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Abstract: In the era of Industry 4.0, the idea of 3D printed products has gained momentum and is
also proving to be beneficial in terms of financial and time efforts. These products are physically
built layer-by-layer based on the digital Computer Aided Design (CAD) inputs. Nonetheless, 3D
printed products are still subjected to defects due to variation in properties and structure, which
leads to deterioration in the quality of printed products. Detection of these errors at each layer
level of the product is of prime importance. This paper provides the methodology for layer-wise
anomaly detection using an ensemble of machine learning algorithms and pre-trained models. The
proposed combination is trained offline and implemented online for fault detection. The current
work provides an experimental comparative study of different pre-trained models with machine
learning algorithms for monitoring and fault detection in Fused Deposition Modelling (FDM). The
results showed that the combination of the Alexnet and SVM algorithm has given the maximum
accuracy. The proposed fault detection approach has low experimental and computing costs, which
can easily be implemented for real-time fault detection.

Keywords: additive manufacturing; fault detection; fused deposition modelling; machine learning;
image analysis

1. Introduction

Compared to conventional manufacturing, which often involves machining or other
techniques to extract surplus material, additive manufacturing (AM) creates components
layer by layer [1]. AM uses CAD/CAM software for model generation, then the model
is inputted into a 3D printer for slicing and G&M code generation, after which the 3D
printer forms a 3D component. There are several types of AM processes that include
fused deposition modeling (FDM), stereolithography (SLA), digital light processing (DLP),
selective laser sintering (SLS), etc. [2]. The application range of AM is wide; it is used in the
field of manufacturing, healthcare, aerospace engineering, fabrication, fashion, etc. [3,4]
Because of the low cost of materials and the state of material available, Fused Deposition
Modelling (FDM) is the most popular AM method. Despite the diversity of components
AM can produce, AM is still susceptible to various defects due to the material properties
and structural diversity of printed components. FDM 3D printers are subjected to multiple
defects. During printing, due to material property or process failure, the component
gets printed with several defects, such as warping, blistering, porosity, cracking, and
residual stress.

The research provides an experimental comparative analysis of real-time defect detec-
tion. The objectives of this research are:

• To provide a real-time fault detection system for FDM 3D printers.
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• To provide a comparative study of model algorithms for fault detection on their
computational accuracy results.

• To provide a density-wise classification of printed components.
• To provide ensemble learning results of model algorithm combinations.

The paper overview includes the system methodology in which the experimental
approach, algorithms, and pre-trained model used are explained. Further, it includes the
experimental setup used, including the data collection technique and the result obtained
by experimental analysis and comparative results of model algorithms.

Different defects that occur in printed components and their causes and effects are
shown in Table 1. Out of all the defects in 3D printed components, most are because of
the material property or printing technique used. Warping gets introduced during the
printing of a long component. The material extrusion layer-by-layer technique used in
FDM components often requires post-processing since the printed component has a poor
surface finish. Sometimes formation of small voids can lead to crack generation and, later
on, failure of a component. Various defects that occur, such as clogging of the nozzle,
improper bed leveling, misalignment of the printing platform, lack or loss of adhesion of
the print platform etc., can be solved by manual adjustment. These errors are mainly due
to carelessness of the operator and are not part of the research.

Table 1. Defect analysis.

Sr No. Defect Cause Effect

1 Warping [5]
Improper cooling of the printed

component or due to materials used in
the process

The printed part swells upward,
resulting in a change in the shape of

the component.

2 Blistering Due to improper cooling of lower layers.
A lower layer of printed component
swells outward due to the weights of

upper layers.

3 Porosity [6] Improper printing process or material
used in the process

Very small air bubbles or cavities get a
form in the printed component during

the printing process

4 Cracking [6]

Due to small cavities leading to the
formation of cracks, stress formation, or

uneven heating or cooling of a
particular area

Cracks are formed in the component,
which can result in the failure of a

printed part.

5 Residual stresses [7]
Stress is induced due to rapid heating or

cooling of the material, leading to
expansion or contraction.

When residual stress exceeds the limit of
tensile strength, then it can lead to the

formation of cracks or defects such
as warpage

6 Poor surface finish [8] Printing technique and material used in
the process

Parts produced often require
post-processing

7 Stringing [9] Due to material property and
printing properties.

Parts produced often have strings of
extra material attached to them.

8 Material shrinkage [10] Materials used in 3D printing have a
certain degree of shrinkage.

If material shrinkage is too large, residual
stress may occur, which can cause

deformation of the part or
crack generation.

2. Literature Review

Given that 3D printing is still a relatively new technology in the manufacturing sector,
there is limited literature addressing quality issues with 3D printing. H. Gunaydin et al.
have stated the different errors that occurs, such as clogging of the nozzle, adhesion
problem, vibration or shocks, misalignment of the print platform, etc., which causes loss
of material, time, and money [8]. D. Geng and J. Zhao stated the severity of warpage
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problems, which are caused due to improper cooling [5]. Apart from machine errors,
printing components are subjected to errors due to structural and material shortcomings
such as porosity, cracking, residual stresses, etc. [7]. L. Yuan emphasizes the solidification
defects in printed components that affect the overall strength of the printed part [6].

During the manufacturing process, the ongoing process or system component often
interacts with the environment, humans, and various parameters that affect the physical
element. An important factor for monitoring a system is the availability of built-in sensors,
but current FDM printers lack these built-in sensors. Therefore, it is a very difficult task
for sensing the real-time system state, which is vital for fault detection. Many studies are
performed for anomaly detection using a sensor-based approach such as Kousiatza and
Karalekas, who used temperature sensors and thermocouples to generate temperature
profiles for fault detection [11]. Li et al. provided a sensor-based model for surface anomaly
detection [12]. Many works are done using a sensor-based model for fault detection.
However, almost all FDM machines currently have few sensing capabilities that are either
inaccessible to users or are not equipped with feedback measurement systems for process
correction [13]. For diagnosing a single defect, sensor-based monitoring systems need
several sensors. In contrast, only a few sensors can precisely track and recognize product
quality during the actual process. Finding the sensor’s perfect position is difficult since
data gathering accuracy depends on the sensors’ position.

The majority of the defects are detectable by the naked eye. Still, it is difficult to
consistently monitor the process by sight, making it difficult to detect errors on time. Some
errors go unnoticed in the sensor-based approach as it does not consider the errors that
occur in layers while printing. This study focuses on anomaly detection using a camera
using the layer-wise approach. Computational Image Analysis is an interdisciplinary area
that allows computers to interpret images and video frames at a higher level. Computer
vision (CV) is typically a difficult task since it focuses on various issues such as image
segmentation, object tracking in a video stream, feature extraction, and motion tracking [14].
Many printers now include a monitoring camera that can be streamed to a website or a
smartphone app; this makes it much easier to keep a closer eye on the printer and ensure
that nothing is wrong. However, human interaction is still required, and the additive
manufacturing process is not as automated as possible. To avoid human interaction or
minimize it as much as possible, machine learning (ML) can play an important role since
ML provides various algorithms for classification, segmentation, error detection, etc. [15].
Many works are done in the area of anomaly detection using ML. Machine learning [16] can
play a critical role in developing multi-level predictive models for the AM process. Many
machine learning models have been investigated for specific processes and applications
to find faults in the AM process [17,18]. N. Silaparasetty stated the overview of ML, deep
learning, and big data [19]. A. Dey explained all the techniques of ML and different
algorithms with structure, ML provides wide range of algorithm that can be used for fault
detection [20]. Zhang et al. implemented ML model and computational data to control
powder quality in metal AM processes obtained from the Discrete Element Method [21].
Stoyanov et al. used an ML model to improve the electronics component generated by
3D inkjet printing [22]. Many works use ML architectures combined with acoustics or
visual monitoring for automatic defect detection during the printing process. Konstantinos
Paraskevoudis et al. used a computer vision approach for stringing type error but did not
consider layer-wise fault detection [9].

Literature findings are shown in Table 2 in the form of the 3D printer technique, the
approach used for study, selection of the model, and accuracy obtained by selected model.
Table 2 shows the literature findings in a simplified format; it shows which AM technique
is considered for the experimental purpose, such as FDM, SLS, etc. Table 2 visualizes
the approach used in research; it may be sensor-based, computer vision-based (with the
help of a camera), or any other monitoring or fault detection method. The table also
incorporates which technique is used for fault detection, whether it is ML, deep learning,
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convolutional neural network (CNN), artificial neural network (ANN), or a combination of
these techniques along with their accuracy obtained.

Table 2. Literature analysis.

Sr No. Author
AM

Techniques
Considered

Approach
Test

Parameter
Considered

Model
Selection Work Done Accuracy

1
Ugandhar
Delli et al.

[23]
FDM

Computer
vision based
(used camera
for capturing

images)

Standard ML (SVM)

The study provides CV based
approach for anomaly detection.

Images for processing are taken at the
interval but not continuous.

Not
mentioned

2
Danielle Jaye
S. Agron ET

AL. [24]
SLS Sensor-

based Standard ANN The study provides a model to monitor
and control oxygen levels in SLA. 96%

3
Hermann
Baumgartl
et al. [25]

L-PBF

CV Based
(used ther-
mographic

camera)

Standard CNN

This study explores various anomaly
detection techniques used in Laser

powder-based fusion AM; for
detection, different methods are

proposed such as melt pool monitoring
or off-axis infrared monitoring. This
research tries to provide a model for

fault detection for low cost using heat
maps and infrared imaging.

96.80%

4 Luke Scime
et al. [26] L-PBF

CV Based
(used camera
for capturing

images)

Standard ML

The study provides a computer
vision-based approach for detecting
anomalies in the powder spreading
stage in laser powder-based fusion

AM.

Not
Mentioned

5 Zeqing Jin
et al. [27] FDM

CV Based
(used camera
for capturing

images)

Nozzle
height-

High+, High,
Good, and

‘Low’

CNN

This paper provides a self-monitoring
system for inter-layer imperfections
such as warping and delamination

defects using the deep learning model.
The paper also provides a technique for
auto-calibration and pre-diagnosis of

defects.

97.80%
(valida-

tion) 91%
(testing)

6
S. A.

Langeland
[14]

FDM

CV Based
(used camera
for capturing

images)

Infill pattern,
density

ML
algorithm
and CNN

The study provides automatic
monitoring and anomaly detection

system using computer vision.

Not
Mentioned

7
Yaser

Banadaki
et al. [13]

FDM

CV Based
(used camera
for capturing

images)

Printing
speed,

temperature
CNN

The study provides a CNN model for
the plastic AM process for fault
detection. Paper proposed an

automated quality grading system for
the printed component.

94%

8
Konstantinos
Paraskevoudis

et al. [9]
FDM

CV Based
(used camera
for capturing

images)

Temperature,
speed. Layer

thickness
CNN

Used computer vision approach for
stringing type error. The study

provides a deep learning model for
predicting and detecting stringing

error in a printed component.

92.70%

9 Zhixiong Li
et al. [12] FDM Sensor Based

Feed rate,
layer

thickness,
temperature

ML
algorithm

The literature provided a sensor-based
model for surface anomaly detection in
AM. The study includes an ensemble

model for predicting surface
roughness.

55–59%

10 K. Wasmer
et al. [28] PBF Sensor Based Scanning

velocity

Machine
Learning
and rein-

forcement
learning

The research tried to monitor AM
components using acoustic emission

and reinforced learning for mass
production of AM components with

the same standards.

74–82%

11
Ikenna A.

Okaro et al.
[29]

L-PBF Sensor Based Standard
ML Semi-

supervised
approach

A semi-supervised approach is used 77%

Many studies include monitoring based on sensors, which involves finding the perfect
location for the sensor since sensor location is an important factor that affects the model’s
overall efficiency. Very few studies used a layer-wise image capturing approach for fault
detection. This study provides a method to identify defects by capturing the layer-wise
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photo of the printing process with the help of ML and computer vision. This paper
suggests a computer vision system based on machine learning for monitoring the quality
characteristics of additive manufacturing processes. The material may overfill or underfill
due to the residual pressure of the melted filament inside the extrusion chamber, resulting
in visible surface defects or unseen internal defects, leading to degradation of the product’s
quality. System failures can be predicted and flagged by the monitoring system in the
earliest stage of the proposed monitoring system. For the implementation of the monitoring
system, we first trained the model in offline mode by gathering an image dataset, and
then tested the predictive model for online AM process monitoring. This capability will
transform the 3D printer into a self-inspecting machine capable of inspecting parts as they
are being constructed, adding another layer of quality control to the process.

3. Methodology

All the work is performed on the FDM-based 3D printer Dreamer; no hardware
changes are done except camera mounting for image capturing. Red-Green-Blue (RGB)
images are automatically captured with the raspberry-pi camera. All the programming,
training, and testing are done in Matlab.

3.1. System Methodology

A layer-wise approach is used most of the time, as the defects involved in printed
components go unnoticed in the sensor-wise approach for fault detection. Current FDM
printers lack inbuilt sensors, which is why this study focuses on layer-wise monitoring
of printing components for fault detection. Layer-wise monitoring involves capturing
layer-wise images of printed components for training, processing, and classification.

The experimental process flowchart is shown in Figure 1; the study starts with setup
formation to capture layer-wise images. In the second stage, an image dataset is created
by capturing multiple layer-wise images of the printing component. The prepared image
dataset is processed for noise reduction, segmentation, and cropping in the next step. After
successfully creating the dataset, a combination of a model algorithm is selected for training
and testing. Upon identifying optimal combination, a model is implemented for real-time
fault detection.
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Pre-trained models are used only for feature extraction purposes. Training and vali-
dation are carried out with different algorithms such as Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), Random Forest, etc.

Polylactic Acid (PLA) material is selected as the printing material; PLA is a polymer
made from corn starch and other organic materials. PLA becomes slightly more liquid
and harder during printing than ABS. As a consequence, the prints are typically more
informative than Acrylonitrile Butadiene Styrene (ABS) prints. PLA and ABS are almost
indistinguishable visually, with PLA being slightly shinier.

3.2. Algorithm Study

Various current state-of-the-art algorithms are available, with different training speeds,
accuracy, and testing speeds in benchmark datasets. Since the aim of the model is to be
deployed in a live setting, we considered the need to strike a balance between good
accuracies and quick detection in our case.

MATLAB is used for feature extraction and anomaly detection since it provides a
variety of pre-trained models, image processing tools, algorithms readily available with a
handful of command lines. A pre-trained model is used for training; Alexnet, Googlenet,
Resnet18, Resnet50, and Efficientnet-b0 are the different pre-trained models used for feature
extraction and training purposes. The image dataset is pre-processed as per the model’s
requirement since different pre-trained models have different image input sizes.

Pre-trained models are only used for feature extraction purposes. For training and clas-
sification, different algorithms are used to improve model accuracy further. The different
algorithms used are

1. K-Nearest Neighbor (KNN): In KNN, the labeled dataset created for training purposes
is fed into the classifier/learner, then the learner classifies the sets of data inputted. K
most correlated data from the training set is chosen. Most of K is selected, and test
data is assigned to a new class [30]. Figure 2 shows the architecture of the K-nearest
neighbor classifier [31].

2. Support Vector Machine (SVM): SVM is another state of art algorithm which is mostly
used for categorization. SVM is based on the concept of calculating margins. It is used
to separate groups of data by drawing a line in between. The margins are selected
such that there is a minimum difference between margin and labeled classes resulting
in reducing classification error [32]. Figure 3 shows the architecture of the support
vector machine classifier [33].

3. Naive Bayes: Naive Bayes is primarily employed for clustering and classification. The
Bayesian network is mainly used for probability distribution, which is described by
direct acyclic graphs (DACG). Nodes in the Bayesian network represent the variable,
and the connecting arc means probabilistic dependency between variables. The con-
ditional probability is used in the underlying architecture of Naive Bayes. It produces
trees dependent on the likelihood of them occurring. Bayesian Network is another
name for these trees [34]. Figure 4 shows the Naive Bayes classifier structure [35].

4. Decision Tree: A decision tree is made of nodes and branches; it is primary used for
classification purposes. It sorts the attribute as per their values and groups them
together. A node represents an attribute that needs to be categorized, and a branch
represents a value taken by a node [36]. Figure 5 shows the basic architecture of the
decision tree [37].

5. Random Forest: As per the name, a random forest is made of many decision trees
employed together for working, resulting in an ensemble. Each tree in a random
forest generates class data prediction, depending upon the majority of votes forecast
for the model [38]. Figure 6 shows the basic architecture of random forest [39].
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A further comparative study is performed to identify which model gives maximum
accuracy. As mentioned above, different pre-trained models are used in combination with
a different algorithm to calculated combined accuracy. By this comparative study, we
are able to find out the quickest and most accurate model and algorithm combination for
our dataset.

3.3. Ensemble Learning

The art of integrating a diverse set of learners (individual models, algorithms) to
boost the model’s stability and predictive capacity is known as ensemble learning. It is
a powerful tool for improving model efficiency and accuracy. A pre-trained model is an
ensemble with different algorithms used to increase model accuracy. In ensemble learning,
predictive results obtained by different classification algorithms are compared for count
generation. If the count value of the non-defective result (Good) is greater than two out of
five, then the ensemble result is selected as non-defective, or else, it is chosen as defective
(Bad). Figure 7 shows the process flowchart of ensemble learning.

3.4. Evaluation Principle

For evaluation of defective and non-defective layers, images are captured of both
defective and non-defective layers. After successfully creating a dataset, a dataset is labeled
as good and bad. Good for non-defective layer and bad for defective layer. Labeling is done
manually as per eye inspection. Errors observed during labeling the dataset are improper
filling of material, improper pattern development, and stringing problem. Two different
datasets are created for defective and non-defective components, and error detection is
carried out for errors observed and occurred. Figure 8 shows the example of non-defective
layers or defect-free layers in the printing process. As shown in Figure 8, layer-wise images
of each layer are captured and labeled accordingly.
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Figure 7. Ensemble learning approach.
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Visualization of the defective layer or defect that occurred in the printing layer is
shown in Figure 9. Most defects have occurred in the first and last two to three layers in
the component; much less errors are observed in the pattern filling part.
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3.5. Density Wise Classification

The study also includes the identification of components based on process parameters.
Parameter variation consists of temperature, printing speed, and density but a part to be
printed or layers to be printed is the same for temperature and speed variation. Due to this
reason, one cannot identify printing components based on these parameters. However,
density-wise identification of printed parts is possible. For density-wise classification,
again, these pre-trained models are used, but for this time, pre-trained models are used for
feature extraction and also for training and testing purposes.

3.6. Pre-Trained Models Used

1. Alexnet: Alexnet is an eight-layer convolutional neural network (CNN) in which the
first five layers are convolutional, and the last three are fully connected layers [40].
It can classify 1000 different classes; the input image size for Alexnet is 227 by 227.
Figure 10 shows the architecture of the pre-trained model Alexnet.

2. Googlenet: Googlenet is a 22-layer convolutional neural network, the image input
size for this network is 224 by 224 [41]. It can predict classes up to 1000 classes. Figure
11 shows a simplified block diagram of the Googlenet architecture.

3. Resnet18: Resnet is a short form for the residual net; it is a classic neural network, and
as the name suggests, it is an 18-layer network [42]. It takes image input size as 224
by 224. It takes an image in the form of Red-Green-Blue (RGB). Figure 12 shows the
architecture of Resnet18.

4. Resnet50: As the name suggests, it is a 50-layer deep CNN [43]; the required image
input size for this network is also 224 by 224. It has a 1-maxpool layer, 1-average pool
layer, and 48 convolutional layers. Figure 13 shows the basic architecture of Resnet50.

5. Efficientnet-b0: there are 237 layers in Efficientnet [44]; it can train a database of up to
1000 classes. The image input size for this network is 224 by 224, and the required
format is RGB. Figure 14 shows the basic architecture of Efficientnet-b0.



Appl. Syst. Innov. 2021, 4, 34 12 of 20

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 12 of 20 
 

 

ever, density-wise identification of printed parts is possible. For density-wise classifica-
tion, again, these pre-trained models are used, but for this time, pre-trained models are 
used for feature extraction and also for training and testing purposes.  

3.6. Pre-Trained Models Used 
1. Alexnet: Alexnet is an eight-layer convolutional neural network (CNN) in which the 

first five layers are convolutional, and the last three are fully connected layers [40]. It 
can classify 1000 different classes; the input image size for Alexnet is 227 by 227. Fig-
ure 10 shows the architecture of the pre-trained model Alexnet. 

 
Figure 10. Architecture network of Alexnet. 

2. Googlenet: Googlenet is a 22-layer convolutional neural network, the image input 
size for this network is 224 by 224 [41]. It can predict classes up to 1000 classes. Figure 
11 shows a simplified block diagram of the Googlenet architecture. 

 
Figure 11. Architecture of Googlenet. 

3. Resnet18: Resnet is a short form for the residual net; it is a classic neural network, 
and as the name suggests, it is an 18-layer network [42]. It takes image input size as 
224 by 224. It takes an image in the form of Red-Green-Blue (RGB). Figure 12 shows 
the architecture of Resnet18. 

 
Figure 12. Architecture of Resnet18. 

4. Resnet50: As the name suggests, it is a 50-layer deep CNN [43]; the required image 
input size for this network is also 224 by 224. It has a 1-maxpool layer, 1-average pool 
layer, and 48 convolutional layers. Figure 13 shows the basic architecture of Resnet50. 

 
Figure 13. Architecture of Resnet50. 

Figure 10. Architecture network of Alexnet.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 11 of 19 
 

 

classification, again, these pre-trained models are used, but for this time, pre-trained 

models are used for feature extraction and also for training and testing purposes.  

3.6. Pre-Trained Models Used 

1. Alexnet: Alexnet is an eight-layer convolutional neural network (CNN) in which the 

first five layers are convolutional, and the last three are fully connected layers [40]. It 

can classify 1000 different classes; the input image size for Alexnet is 227 by 227. 

Figure 10 shows the architecture of the pre-trained model Alexnet. 

 

Figure 10. Architecture network of Alexnet. 

2. Googlenet: Googlenet is a 22-layer convolutional neural network, the image input 

size for this network is 224 by 224 [41]. It can predict classes up to 1000 classes. Figure 

11 shows a simplified block diagram of the Googlenet architecture. 

 

Figure 11. Architecture of Googlenet. 

3. Resnet18: Resnet is a short form for the residual net; it is a classic neural network, 

and as the name suggests, it is an 18-layer network [42]. It takes image input size as 

224 by 224. It takes an image in the form of Red-Green-Blue (RGB). Figure 12 shows 

the architecture of Resnet18. 

 

Figure 12. Architecture of Resnet18. 

4. Resnet50: As the name suggests, it is a 50-layer deep CNN [43]; the required image 

input size for this network is also 224 by 224. It has a 1-maxpool layer, 1-average pool 

layer, and 48 convolutional layers. Figure 13 shows the basic architecture of Resnet50. 

 

Figure 13. Architecture of Resnet50. 

Figure 11. Architecture of Googlenet.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 12 of 20 
 

 

ever, density-wise identification of printed parts is possible. For density-wise classifica-
tion, again, these pre-trained models are used, but for this time, pre-trained models are 
used for feature extraction and also for training and testing purposes.  

3.6. Pre-Trained Models Used 
1. Alexnet: Alexnet is an eight-layer convolutional neural network (CNN) in which the 

first five layers are convolutional, and the last three are fully connected layers [40]. It 
can classify 1000 different classes; the input image size for Alexnet is 227 by 227. Fig-
ure 10 shows the architecture of the pre-trained model Alexnet. 

 
Figure 10. Architecture network of Alexnet. 

2. Googlenet: Googlenet is a 22-layer convolutional neural network, the image input 
size for this network is 224 by 224 [41]. It can predict classes up to 1000 classes. Figure 
11 shows a simplified block diagram of the Googlenet architecture. 

 
Figure 11. Architecture of Googlenet. 

3. Resnet18: Resnet is a short form for the residual net; it is a classic neural network, 
and as the name suggests, it is an 18-layer network [42]. It takes image input size as 
224 by 224. It takes an image in the form of Red-Green-Blue (RGB). Figure 12 shows 
the architecture of Resnet18. 

 
Figure 12. Architecture of Resnet18. 

4. Resnet50: As the name suggests, it is a 50-layer deep CNN [43]; the required image 
input size for this network is also 224 by 224. It has a 1-maxpool layer, 1-average pool 
layer, and 48 convolutional layers. Figure 13 shows the basic architecture of Resnet50. 

 
Figure 13. Architecture of Resnet50. 

Figure 12. Architecture of Resnet18.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 12 of 20 
 

 

ever, density-wise identification of printed parts is possible. For density-wise classifica-
tion, again, these pre-trained models are used, but for this time, pre-trained models are 
used for feature extraction and also for training and testing purposes.  

3.6. Pre-Trained Models Used 
1. Alexnet: Alexnet is an eight-layer convolutional neural network (CNN) in which the 

first five layers are convolutional, and the last three are fully connected layers [40]. It 
can classify 1000 different classes; the input image size for Alexnet is 227 by 227. Fig-
ure 10 shows the architecture of the pre-trained model Alexnet. 

 
Figure 10. Architecture network of Alexnet. 

2. Googlenet: Googlenet is a 22-layer convolutional neural network, the image input 
size for this network is 224 by 224 [41]. It can predict classes up to 1000 classes. Figure 
11 shows a simplified block diagram of the Googlenet architecture. 

 
Figure 11. Architecture of Googlenet. 

3. Resnet18: Resnet is a short form for the residual net; it is a classic neural network, 
and as the name suggests, it is an 18-layer network [42]. It takes image input size as 
224 by 224. It takes an image in the form of Red-Green-Blue (RGB). Figure 12 shows 
the architecture of Resnet18. 

 
Figure 12. Architecture of Resnet18. 

4. Resnet50: As the name suggests, it is a 50-layer deep CNN [43]; the required image 
input size for this network is also 224 by 224. It has a 1-maxpool layer, 1-average pool 
layer, and 48 convolutional layers. Figure 13 shows the basic architecture of Resnet50. 

 
Figure 13. Architecture of Resnet50. Figure 13. Architecture of Resnet50.

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 13 of 20 
 

 

5. Efficientnet-b0: there are 237 layers in Efficientnet [44]; it can train a database of up 
to 1000 classes. The image input size for this network is 224 by 224, and the required 
format is RGB. Figure 14 shows the basic architecture of Efficientnet-b0. 

 
Figure 14. Architecture of Efficientnet-b0. 

4. Materials and Method 
4.1. Experimental Setup 

The experimental setup is shown in Figure 15; for this study, the FDM-based 3D 
printer (Dreamer) is used. An 8MP Raspberry pi camera captures images mounted below 
the nozzle head beside the nozzle. The camera’s position is a very important factor since 
everything depends upon the quality of the images captured. Camera position is decided 
after placing it in different locations and capturing images, and images are compared for 
quality, then optimal location is finalized. Raspberry pi 4B is used for the processing and 
is connected to the Raspberry pi 7-inch display; the Pi-Camera is connected to the rasp-
berry-pi via a flex cable. 

 
Figure 15. Experimental setup. 

4.2. Data Collection and Annotation 
A cube with (25 mm × 25 mm × 5 mm) size is selected as the test object. Layer-wise 

images are taken with 4 to 5 images of each layer. A python program is created to capture 
images, which captures an image by pressing any key or with a mouse click. Automatic 
capturing of images between the finite interval of time is avoided since the printing time 
for base layers varies compared to pattern filling. The machine takes a long time to fill the 
first and last two layers of a component compared to the middle layers. A total of 1700 
image datasets are created with both defective and non-defective images by varying pro-
cess parameters.  

After creating the dataset, images are processed for noise reduction, segmentation, 
and size optimization. A raw image cannot be fed to the model as it affects model accuracy 
and performance. Figure 16 shows the raw image and the image after processing. Images 
are cropped to reduce noise in images. For processing images, an image batch processing 
tool is used, which is available in Matlab.  

Figure 14. Architecture of Efficientnet-b0.

4. Materials and Method
4.1. Experimental Setup

The experimental setup is shown in Figure 15; for this study, the FDM-based 3D
printer (Dreamer) is used. An 8MP Raspberry pi camera captures images mounted below
the nozzle head beside the nozzle. The camera’s position is a very important factor since
everything depends upon the quality of the images captured. Camera position is decided
after placing it in different locations and capturing images, and images are compared
for quality, then optimal location is finalized. Raspberry pi 4B is used for the processing
and is connected to the Raspberry pi 7-inch display; the Pi-Camera is connected to the
raspberry-pi via a flex cable.
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4.2. Data Collection and Annotation

A cube with (25 mm × 25 mm × 5 mm) size is selected as the test object. Layer-wise
images are taken with 4 to 5 images of each layer. A python program is created to capture
images, which captures an image by pressing any key or with a mouse click. Automatic
capturing of images between the finite interval of time is avoided since the printing time
for base layers varies compared to pattern filling. The machine takes a long time to fill
the first and last two layers of a component compared to the middle layers. A total of
1700 image datasets are created with both defective and non-defective images by varying
process parameters.

After creating the dataset, images are processed for noise reduction, segmentation,
and size optimization. A raw image cannot be fed to the model as it affects model accuracy
and performance. Figure 16 shows the raw image and the image after processing. Images
are cropped to reduce noise in images. For processing images, an image batch processing
tool is used, which is available in Matlab.
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Figure 16. Raw image (a) vs. processed image (b).

Varying process parameters, different images are obtained. Sample objects are created
by parameter variations such as temperature, printing speed, and density. A total of 32 vari-
ants are created by varying these parameters. A pattern used is 3D infill, which is the same
for all printed components. Table 3 shows the printing object with test parameter variation.
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Table 3. Test parameters.

Sr No. Density (%) Temperature Printing Speed

1 15 200, 210, 220 60, 70, 80
2 20 200, 210, 220 60, 70, 80
3 25 200, 210, 220 60, 70, 80
4 30 200, 210, 220 60, 70, 80
5 35 200, 210, 220 60, 70, 80
6 40 200, 210, 220 60, 70, 80
7 45 200, 210, 220 60, 70, 80
8 50 200, 210, 220 60, 70, 80

5. Results

The comparative results of different pre-trained models and algorithms are obtained
for real-time monitoring and fault detection. Accuracy and loss are obtained for model
algorithms; the formulae used are shown in Table 4.

Table 4. Formulae used for calculations.

Accuracy ∑ True Positive+∑ True Negative
∑ Total Population

Error 100-Accuracy

5.1. Model Accuracy

Comparative analysis is carried out to find out which pre-trained model algorithm
combination gives maximum accuracy. Every pre-trained model algorithm combination is
implemented for our dataset, and accuracy results are obtained.

The combined accuracy of the different pre-trained models with various algorithms
for our captured dataset is shown in Table 5. From the comparison, it is clear that the
Alexnet and Efficientnet-B0 model combined with SVM gives maximum accuracy, which
is 99.70%, followed by Resnet50 in combination with SVM, which provides an accuracy
of 99.40% with 0.60% loss. From the below comparison, we can observe that SVM gives
maximum accuracy with different pre-trained models out of all other algorithms.

Table 5. Comparative analysis of different model-algorithm accuracy.

Sr No. Algorithm
Alexnet Googlenet Resnet18 Resnet50 Efficientnet B0

Accuracy
(%)

Loss
(%)

Accuracy
(%)

Loss
(%)

Accuracy
(%)

Loss
(%)

Accuracy
(%)

Loss
(%)

Accuracy
(%)

Loss
(%)

1 SVM 99.70 0.30 99.10 0.90 97.20 2.80 99.40 0.60 99.70 0.30
2 KNN 99.40 0.60 98.80 1.20 98.50 1.50 99.10 0.90 99.70 0.30
3 Random Forest 97.20 2.80 99.10 0.90 95.40 4.60 98.50 1.50 98.80 1.20
4 Decision Tree 96.60 3.40 98.20 1.80 96.30 3.70 96.90 3.10 96.90 3.10
5 Naive Bayes 85.90 14.10 90.00 10.00 91.10 8.90 88.00 12.00 90.20 9.80

The confusion matrix of Alexnet with SVM is shown in Figure 17a–c, showing the
confusion matrix of efficientnet-B0 with SVM and KNN. These combinations are giving
maximum accuracy for our dataset.
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Figure 17. Confusion matrix giving the highest accuracy: (a) Confusion matrix of Alexnet with SVM, (b) Confusion matrix
of Efficientnet-B0 with KNN, (c) Confusion matrix of Efficientnet-B0 with SVM.

The graphical visualization of comparative accuracy of the model algorithm study is
shown in Figure 18. Graphic visualization makes it easy to identify maximum accuracy
concerning algorithm and different pre-trained models.
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5.2. Ensemble Learning

The ensemble accuracy of different pre-trained models is shown in Table 6; we can
observe that Alexnet gives 100% accuracy, followed by resnet18 with 99.40% with a 0.60%
loss. Googlenet provides the least accuracy by ensemble learning with a different algorithm,
which is 97.80%.

Table 6. Accuracy analysis by ensemble learning.

Sr No. Model Accuracy Loss

1 ALEXNET 100.00% 0.00%
2 GOOGLENET 97.80% 2.20%
3 RESNET18 99.40% 0.60%
4 RESNET50 98.80% 1.20%
5 EFFICIENTNET-B0 99.10% 0.90%

Confusion matrix: The confusion matrix obtained by ensemble learning is shown in
Figure 19. Figure shows input and output class, namely good and bad. Defective layer im-
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age class is named as bad and non-defective layer image class is named as good. Accuracy
shown by the confusion matrix is ensemble accuracy obtained by different algorithms.
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confusion matrix of efficientnet-b0.

5.3. Density Wise Classification

Further parameter-wise classification is performed, which includes density-wise clas-
sification. Table 7 shows the accuracy of pre-trained models used for density-wise classifi-
cation. We can observe that resnet50 gives 100% accuracy, which is outstanding, followed
by Alexnet and Efficientnet, delivering 99.22% with 0.78% loss.

Table 7. Models accuracies of density wise classification.

Sr No. Model Accuracy Loss

1 ALEXNET 99.22% 0.78%
2 GOOGLENET 97.66% 2.34%
3 RESNET18 97.66% 2.34%
4 RESNET50 100% 0%
5 EFFICIENTNETB0 99.22% 0.78%

Images are inputted in a pre-trained model for density-wise classification, and the
following results are obtained. The model is successfully able to differentiate different
density layers. Figure 20 shows the results obtained by density-wise classification.
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Figure 20. Density wise classification: (a) Density-wise result showing 20% density for input image; (b) Density-wise result
showing 40% density for input image; (c) Density-wise result showing 50% density for input image.

5.4. Error Detection

After a successful comparative study, we implemented the model and algorithm
combination for real-time monitoring of components. Results obtained show that Alexnet
combined with the SVM algorithm gives maximum accuracy with less computational time,
so a combination of Alexnet and SVM is used for real-time monitoring. For error detection,
while printing, we captured layer-wise images and fed them into our designed model; the
model responded in terms of good and bad for non-defective and defective layers.

The designed pre-trained model algorithm combination separated the defective and
non-defective layers as bad and good, respectively. Figure 21 shows the response of the
model for the input layer image. Images (d–f) from Figure 21 show a response good for the
non-defective layer, and images (a–c) visualize a response for the defective layer, which
is bad.
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6. Conclusions

The research work carried out in this paper puts forth a comparative analysis of differ-
ent pre-trained models combined with the ensemble of machine learning algorithms. The
study iterates a layer-wise approach for monitoring anomalies in the printed component of
a 3D printer. This study aimed to determine which combination gives maximum accuracy
in lesser computational time. Density-wise classification using pre-trained models was also
carried out. The following conclusions can be derived:

1. A real-time dataset consisting of defective and non-defective 3D printed samples were
created for this study. All the AI models were effectively able to perform anomaly
classification on this dataset.

2. It was observed from the combination of the pre-trained models with the machine
learning techniques that the combination of Alexnet with SVM technique gave the
highest accuracy of 99.70%, followed by the combination of Alexnet with K-NN at
99.40%. The other pre-trained models also exhibited decent performance.

3. Further, the analysis of pre-trained models using ensemble learning was carried out
to increase the system’s accuracy. Alexnet outperformed other pre-trained models by
providing 100% accuracy, followed by EfficientNet-B0 at 99.10%.

4. A separate parameter-wise density classification was performed, for which Resnet50
gave an accuracy of 100%.

In the future, the authors propose to implement this fault classification framework
on real-time condition monitoring data. This work can be further enhanced by applying
explainable fault visualization algorithms to identify the anomalies on images itself. In
addition, reinforcement learning can be used improve the model accuracy for finding very
fine faults, which are difficult to detect by human eyes.
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