purchase data, in chunks of m SDL, selecting from specific streams, where m is
the result of the PSK changes frequency for each data stream. The user can either purchase access of
data already in the Tangle or pre-purchase access for future SDL by subscribing to a data stream for
a specific amount of SDL chunks. After the user selects the appropriate data stream and accepts the
exchange of tokens, the backend generates an IOTA address and an Oauth token by using a uniquely
generated seed [39]. Consequently, the user acquires the IOTA address to deposit the requested amount
and the Oauth token in the data_field. Upon the verification of the transfer, the backend searches the
database for the appropriate msgid and PSKs combinations which are used to find the transactions in
the Tangle, fetches the Bundles and decrypts the data. Data are served through the web interface to the
end user as the corresponding diagrams depict. The above mentioned service is also offered through
a REST API that can be used in lieu of the web interface. Figure 13a showcases the state machine of the
data request phase, Figure 13b depicts the required activities, while Figure 13c illustrates the sequence
of the messages between the actors (users and services).

(a) State Diagram
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(b) Sequence Diagram
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(c) Activities Diagram

Figure 13. UML diagrams regarding the data request activity.
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3.3. Architecture Metrics

We can identify two distinct metrics that encapsulate the capabilities of the proposed architecture.
Those two metrics are:

1. Iota Transaction throughput
2. PoW

Iota Transaction throughput Regarding the Iota Transaction throughput, that is, the number of
transactions per second (TPS) that the network can support, we are referring to a metric that solely
depends on the inherent characteristics of the protocol (IOTA) is important because it directly influences
the average time that a transaction needs to be accepted by the network. The current implementation
of the tangle supports a TPS of 4–5 [40] with an average confirmation time of 10 min. The Tangle is thus
mature enough to support the described architecture as it offers an acceptable transaction time with
no fees. Finally, this latency, although adequate for real-time transactions is bound to be decreased
through improvements of the IOTA network architecture itself.

Proof of Work This metric is important because it highlights and ultimately defines the scalability
of the proposed system. The PoW must be done for each transaction (in the current state of the network,
and for the foreseeable future). PoW can either be conducted on the hardware, which is preferable as it
increases the autonomy of the IoT device, or can be offloaded to a server to be offered as a service.
Latest advancements in FPGA implementation [41] of the PoW algorithm has illustrated the possibility
of adding a relatively cheap dedicated PoW core to the IoT hardware, which will be able to conduct
PoW in an extremely efficient manner, both in terms of time and power consumption. By implementing
an FPGA array in a cloud based PoW, the cost is reduced even more, proving the architecture to be
extremely cost effective even with a large increase of IoT nodes.

Each transaction can encapsulate 1 to n data transmissions. By increasing the number of data
log packets in each transaction, we decrease the required PoW (by lowering number of transactions
needed to transmit the same number of information) but we also decrease the granularity of the data
access (since access is granted on transaction basis). The current time needed to perform PoW is
shown bellow:

• A median computing time of 90 s on Raspberry power 3:4× ARM Cortex-A53, 1.2 GHz [41]
• Natively on our IoT Hardware (IoT Node): Unfeasible, both in terms of time and power

consumption. (M-cortex)
• On ×86 CPU (4×cores + GPU, upgrade ccurl implementation “dcurl” [42]): 9 s
• FPGA implementation: 70 ms

Each MAM message can encapsulate up to 1300 bytes of information, or 65 SDL, since each Sensor
Data Log has a size of 20 bytes as dictated in the specification. In a scenario where each node emits an
SDL every 10 min and there are 12,000 nodes that are used in various applications and are supported
by the same backend server, the following metrics are found, in regards to data access granularity and
PoW cost. In the scenario, it is assumed that each MAM message demands 3 distinct IOTA transactions
to be fully transmitted (this can change in the future as MAM is still in development). The final number
of transactions is enlarged by a factor of 10% in order to allow for unforeseen errors that may appear
and may lead the IOTA node to re-perform PoW. Figure 14 shows on a per node basis, the amount of
transactions issued per day versus the access control granularity, translated in number of SDLs that
will be encapsulated into every MAM message. Figure 15 illustrates the linear increase of the daily
cost to conduct PoW for the whole system, assuming that it is conducted in a centralised data center on
FPGA arrays that consume approximately 8 W and the cost of 1 Kwh is $0.2.
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Figure 14. Number of Transactions vs sensor data logs (SDLs)/MAM message.

Figure 15. System scalability in terms of Proof of Work (PoW) cost. X-axis is the number of transactions
in units of thousands.

4. Results

4.1. System Implementation

Three distinct modules are implemented, namely the IoT nodes, the Edge System and the Cloud
system. For reasons of efficiency, the Edge System application logic is allocated into two distinct
nodes, the Gateway Super node that serves as an aggregator and the IOTA powered Edge node
that is hosted in the Cloud. The data from the Gateway Super node are eventually pushed to the
Edge node through an email carrying along a log file with the sensors’ data as shown in Figure 16.
The implementation is mainly focused on the Cloud system as the IOTA powered Edge node simulates
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most of the activities and pushes the data that it receives to the database, so in essence the Edge and
Cloud systems communicate through the common database.

[00:00:04 5 0 397 7 106 10276 85 0 108 89 99 7a]
[00:01:59 4 0 403 7 111 10275 86 0 111 89 85 7a]

Figure 16. Log File Instance.

The Edge logic is ported in C to be able to run natively on the hardware, while the MAM
sub-module is simulated since there is no stable MAM implementation.

IoT Nodes Module
The physical parts of the IoT node constitute the following blocks, as depicted in Figure 17

Figure 17. Physical Parts of the IoT node.

With respect to its performance the most notable aspects are:

• Coverage Distance: The maximum, transmission distance is a function of antenna power, frequency
and transmission speed. For 868 MHz radio frequency, 1Kbps transmission speed and 10dbm
antenna power, a 12.5 km line of sight has been achieved. For a 433 MHz frequency the distance is
doubled. The transmitter and receiver use antennas of half wave 1.2 dBi peak gain. In case the
topology requires it, IoT nodes are used as repeaters (with minor modifications to the firmware).

• Energy Consumption Hibernate mode is the dominant mode for the IoT node since the total
consumption in this state is 6 µA. During broadcast, for output power of 10 dbm in the antenna,
the consumption is 32 mA. Fifteen (15) levels of output power are available, while the transmission
speed can be selected from a range of 1Kbps to 300 Kbps. Therefore, for a 20 bytes transmission
packet every ten (10) min with maximum antenna power and 1 Kbps transmission rate, the average
power consumption of the IoT node is approximately 22 µA and its 650 mAh battery could endure
for approximately 3.5 years. The node’s battery will be recharged through the photovoltaic panel
which allows the battery to fully charge within 20 h of exposure to solar radiation.

Regarding data aggregation, the sensors depicted in Figure 1 acquire the corresponding parameters
shown in Table 1.



Appl. Syst. Innov. 2019, 2, 30 22 of 31

Table 1. The aggregated data by the IoT Node.

Sensor and Scope

Humidity,Temperature, Pressure and Ambient H, T, P
Rain Amount and Rain
Leaf Wetness and Leaf
Soil Moisture and Soil

Wind Speed, Direction and Wind
Solar Radiation and Pyranometer

4.2. Edge Node and Cloud System Modules

In general, the modules are implemented with Javascript paired with a NOSQL database and
serviced by an AWS scalable EC2 cloud. In order to achieve the specified scalability, modularity and
expandability requirements, the prototype implementation [43] of the API and the Backend was built
based on an adaptation of the M.E.A.N. (MongoDB, Express, Angular, Node) stack. MongoDB is
a NoSQL database that allows flexible data modelling and intuitive control over the structure and
the location of the data, while ensuring fast performance and seamless data migration. Express is
a minimal and flexible Node.js web application framework that provides robust and well-maintained
middleware and HTTP utility methods. Node.js is an asynchronous event-driven JavaScript runtime,
that is designed to build scalable network applications. Node uses a deadlock free, streaming and low
latency-oriented framework/design, which is ideal for the current implementation requirements of
the proposed architecture. Angular.js is a JavaScript frontend framework, that is the state of the art in
modern web-based applications. For the prototype version, the boilerplate for Angular is preserved,
while the Jade templating engine which works in conjunction with Angular is implemented in order
to further boost the scalability, expandability and modularity of the system. The project is hosted as
a cloud service by Amazon Web Services (AWS). The prototyped API uses an Elastic Computer Cloud,
a web service that provides secure, resizable computing capacity paired with a cloud-based MongoDB
server, that handles the connectivity and the Data Streaming with the Edge-Service. Figure 18 presents
all the aforementioned technologies and the way they are orchestrated.

• Edge Module: The edge Module provides, through an HTTP connection paired with an extra
security key, the ability of the system to accept and update the sensor pool. The edge interface also
maintains, when needed, a Mongoose powered connection to the system’s Local Database with
a unique and secure Open Authentication (Oauth) key pair combination that is kept internally
and is defined during the system initialization. When a new sensor data log is introduced to
the system, after it passes a sanitisation phase, it is imported through a POST request into the
Database. It is then able to be served by the Backend interface to the user through the normal
procedure. Every sensor that belongs to a field, is paired with that field using a corresponding
unique field id and each field is showcased through the Google Maps API in the map on the
front-end main view. Figure 19 showcases the Admin/User Authentication Layer, which through
passport and PUG front end template engine ensures that the user and admin level actions are
distinguished both visually and internally.

• IOTA Full Node Interface: The IOTA Full Node interface interacts with the IOTA network,
through the IOTA DevNet servers that act as IOTA Full-Nodes (FN). When an order is placed by
a customer through the Front-End interface, a unique order ID is created and an Oauth confirmation
code is served to the user. The user can then place their payment in the corresponding address
that is provided, with the confirmation code on the message of the transaction. Additionally,
a pending order entry is created via a post request in the database and is showcased to the user.
When an order is placed, the IOTA Full Node Interface module that checks for new transactions
handles the inbound transaction and cross-checks the Oauth verification key. If the keys match,
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the pending order is accepted and the corresponding data are handed to the user via My Data
view on the front end. As Figure 20 depicts, the user can then download the data.

• Administrator Tools: The administrator tools provide a Backend insight for the system
administrator to interact with the data streams that are provided in the platform. The availability
of the data is set through the ““UPDATE” functions as shown in Figure 21, while the views are
provided by Chart.js [44] as shown in Figure 22.

• Cloud Technology: The entirety of the backend server and the local NoSQL database is uploaded
in an AWS EC2 cloud service and runs on a CENTOS Linux Virtual machine. This service is
chosen since it provides the necessary functionality to serve as a proof of concept system, while it
also has the capability to scale up in the future, keeping up with the market’s needs. Any system
updates are pushed through Git that is installed locally and the data uplink from the live sensors
can be linked through a post request with a secret key ensuring that the source providing the data
is verified.

Figure 18. Edge Super Node and Cloud Subsystems.

Figure 19. Edge Super Node and Cloud Subsystems.
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Figure 20. Data View.

Figure 21. The system administrator can overview the data channels and select those to be available in
the marketplace.

• Sensor Driver: When a sensor is imported into the system, the sensor driver service runs
the driver initialization function in order to update the setup, the interface and register the
sensor details into the database. During the initialization, the driver runs preliminary checks
ensuring sensors’s health and stability, with the run_preliminary_routines() function. It also
uses the check_statistics() function in order to display sensor logging and performance
information regarding all its vitals and other statistics regarding use, install date, etc. Finally,
with the import_sensor_to_db() function, the sensor is incorporated into the system and marked
available for use. Since the data are aggregated using an email client, the current sensor driver
implementation is for reference only.
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Figure 22. System administrator data views.

• MAM Service: This service provides a structure of functions that handles the data through
the MAM data layer such as the initialization of the public chain (_public_chain()) or the
addition of a channel to an existing chain append_channel_to_chain(). When the service
interacts with the database by establishing a secure connection through the mongoose API. For the
Merkle tree generation, the service shall utilize the generate_merkle_tree() function. To trace
a corresponding channel in the database, a query is executed and the response is fed to the
corresponding function fetch_from_Tangle().

• Database Service: This service facilitates the connection with the MongoDB database and
the handling of the data before their incorporation to the system. This service uses the
semantic_filtering() function to filter, label and export in JSON format the sanitized data.
There are also functions for data cleaning, aggregation, back up and maintenance. The data flow
within the Node.Js powered backend server is facilitated through JSON files, thus maintaining the
integrity of the structure of the data and the ease of use.

• Web Interface The user interface is generated by PUG engine which is a predecessor of JADE.
PUG, in essence, enables the generation of dynamic and reusable HTML documents, while the
incorporation of the modern Bootstrap CSS framework results into a minimalistic user experience
that maintains the structural modularity required for a multi view/authentication-layer website.
The map provided in the home page, is powered by Google development platform and the
corresponding graphs in the administration panel are generated by parsing the available data
through JQuery and showcasing through Chart.js, while with different authentication layers
provided by Passport.js the user can see their corresponding available sub views. Any of the
unavailable pages (such as the administration panel for the users) are protected with the same
library. The front end interface is modular and expandable.
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5. Verification and Small-Scale Demonstration

5.1. General

The activities envisioned for the proposed system are grouped into 2 main categories: (i) Edge
Activities and (ii) IOTA powered Activities. The Edge Activities comprise (a) data aggregation;
(b) metadata enrichment; (c) local rule-based decision making and (d) local control. Regarding the
IOTA powered activities, the Iota Powered Nodes work in a collaboratively fashion, exchanging value
for resources and/or services. IOTA serves as the infrastructure for the automated exchange of value
in a publicly auditable fashion while enhancing trust between the parties. Clusters of nodes also
cooperate, employing IOTA functionalities, such as the flash channels to transfer IOTA tokens offline
using common transport layer protocols such as 802.15.4 and 802.15.1. or LoRa [45]. Indicatively,
the IoT nodes could be further upgraded and exchange IOTA tokens in order to exchanges services.
For example, they could improve the efficiency of their own rule-based system by exchanging data,
or (given the proper infrastructure) procure and transfer electrical energy between stakeholders, or in
case of internet failure, the request from their neighbors to act as gateways.

5.2. Implemented Activities in the Use Cause

As mentioned in Section 3.1, the use case prototype is built around 3 key activities: setup phase,
data log, data request but setup phase is currently innactive as the system is implemented progressively,
in a modular fashion. Below, a succinct overview of the implementation of each activity is given.

Data log During runtime a variety of data are stored in the MongoDb server. Live data are currently
sent through an IGMAP interface to a Gmail account and then are scrapped through Python and the
corresponding Gmail API. After the arrival of the data packets, a sensitization function formulates
them into JSON and the Python script, using an HTTP POST request and a predefined authentication
key and forwards the data alongside with the id of the sensor in the database. The MAM service
is abstracted through a mock up series of functions that semantically complete the aforementioned
behaviors in the mam_service.js.

Data request A variety of CRUD operations in the backend service as well as the MAM service
were implemented, so that the user can access the data in the MongoDB. The POST/GET requests,
during the interaction with the PUG/Jquery front end, occur in an async format provided by Node.js
and are served statically by Express. When a end user registers to the system, a process is initiated
in the user.js file, performing a POST request to the server, checking the validity of the data the user
provided. In case the data are correct, a secure password is generated by the genSalt() function of
bcrypt cryptography library that is then hashed through bcrypt.hash() and stored through Mongoose
in the MongoDb database through a newuser.save() function. Finally, the page is refreshed in order
to showcase the success of the registration. The new user is then granted user level status which
enables the Dashboard and My Data tabs. When a user selects a field or a stream, a variety of POST
and GET functions are initiated, and a filtered list of the requested data are served in the frontend
by an async mongoose query. When a user buys a stream, the async function createOrderKeys()
generates the authentication token through OAuth, providing it along with the rest of the required
information. The user can then initiate a transfer of funds through the IOTA network in the given
address in order to complete the order. This functionality can be achieved via an external service or via
a module given by the IOTA foundation.

The backend maintains a service that checks the status of pending orders. When the appropriate
funds are sent to the corresponding address, the authentication token of the message that lies in the
transaction is parsed, and the same token is fetched through an order.findOne() function from the
database. If those two tokens match, the stream’s id is attached to the buyer, and the pending order is
deleted. The buyer can then access and download the data through the MyData tab on the front end.
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5.3. Application Use Case Description

The capabilities of the proposed system are demonstrated in the precision agriculture domain,
since the deployment of numerous sensors enables the farmers to closely monitor their fields and
substantially increase their yield and quality while lowering the production costs. In our use case,
the proposed system is used to gather the required data from three different vineyard pilots as Figure 23
depicts. The physical installation of the IoT nodes with their sensors and the corresponding Iota
Powered Nodes followed the plan indicated by domain experts (phytopathologists). Each IoT node
with its sensors collects various sets of data covering a radius of 25 m with a minimum distance
between two IoT nodes of 50 m. One Edge Node is deployed in each pilot. In pilot 1 the following
parameters are collected: soil moisture, air temperature, air humidity, and atmospheric pressure.
In pilot 2 the following parameters are collected: leaf wetness, air temperature, air humidity, and solar
radiation. In pilot 3 the following parameters are collected: rain amount, air temperature, air humidity,
and wind direction/speed. Each IoT node is in a hibernate state and every 10 min wakes up, collects the
measurements from its sensors and emits them at a pre-agreed speed and frequency channel. Each IoT
node has a unique 16bit ID and does not expect any acknowledgement from the receiving Edge Node
assuming that the measurements have reached the destination. Each packet of measurements, with the
correct CRC, constitute a text-based dataset of an email which is send to the database of the backend
server through GPRS once a day. The above parameter data have been collected uninterruptedly in the
backend server for approximately five (5) months. The collected information is valuable to the farmer
and his agronomist as it offers a live view of the farm’s micro-climate. The agronomist can monitor
different meteorological phenomena, which are used to detect various diseases within vineyards such
as Downy mildew, Black rot and Botrytis. Details regarding the use of the collected information by
the agronomist and the parameters of the smart-agriculture pilot are not the goal of this work and
are omitted.

Figure 23. Precision Agriculture Use Case.

6. Discussion

The proposed implementation shows how a DLT technology can potentially serve as a transport
and data layer protocol that enables data integrity. It showcases a decentralized IoT smart precision
agriculture system, where each Super Node functions as an autonomous unit, aggregating data and
participating in a M2M economy that exchanges services and data for value. IOTA, albeit its drawbacks,
deems to be an excellent choice to serve as the infrastructure to support a decentralized transfer of
value and data, in a manner that is publicly auditable.

IOTA is a pioneer in implementing a DAG structure, in lieu of blockchain, as the immutable
ledger of the network and it is an novel approach on bringing such a system to consensus and
eliminate the need for miners and for transaction fees. As the Tangle is not functioning in a truly
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decentralized fashion, the IOTA foundation operates a special node called “The Coordinator” that is
responsible for issuing milestone transactions on specific intervals [46]. Currently transactions are
not approved by the network using a consensus algorithm, but their confirmation depends solely
on whether they are referenced (directly or indirectly) by a milestone transaction. Although the
IOTA foundation claims that this step is necessary to protect the network until it reaches a safe
critical mass, critics make a point that “the Coordinator” could actually censor specific transactions
by not referencing them [47]. Another important question raised is the question of cryptographic
maturity of the project. IOTA introduced a large number of novelties, amongst them being the use of
a ternary system instead of binary and the use of post-quantum cryptographic algorithms based on the
Winternitz one-time signatures [7]. On top of that, IOTA firstly introduced its own ternary hashing
algorithm, called Curl-P(Prototype). Cryptographic researchers, though, illustrated vulnerabilities
in the cryptographic primitives which forced the project to replace the Curl-P function with the
peer-reviewed Keccak-384 [48]. Finally, the ternary system makes it considerably harder to assess the
protocol for vulnerabilities using well established tools and methodologies [48]. The IOTA foundation
claims that most of the vulnerabilities regarding the cryptographic elements have been fixed and are
undergoing improvement [49]. Regarding the network, the Coordinator acts as a safety mechanism for
the time being, while research is conducted on the consensus algorithms.

Due to the use of quantum resilient cryptography, IOTA currently has a substantial footprint
of 1589 bytes in contrast to Ethereum’s 100–110 bytes [17]. In order to assist the IOTA Full Nodes
handling the Tangle, the network performs a synchronised snapshot, where all zero-value transactions
are deleted and all of the confirmed transactions are reduced to a database. From that point, the Tangle
starts growing again until the next snapshot. This poses a considerable problem since all MAM
transactions are zero-value and will be deleted at the next snapshot. These apply to IOTA Full Nodes
but the IOTA foundation intends to release Permanent Nodes that will store the whole Tangle but will
have much greater demands for computational power. An important aspect of future research will be
the use of the Tangle as a publicly auditable and immutable “anchor” of integrity of data that will be
stored off-Tangle in a database.

7. Conclusions

By using an innovative sensor node in an precision agriculture scenario, we were able to implement
a simple sensor data marketplace and sensor data aggregation system which relies on and features
data integrity and auditability. The proposed implementation is highly modular and an important
contribution to the Open Source communities, both to those regarding precision agriculture as well
as to those regarding blockchain. IOTA served as an ideal test-bed for the reference implementation,
offering zero-fees which are ideal for the transaction throughput that this systems demands. This is
due to the fact that the systems uses IOTA as the transport protocol of the sensor data.

This implementation showcases the architecture that we envision, where each IoT Node is
able to interact with the Ledger, by logging its data directly on it, performing all the cryptographic
functionalities. This will boost system’s security, for its interaction with the public ledger will not
depend on a trusted third party node, which can easily be manipulated and tamper with data. Future
implementations will support multiple different DLT and a robust Edge Computing system that will
serve as a smart aggregator of data from the IoT nodes.

The current implementation contributes to the Open Source Community by setting the
infrastructure of an IoT suite with an embedded data marketplace. Depending on the field results, it is
possible to either migrate the architecture to run on hardware nodes in a more lightweight fashion or
migrate to an existing solution (e.g., EdgeX) and contribute to that Open Source project by creating the
framework for a cryptocurrency based data marketplace.
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