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Abstract: A decision support system (DSS) was developed to help reduce food waste at traditional
food retailers while selling fresh horticultural products, but also to promote food safety and quality.
This computational tool includes two major functions: (1) the prediction of the remaining shelf life
of fresh horticultural product, namely lettuce, onion, carrot, and cabbage based on its microbial
growth status, governed by extrinsic and intrinsic parameters (temperature, water activity and pH,
respectively). The remaining shelf life of the studied horticultural products is determined by using
the online predictive food microbiology tool— the Combined Database for Predictive Microbiology
(Combase). The time to reach the infectious doses of bacteria considered in the study for each of
the four horticultural products are predicted; (2) the calculation of the dynamic price of the produce
that should be set each day, depending on the predicted end of the marketing period to increase the
demand and potential for sale to the final consumer. The proposed dynamic pricing model assumes
a linear relation with the remaining shelf life of the analyzed vegetable to set the selling price. The
shelf life determined by the DSS for optimal storage conditions is, in general, conservative, ensuring
food safety. The automatic dynamic pricing gives new opportunities to small retailers to manage
their business, fostering profit and simultaneously contributing to reduce food waste. Thus, this
decision support system can contribute to the sustainable value of reducing food waste by providing
information to small grocers and retailers on the safety of their perishable status depending on
storage conditions and allowing them to suggest a fair price depending on that quality.

Keywords: decision support system; shelf life; predictive microbiology; dynamic pricing; comBase;
horticultural products; food waste; food quality; food safety; sustainability

1. Introduction

Food waste is a growing and increasingly worldwide concern. Currently, about
a third of the food produced is wasted [1]. In addition to the serious economic and
environmental impacts that this problem entails, food waste also has a social impact, as
it highlights and accentuates the gap between developed and underdeveloped societies.
On one hand, the observed food waste in developed societies is growing consistent with
consumerist attitude. Conversely, the food shortages seen in underdeveloped countries
and in developing countries is often associated with the consumption of unsafe food.

However, the consumption of food whose security is not guaranteed does not repre-
sent a phenomenon exclusive to underdeveloped countries, despite their greater incidence.
It is estimated that in 2019, 9.7% of the world population was, at some point, exposed to
foodstuffs in an improper state for consumption [1].

To reduce these numbers, it becomes imperative for all players in the horticultural
products supply chain to be aware of the specificities related to good hygiene practices
in the handling and conservation of this type of perishable food, combining them with
appropriate inventory management policies. Among others, sales strategies that adopt
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dynamic pricing systems according to the remaining shelf life of a food item, while its
safety is not yet compromised, will inevitably dictate a greater demand and respective
outflow of that product to the final consumer.

The decision support system (DSS) proposed in this article is expected to meet the
mentioned guidelines. It aims to help with food waste reduction for traditional food
retailers while selling fresh horticultural products, but also to promote food safety and
quality. The computational tool predicts the remaining shelf life of fresh horticultural
products by determining when the doses of bacteria that affect these products reaches the
infectious threshold. The time to reach the infectious dose threshold is used to dynamically
calculate the daily price. Thus, this decision support system contributes to the sustainable
development by promoting information to retailers that encompasses sustainable consump-
tion, based on perishable horticultural safety and quality, and fair price depending on that
quality. The DSS aims to balance the safety and quality of the food product sold, while
promoting innovation in the processes of small entities in the sector, thereby enhancing
their competitiveness.

This paper is structured as follows. Section 2 includes a brief literature review on
predictive microbiology. Section 3 describes the materials and methods used and applied
along the research. The shelf life prediction method is described as well as the dynamic
pricing method. Section 4 the analysis and discussion of results of several case studies.
Section 5 encompasses an overall discussion of the results. Conclusions and future works
are given in Section 6.

2. Brief Literature Review on Predictive Microbiology

Predictive Microbiology assumes the reproducibility of the response of microorgan-
isms to environmental factors based on previous observations of their behaviours [2]. Each
microorganism has different growth stages, making it necessary to use tools that integrate
predictive microbiology in the kinetic study of microbial growth to help in predicting the
shelf life of foodstuffs in which those microorganisms multiply [3]. Some authors suggest
the year 1922 as the origin of predictive models, highlighting the tests carried out by Esty
and Meyer [4], who resorted to a linear model to characterize the thermal processing of
Clostridium Botulinum type A neurotoxin spore destruction.

The microbial growth curve describes the density of cell populations in the liquid
environment, over time (minutes or hours), by measuring the optical density of those
populations [5]. The typical microbial growth curve is subdivided into four distinct phases,
as shown in Figure 1, namely:

1. Lag or latency phase, characterized by the absence of microbial replication. The cells
adapt to the environment, rich in nutrients, in order to initiate replication;

2. Logarithmic or exponential phase, characterized by accelerated cell division;
3. Stationary phase, characterized by the decline of the metabolic rate due to the deple-

tion of nutrients in the environment;
4. Death or logarithmic decline phase, characterized by the exponential decline of living

cells and their growth.

Figure 1. Generic microbial growth curve [5].
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Predictive models characterize microbial growth in each phase as a function of time (t),
presenting different essential variables, such as the maximum specific growth rate (µmax),
the logarithmic increase in the microbial population (A) and the maximum microbial
population reached (Nmax). Estimating the length of lag phase (β) may be regarded as a
good indicator of food shelf life, being influenced by factors such as the physiological state
of bacteria or the conditions of the environment in which food is stored or displayed [6].

Whiting and Buchanan [7] suggested that predictive microbiology models could be
categorized in three different forms, depending on the variables to consider:

• Primary models, in which variations of environmental factors are not considered.
They only describe the concentration of microorganisms as a function of time;

• Secondary models, which consider variations in environmental factors, such as tem-
perature (T), pH (potential of hydrogen) or water activity (aw);

• Tertiary models: integrated models enhanced through computational modeling.

Among the existing predictive microbiology models, it is imperative to highlight the
model proposed by Barany [8] and Barany and Roberts [9]. It is one of the most used
primary models, due to its ability to adjust to data and its easily interpretable parameters.
The model describes an approximate movement to a sigmoid curve, despite presenting an
intermediate phase close to a straight line, unlike classic sigmoid curves.

One of the main limitations pointed out in primary models is the lack of biological
foundations. Previously proposed algebraic models were deduced from insufficiently
solid mechanistic considerations. There was a biological gap in these models, making it
difficult to mechanically interpret the proposed parameters [10]. Based on this assumption,
the model in question was developed in order to consider the biological mechanism of
microorganisms’ growth. It introduced the concept of cellular physiological state (h0),
(defined as the effect of the history of cells, capable of influencing lag phase), providing
the models hitherto proposed with greater biological suitability [10]. Figure 2 shows the
adaptation of the four parameters adopted by Barany and Roberts [9] for the microbial
growth curve.

Figure 2. Microbial growth curve with description of the four parameters considered in the model
proposed by [9]. (Reprinted from ref. [8]).

The microbial growth parameters according to the model developed by Barany and
Roberts [8], such as microbial population (y), logarithmic increase in microbial population
(A) or length of lag phase (β), are obtained by adjusting the growth curve to the algebraic
expressions given by Equations (1)–(3), respectively.

y(t) = y0 + k·A(t) − ln (1 + [ekA(t) − 1]/[eymax − y0]) (1)

A(t) = t + (1/k) ln ([ekt + q0]/[1 + q0]) (2)

β = (ln [1 + {1/q0}])/k (3)



Appl. Syst. Innov. 2021, 4, 80 4 of 19

Thus, the novelty of the approach in this study highlights the innovation and practical
value of the decision support system that can contribute to the sustainable value of reducing
food waste by providing information to retailers on the safety of their perishable evolution
along time depending on storage conditions and suggesting a fair price depending on that
quality. The decision-making tool may also encompass sustainable consumption from the
consumers point of view.

3. Methods and Materials
3.1. Shelf Life Prediction Method
3.1.1. Intrinsic and Extrinsic Factors

A food item is a complex chemical matrix. Predicting whether or how quickly mi-
croorganisms will grow in a food product is a difficult task, given that most foods contain
sufficient nutrients to promote microbial growth and each microorganism develops at
a different rate and under different conditions. There are several factors that promote,
restrict, or prevent bacterial growth in food products, and these can be grouped into two
categories: intrinsic and extrinsic factors.

Intrinsic factors are the factors inherent to the food itself, which affect microbial growth,
such as water activity, acidity, oxidation-reduction potential, chemical composition, or the
biological structure of the food [11]. The intrinsic factors to consider in the development of
the DSS are the water activity and acidity:

• Water activity (aw): one of the intrinsic factors of products that are likely to promote
microbiological growth, given that bacteria normally grow in environments where
water is available. Water activity is defined as the ratio between the vapor pressure of
water (pv) in the food product and the saturated vapor pressure of water (psv) at the
same temperature, as shown in Equation (4) [11]. Its value ranges from 0 (dry bone)
and 1 (saturated water).

aw = pv/psv (4)

aw is directly influenced by the air relative humidity, ϕ. If the air in contact with a
food product has lower ϕ, the water migrates to the air, increasing its ϕ and reducing the
moisture content of the food, until equilibrium is reached. Conversely, if a food product
with low aw is stored in an environment with high ϕ, the aw of this food will increase,
promoting the multiplication of microorganisms [12]. In an isolated system, in which food
products are in equilibrium with the relative humidity of the environment, the aw of these
foods may be defined by Equation (5).

aw = ϕ/100 (5)

The precise aw values of each food product are difficult to be defined due to the
referred dependencies of the parameters. Table 1 shows the specific water activity values
according to Chirife and Fontan [13] for each of the horticultural products covered in
the DSS—lettuce, onion, carrot, and cabbage—in the form of minimum, average and
maximum values.

Table 1. Water activity intervals for each horticultural product [13].

Product Minimum aw Value Average aw Value Maximum aw Value

Lettuce - 0.996 -
Onion 0.974 0.982 0.990
Carrot 0.983 0.988 0.993

Cabbage 0.990 0.991 0.992
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• Potential of Hydrogen (pH): The level of acidity or basicity of a food product is
measured by using a pH scale, defined as the inverse logarithm of the hydrogen ion
activity in a solution given by Equation (6).

pH = log10(1/aH+) (6)

The potential of hydrogen also plays an important part in bacterial growth. Each
microorganism has an optimal pH value at which its multiplication is maximum. Both the
increase and decrease in the acidity level in relation to the optimal value slows microbial
growth [14]. A food’s own acidity also influences microbial growth. The reduction of pH
of a food product contributes to the reduction in the capacity of bacterial development
and vice versa [15]. Table 2 specifies the typical pH values of the horticultural products
under analysis according to [14,16]. These values are given in the form of an interval, due
to the acidity variations that each product may present among itself, but also due to the
existence of several species of each of these products, knowing that each species has its
own characteristics—e.g., pH.

Table 2. Potential of hydrogen intervals for each horticultural product.

Product Minimum pH Value Average pH Value

Lettuce 5.8 6.0
Onion 5.3 5.9
Carrot 4.9 6.4

Cabbage 5.2 6.9

Regarding the extrinsic factors that affect bacterial growth, i.e., the factors inherent to
the food´s external environment, the DSS only considers temperature:

• Temperature (T): The extrinsic temperature of a food item, i.e., the temperature of the
environment in which it is stored, determines the ability of microbial organisms to
multiply. As with pH, these organisms have an ideal temperature range that favors
their multiplication. Both the increase and the decrease of the temperature in relation
to its optimal value makes the microbial propagation slower [14]. Foodstuffs have
their own specific optimal storage temperature, for which deterioration is minimal,
including microbial growth, and the state of fullness is maximized. However, retailers
must balance the extension of shelf life with the energy demand and the environ-
mental impact of refrigeration systems and procedures, techniques and methods to
improve both thermal performance and energy efficiency [17–21]. According to [22],
the recommended storage temperature range for the vegetables analyzed is between
0 ◦C and 4 ◦C.

3.1.2. Bacterial Growth Prediction Method

The prediction of the remaining shelf life (SL) of a vegetable among the ones studied
represents the crucial functionality of the developed DSS. It is carried out based on the
growth model developed in [23], which, in turn, is founded on the predictive model
proposed by [9]. ComBase (Combined Database for Predictive Microbiology) is an online
predictive food microbiology platform with the main objective of describing and predicting
how certain microorganisms survive and grow when conditioned by a series of factors
inherent to the environment to which they are exposed, namely temperature, pH, or water
activity [23]. The method adopted by the DSS to predict horticultural products´ shelf life is,
in fact, a system that allows predicting the time that the infective dose of a certain growing
bacterium takes to be reached, starting from a particular initial dose. Similar procedures
were conducted by Gaspar et al. [24] that developed a simplified approach to predict food
safety through the maximum specific bacterial growth rate as a function of extrinsic and
intrinsic parameters.
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Bacterial concentration values are given in terms of Colony Forming Units (CFU)
per gram of product, with each bacterium having its own initial CFU and infective CFU
doses. Table 3 indicates initial and infective CFU doses for each one of the relevant bacteria
according to [13,22], the growth analysis of which is available on [23]: Aeromonas hydrophila;
Bacillus cereus; Listeria monocytogenes; Salmonella; Shigella flexneri; Staphylococcus aureus and,
therefore, considered on the development of the DSS.

Table 3. Initial and infective doses for each bacterium in study [23].

Bacteria Initial Dose (CFU/g) Infective Dose (CFU/g)

Aeromonas hydrophila 103 105

Bacillus cereus 101 105

Listeria monocytogenes 101 102

Salmonella 102 105

Shigella flexneri 100 102

Staphylococcus aureus 101 105

The time interval that is a DSS main output represents the period that includes the
moment that the vegetable in study enters the retailer´s warehouse (the instant at which
the respective bacterial doses will assume the value of the initial CFU established for each
bacterium), to the moment in which the infective CFU value of each bacteria colony under
study is reached.

In a particular horticultural product, different species of bacteria multiply. The shelf
life of that product will be dictated by the bacteria colony that most rapidly reaches its
infective dose. In other words, the bacterial growth (under the same storage conditions) of
the different bacteria present in a same vegetable is studied. The time that each bacterium
increasing colony needs to reach its infective dose are compared. The shortest of these
times will, then, represent the shelf life of the studied horticultural product, given that,
once the infective dose of any bacteria is reached, the product is no longer marketable as
the food safety is compromised.

Table 4 outlines which bacteria mostly develop in each of the vegetables under
study [14,25]. Thus, within the purpose of predicting the time inherent to bacterial growth
for each of the horticultural products under analysis, the specific bacteria mentioned
in Table 4, which growth in the respective vegetables had already been reported in the
literature, will be studied.

Table 4. Bacteria capable of growing in each horticultural products under study [23].

Bacteria Lettuce Onion Carrot Cabbage

Aeromonas hydrophila X X X X
Bacillus cereus X X X X

Listeria monocytogenes X
Salmonella X X X X

Shigella flexneri X X
Staphylococcus aureus

The time until the infective dose of a bacterium replicating in a food item is reached
will vary depending on the storage conditions of that product. Thus, the remaining shelf life
of a product will essentially be dictated by its intrinsic and extrinsic factors: water activity,
pH, and temperature. In addition to these factors, and as seen in Figure 3, two other inputs
that influence bacterial growth are considered by the chosen predictive model [23], both of
which are also mentioned above: the initial physiological state and the initial bacterial dose.
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Figure 3. Inputs required for predicting bacterial growth in Combase [23].

The initial physiological state was firstly introduced in the model proposed by Barany
and Roberts [9]. It is the parameter associated to the first phase of bacterial growth, i.e., the
lag or latency phase and, therefore, capable of influencing it. This parameter assumes a
dimensionless number comprised between 0 and 1, which expresses the physical adaptation
of cells to the environment. If its value is 0, growth will not occur (latency is infinite). If its
value equals 1, growth will begin immediately (there is no latency phase). The length of
lag phase depends not only on the surrounding environment (temperature, water activity,
pH), but also on the history of the cells. Stresses (e.g., thermal or osmotic) may significantly
increase latency times. Synthetically, the initial physiological state quantifies the effect of
the cell’s history, which is reflected in the latency time of bacterial growth [23]. The lag
time derives from initial physiological state of the cells through Equation (7).

lag = −log (Phys. State)/Max. rate (7)

where “Phys. state” represents initial physiological state and “Max. Rate” the maximum
slope of the growth curve. In the proposed method, to simulate the effect of the distribution
chain on bacterial growth of vegetables, the initial physiological state input will assume,
in all circumstances, its maximum value, set to 1. Thus, the lag phase will be disregarded
in the bacterial growth model assumed by the DSS, being associated to the time that the
horticultural products in analysis take to travel through their normal distribution chain.
Thus, it is considered that bacterial growth begins at moment zero of the time interval
considered by the DSS, which will represent the instant when the horticultural product
in study enters the retailer’s warehouse, which is the last facility before being sold to the
final consumer.

In addition to this assumption, the DSS database, built by extracting data from [23],
will be constituted for each horticultural product in the study, by:

• Three different water activity scenarios, to simulate the effects of the relative humidity
of the environment in the increasing bacterial doses. The adopted scenarios relate to
the minimum, average, and maximum aw values specific to each vegetable, as shown
in Table 1. It is expected that the retailer, as the user of the DSS, would collect the aw
value that the horticultural product from a certain batch has when arriving at the final
warehouse before being sold. Usually, it is impossible for the retailer to directly collect
the product’s aw value. Assuming that equilibrium conditions are reached within a
short period [26], the air relative humidity must be collected or measured, making
use of the relation between ϕ and aw shown in Equation (5). Although not direct, this
method for aw value estimation is more intuitive, as it does not imply the need for any
specific measuring instruments, nor the use of the complex measurement processes
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that come with it. Thus, it just becomes necessary to have an indicator or a meter that
measures the relative humidity of the air in the storage environment. As horticultural
products are highly perishable and, as such, stored under modified temperature (and,
sometimes, air humidity) conditions due to a mechanical refrigeration system by vapor
compression, it is common for these systems to have indicators for air temperature and
relative humidity. These should be the values collected by the DSS users. Thus, this
method becomes, more desirable to be adopted by the targeted users of the DSS. Since
it is aimed at small retailers, it is not expected for them to have significant technical
knowledge in the area.

• In a specific vegetable, for each aw scenario (minimum, medium or maximum), the
effects, on bacterial growth of combining various temperatures with the range of
the intrinsic pH values of each horticultural product are studied. Thus, for every
value of storage temperature, separately combined with the individual values of
the complete pH range characteristic to the studied vegetable (as shown in Table 2),
the number of hours necessary to reach the respective infective doses of the various
bacteria in growth according to the prediction simulated in [23] are collected. For
a given storage temperature value combined with a specific intrinsic pH value, the
registered hourly intervals inherent to the different bacterial species under study are
compared. The shortest value is defined as the remaining shelf life of that vegetable for
the temperature and pH values and, ultimately, for aw under study. This assumption
is made that after a food item reaches the infective dose of a certain bacteria, its safety
is compromised, even if the infective doses of the remaining growing bacteria still
take a considerable time to be reached. The temperature range under study starts at
the minimum value for which bacterial growth is already verified and goes up to the
temperature value at which, for a particular bacterium under study, the registered
time intervals, for the full range of inherent pH, are all less than 24 h. Thus, from
vegetable to vegetable, the temperature range under study may differ at its beginning
and/or at its end.

The adopted method entails some limitations, now succinctly exposed, even though
most of it have been previously addressed throughout the method description:

• The adopted method performs a temporal prediction until bacterial contamination in
a vegetable under analysis is reached, at which its safety is compromised. However,
bacterial doses of food can be reduced through heat treatment processes applied
when cooking the food item. In those cases, food security is once again represented,
meaning that food may be consumed. This limitation becomes especially relevant
when evaluating a batch of potatoes or cabbage that are horticultural products typically
consumed in a cooked state. Therefore, it is considered that the time period calculated
by the DSS taken as the remaining shelf life of a product represents a maximum
commercialization period instead of a maximum consumption period;

• The simulation of the effects of the distribution chain on bacterial growth is given by
disregarding lag phase. Thus, it is assumed that bacterial proliferation (the logarithmic
phase) begins at the moment that the vegetable is stored at the retailer’s premises (the
final stage before being marketed to its final consumer), defined as moment zero;

• Static analysis regarding the environment where vegetables are stored. In other
words, there are no exchanges, in matters of extrinsic factors, with the surrounding
environment. As a result, there is no values fluctuation in temperature and relative
humidity values of the storage atmosphere. Therefore, these extrinsic aspects assume
a constant value over time;

Since the method adopted to estimate shelf life is based on bacterial growth, the DSS and
its respective purpose are limited, in terms of input and output, to the values of temperature
and pH at which bacteria under the study grows. In other words, the DSS will only be able
to predict the maximum commercialization period if the vegetable in the analysis is stored
under conditions of temperature and pH included in the ranges in which bacteria, due to
their specific growing requirements defined in Table 5 [14,23], effectively multiply.
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Table 5. Minimum, maximum and optimal parameters for bacterial growth.

Bacteria Min.
T (◦C)

Opt.
T (◦C)

Max.
T (◦C)

Min.
pH

Opt.
pH

Max.
pH

Min.
aw

Opt.
aw

Max.
aw

Aeromonas hydrophila 2 27 37 4.6 6.7 7.5 0.974 0.998 1
Bacillus cereus 5 34 34 4.9 7.4 7.4 0.940 0.999 1

Listeria monocytogenes 1 40 40 4.4 6.9 7.5 0.934 0.994 1
Salmonella 7 37.5 40 3.9 6.4 7.4 0.973 0.997 1

Shigella flexneri 15 37 37 5.5 7.3 7.5 0.971 0.993 1
Staphylococcus aureus 7.5 30 30 4.4 6.5 7.5 0.907 0.990 1

3.2. Dynamic Pricing Method

Dynamic pricing may be defined according to Liu et al. [27], as the attribution of
different prices over time to a same product or to different products from the same category,
considering the individual characteristics of each product or changes in its qualitative state.
The task of setting dynamic prices on horticultural products, as perishable goods, based on
multiple criteria proves to be arduous and inaccessible to all small retailers, as it requires
them to detain information, in real time, about variables such as rate of deterioration, time
of onset of deterioration, demand, price elasticity of demand, or unit storage cost, that
are parameters considered in numerous pricing models. To simplify the pricing model to
adopt, and considering the target market of the developed tool, variables such as those
mentioned above are disregarded. Therefore, a pricing model is adopted in which the
qualitative state, expressed in terms of remaining shelf life, is taken as the only criterion to
be considered in the dynamic pricing of the marketed vegetables. Assuming the remaining
shelf life of a horticultural product as the only criterion to consider in the calculation of
dynamic selling prices, the price to be set each day will assume a linear decrease, as a
function of the number of remaining shelf-life days, where there is a constant price decrease
as the level of stocks decreases, as proposed by Zhao and Zheng [28]. Thus, the price to be
set each day will steadily decrease as the end of the predicted commercialization period
approaches. The proposed pricing model uses the following assumptions:

When the horticultural batch under study enters storage (t = 0), that is, at the time
when the lag phase ends and bacterial proliferation begins, the selling price to be charged
is at its maximum, without any discount applied. This condition is similar to the model
proposed by Rabbani et al. [29], given that the horticultural batch under study is considered
to be in the fullness of its microbiological characteristics. At this moment, the ideal and
desirable sale scenarios are given, as selling products at this date implies maximum food
safety for the consumer and maximum profit for the retailer;

At the end of the calculated commercialization period (tf), i.e., at the moment imme-
diately prior to reaching the infective dose of any of the bacteria growing in the studied
vegetable, the selling price to be charged is as small as possible. Thus, the product is sold
at cost price, in order to avoid losses for the retailer. This represents the sale scenario that
must be avoid. In this case, it is assumed that food safety is at its lowest and the retailer’s
profit is null;

The calculated end of sale date is never prior to the date that horticultural products
under study enter the warehouse, and vice versa. In other words, it is considered that the
studied produce batch goes through its normal distribution chain arriving at the retailer’s
warehouse in proper microbial conditions representative of food safety.

From the assumptions stated above, the dynamic selling price for any given time t to
be considered in the proposed DSS is given by Equation (8).

SP(t) = SP(0) − [SP(0) − SP(tf)] [t/SL] (8)
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where:

• SP(0): initial selling price;
• SP(tf): cost price;
• SL: linear decrease in price as a function of the studied vegetable estimated shelf life.

3.3. Decision Support System

Being necessary to adopt a platform to develop the proposed DSS, Microsoft Excel
spreadsheet is selected, as it is a relatively intuitive and efficient tool for the DSS target
market as well as the general population. The operation of the DSS will essentially rely on
two important features provided by the aforementioned software: functions and macroin-
structions. In addition to the need to correctly run Microsoft Excel software on a computer,
enabling macro execution, the user is required to collect the various values necessary to
serve as inputs to the DSS through a relative humidity measuring device; a thermometer or
a storage temperature indicator; a pH measuring device, in order that the obtained outputs
be as reliable as possible. Intrinsic factors can be provided by the producer while extrinsic
factors can be provided by the air conditioning or refrigeration systems. The DSS consists
of three functional interrelated areas: Database, Search Engine and User Interface:

• Database is constituted by the compilation of the data collected in [23], referring to
the time frame until the infective dose of a certain bacterium is reached. The number
of remaining hours until the infective dose of the considered bacteria is achieved is
successively collected for each of the possible combinations set between aw values,
temperature and pH values under study for the vegetable under analysis;

• Search Engine includes all the mechanisms necessary to the processes of database
searching, processing, and returning the respective treated information to the user,
as a function of the inputs given, in terms of the intrinsic and extrinsic conditions of
storage and dynamic pricing parameters. All processes developed in this functional
area make use of search, information processing and calculation functions inherent to
Microsoft Excel: “VLOOKUP”, “MIN”, “INDEX”, “MATCH” or “SEQUENCE”.

• User Interface (UI) serves as the DSS´s mean of interaction and communication with
its user. This UI will be the only functional area of the DSS to which user will have
access. The remaining components are inaccessible. Here, the necessary inputs in
terms of shelf life prediction and price calculation are inserted, and the respective
results are displayed.

Figure 4 exemplifies the interface shown to the user when analysing onion, as an exam-
ple, with water activity, aw = 0.974, which, by Equation (5) corresponds to an equilibrium
relative humidity ϕ = 97.4%, a storage temperature, T = 5 ◦C and a pH = 5.5. Regarding
the pricing parameters, the entry of the batch under analysis into the retailer’s warehouse
(t = 0) is registered on 12 May 2021 is considered, so as an initial selling price (SP(0)) of
€1.09 per kg and a cost price (SP(tf)) of €0.62 per kg. As a result of the illustrated example,
DSS estimates an end sale date on 2021-05-28 (date format: YYYY-MM-DD), 16 days after
the studied onion batch was put into storage. This represents the date immediately prior to
the moment when food safety is compromised through contamination by Bacillus cereus, so
that, until the end of this date, the remaining onions on the batch must be sold at cost price
(€0.62 per kg).
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Figure 4. DSS user interface exemplified on onion: (a) Entering data regarding storage conditions and pricing; (b) Visualiza-
tion of the obtained results.

4. Case Studies

The obtained results, referring to the shelf lives of the studied vegetables, are individ-
ually sampled in this section, complemented by a proper analysis.

4.1. Case Study 1—Lettuce

In this case study in particular, a single water activity scenario (aw = 0.996) was
considered, as shown in Table 1, converted by Equation (5) into an equilibrium relative
humidity scenario, ϕ = 99.6%. Regarding the bacteria considered for this vegetable, the
growth of Aeromonas hydrophila, Bacillus cereus, Listeria monocytogenes and Salmonella was
estimated. The analysis of this horticultural product starts at T = 1 ◦C, temperature in
which Listeria Monocytogenes starts to replicate, and ends at T = 10 ◦C, temperature at
which, for every pH value, food safety threshold is reached in t ≤ 24 h. In other words:
at T = 10 ◦C, regardless the pH value in analysis, the remaining marketing period will
always be less than 24 h. At the end of this period, the food safety threshold is reached
through contamination by, in this case, Listeria monocytogenes. For this reason, any higher
temperature values are disregarded by the DSS, given that the obtained commercialization
period will always be inferior to 24 h, and, therefore, irrelevant for pricing purposes. In
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matters of pH, values between 5.8 ≤ pH ≤ 6.0 were considered, according to Table 2. The
sampling of the results obtained in the study of lettuce, concerning its remaining shelf
life, is shown in Table 6. The presented results immediately allow the observance of the
influence of temperature on shelf life of this vegetable. Among the studied combinations,
in the most unfavourable scenario for bacterial growth, minimum temperature and pH
values (T = 1 ◦C; pH = 5.8) and, as such, more favourable for the conservation of foodstuffs,
a shelf life of t = 155.2 h after the horticultural enters storage is predicted at the threshold of
contamination by Listeria monocytogenes. This is the only bacterium capable of replicating
under such conditions. On the other hand, when the selected temperature and pH values
are at their maximum for the range under study (T = 10 ◦C; pH = 6.0) and, therefore
providing the most favourable scenario for bacterial replication, shelf life is dictated when
contamination by Aeromonas hydrophila is reached, after t = 20.5 h of storage. Under
these storage conditions, and as the most favourable scenario for bacterial growth, the
proliferation of every bacteria under study is registered. In the stated sample, there were
no observed cases of contamination by Bacillus cereus or Salmonella. In this particular case
study, it was not possible to determine the effect of relative humidity on the lifetime of
the horticultural product, due to the lack of a comparison term, since only a water activity
value found in the literature was considered.

Table 6. Sampling of results of DSS—Remaining shelf life of lettuce.

T (◦C) pH aw
Remaining Shelf
Life (t, in Hours) Contamination by

1
5.8 0.996 155.20 Listeria monocytogenes

5.9 0.996 146.00 Listeria monocytogenes

4
5.8 0.996 79.60 Listeria monocytogenes

5.9 0.996 73.60 Aeromonas hydrophila

10
5.9 0.996 22.10 Aeromonas hydrophila

6.0 0.996 20.50 Aeromonas hydrophila

4.2. Case Study 2—Onion

This case study considers aw = 0.974, 0.982 and 0.990, resulting in relative humidity
scenarios of ϕ = 97.4%, 98.2% and 99%, respectively. The growth of Aeromonas hydrophila,
Bacillus cereus, Salmonella and Shigella flexneri was considered. The analysis of this vegetable
starts at T = 2 ◦C, the temperature at which Aeromonas hydrophila starts replicating, ending
at T = 18 ◦C, for the reasons already mentioned. This is the temperature value at which
the relative humidity scenario is more conducive to microbial growth, and the food safety
threshold is reached in less than 24 h, for the full range of combined pH values, by reaching
the infective dose of Hydrophila aeromonas. Regarding the acidity levels in the study, pH
values inherent to the onion itself were considered, comprised between 5.3 ≤ pH ≤ 5.9.
The sampling of the results of remaining shelf life for onion is shown in Table 7.

When, at the lowest analysed temperature (T = 2 ◦C), equal pH values in different
water activities are compared, a large disparity caused by the different relative humidity
scenarios is verified. For example, when T = 2 ◦C and pH = 5.4, for aw = 0.974, 0.982 and
0.990, the remaining shelf lives are, respectively, t = 1580.4, 728.8 and 354.6 h. Alternat-
ing between minimum and maximum relative humidity scenarios implies a decrease of
∆t = 1225.8 h in the estimated remaining shelf life. However, this differential decreases
significantly as storage temperatures increase. When T = 10 ◦C and pH = 5.6, shelf life
is limited to t = 173.4, 90.2 and 44.8 h for aw = 0.974, 0.982 and 0.990, respectively, a dif-
ference of ∆t = 128.6 h between the most extreme scenarios. At the highest temperature
among those observed (T = 18 ◦C), for the same pH value, contamination by different
bacteria is registered, depending on the water activity value in question. At a pH = 5.8
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when aw = 0.974, there is contamination by Salmonella. If, in turn, aw = 0.982 or 0.990,
contamination is set by reaching the infective dose of Aeromonas hydrophila.

Table 7. Sampling of results of DSS—Remaining shelf life of onion.

T (◦C) pH aw
Remaining Shelf
Life (t, in Hours) Contamination by

2

5.3
0.974 1580.4 Aeromonas hydrophila
0.982 728.8 Aeromonas hydrophila
0.990 354.6 Aeromonas hydrophila

5.4
0.974 1359.0 Aeromonas hydrophila
0.982 628.8 Aeromonas hydrophila
0.990 307.8 Aeromonas hydrophila

10

5.5
0.974 179.7 Bacillus cereus
0.982 102.4 Aeromonas hydrophila
0.990 50.6 Aeromonas hydrophila

5.6
0.974 173.4 Bacillus cereus
0.982 90.2 Aeromonas hydrophila
0.990 44.8 Aeromonas hydrophila

18

5.7
0.974 35.8 Salmonella
0.982 23.9 Aeromonas hydrophila
0.990 12.0 Aeromonas hydrophila

5.8
0.974 34.9 Salmonella
0.982 21.7 Aeromonas hydrophila
0.990 11.0 Aeromonas hydrophila

At the most unfavourable scenario for bacterial growth, that is, the minimum water
activity, temperature, and pH values (aw = 0.974; T = 2 ◦C; pH = 5.3), the shelf life is reached
t = 1580.4 h after the horticultural batch entrance into storage, at the threshold of contam-
ination by Aeromonas hydrophila, as it is the only bacterium capable of replicating under
the selected conditions. On the other hand, when the selected water activity, temperature
and pH values are maximum for the range under study (aw = 0.990; T = 18 ◦C; pH = 5.9)
and, therefore, provide the most favourable scenario for bacterial replication, shelf life is
dictated when the contamination threshold is reached, and also by Aeromonas hydrophila,
after t = 11 h of storage. In this sample, no cases of contamination by Shigella flexneri
were predicted.

4.3. Case Study 3—Carrot

It was considered for the study of carrot that aw = 0.983, 0.988 and 0.993, resulting
in equilibrium relative humidity scenarios of 98.3%, 98.8% and 99.3%, respectively. The
growth of Aeromonas hydrophila, Bacillus cereus, Salmonella and Shigella flexneri were studied
for this vegetable. The analysis starts at T = 2 ◦C, at which the onset of proliferation of
Aeromonas hydrophila is verified. For the reasons already mentioned, the study interval is
delimited by Aeromonas hydrophila, at T = 19 ◦C. The study range includes the pH values
inherent to the carrot itself, comprised between 4.9 ≤ pH ≤ 6.4. The sampling of the
results obtained in the study of carrot concerning the remaining shelf life is shown in
Table 8. As seen in the previous case study, at the lowest temperature under analysis
(T = 2 ◦C), when comparing different water activities at the same pH value, a relevant
differential is determined, caused by the different relative humidity scenarios proposed.
When T = 2 ◦C and pH = 5.0, for aw values = 0.983, 0.988 and 0.993, t = 1096.2, 689.0
and 451.8 h of remaining shelf life is estimated, respectively. Thus, alternating between
minimum and maximum relative humidity scenarios implies a decrease of ∆t = 644.4 h in
the remaining shelf life. However, it is seen that this differential decreases significantly as
storage temperatures increase.
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Table 8. Sampling of results of DSS—Remaining shelf life of carrot.

T (◦C) pH aw
Remaining Shelf
Life (t, in Hours) Contamination by

2

4.9
0.983 1321.6 Aeromonas hydrophila
0.988 829.0 Aeromonas hydrophila
0.993 541.2 Aeromonas hydrophila

5.0
0.983 1096.2 Aeromonas hydrophila
0.988 689.0 Aeromonas hydrophila
0.993 451.8 Aeromonas hydrophila

10

4.9
0.983 152.4 Bacillus cereus
0.988 126.4 Bacillus cereus
0.993 101.4 Aeromonas hydrophila

5.0
0.983 148.0 Bacillus cereus
0.988 123.0 Bacillus cereus
0.993 84.6 Aeromonas hydrophila

19

6.3
0.983 13.6 Aeromonas hydrophila
0.988 9.0 Aeromonas hydrophila
0.993 6.2 Aeromonas hydrophila

6.4
0.983 13.1 Aeromonas hydrophila
0.988 8.6 Aeromonas hydrophila
0.993 6.0 Aeromonas hydrophila

When comparing different pH values under the same conditions of temperature and
water activity, there is a rather considerable difference at low temperatures, which gradu-
ally becomes residual at higher temperatures. At T = 2 ◦C and aw = 0.988, shelf life assumes
t = 829 h when pH = 4.9 and t = 689 h when pH = 5.0, a difference of ∆t = 140 h. When
storage temperature assumes a value of T = 10 ◦C and the water activity value remains
unchanged (aw = 0.988), shelf life is t = 126.4 h for a pH = 4.9 and t = 123 h for a pH = 5.0,
that is, a difference of ∆t = 3.4 h. At the most unfavourable scenario for bacterial growth,
minimum water activity, temperature, and pH values (aw = 0.983; T = 2 ◦C; pH = 4.9), the
shelf life t = 1321.6 h after the horticultural batch enters storage is established at the thresh-
old of contamination by Aeromonas hydrophila (the only bacterium capable of replicating
under the selected conditions). When the water activity, temperature and pH values are
maximum for the range under study (aw = 0.993; T = 19 ◦C; pH = 6.4), providing the most
favourable conditions for bacterial replication, shelf life is dictated when the contamination
threshold is reached, also by Aeromonas hydrophila, after t = 6 h of storage. The analysed
sample is strongly influenced by the contamination by Aeromonas hydrophila. In the same
sample, no cases of contamination by Salmonella or Shigella flexneri were observed.

4.4. Case Study 4—Cabbage

For the last case study, aw = 0.990, 0.991 and 0.992 were considered, originating, in
turn, with relative humidity scenarios of ϕ = 99%, 99.1% and 99.2%, respectively. For
the study of this product, the bacterial growth of Aeromonas hydrophila, Bacillus cereus and
Salmonella were considered. The analysis of cabbage begins at a storage temperature of
T = 2 ◦C, at which the onset of proliferation of Aeromonas hydrophila is verified. The study
interval is also delimited by Aeromonas hydrophila, at T = 17 ◦C. In terms of acidity, the study
range includes pH values between 5.2 ≤ pH ≤ 6.9. The sampling of the results obtained in
the study of cabbage concerning remaining shelf life is shown in Table 9.
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Table 9. Sampling of results of DSS—Remaining shelf life of cabbage.

T (◦C) pH aw
Remaining Shelf
Life (t, in Hours) Contamination by

2

5.2
0.990 413.4 Aeromonas hydrophila
0.991 380.4 Aeromonas hydrophila
0.992 350.4 Aeromonas hydrophila

5.3
0.990 354.6 Aeromonas hydrophila
0.991 327.6 Aeromonas hydrophila
0.992 301.8 Aeromonas hydrophila

9

6.0
0.990 36.6 Aeromonas hydrophila
0.991 34.0 Aeromonas hydrophila
0.992 31.6 Aeromonas hydrophila

6.1
0.990 34.2 Aeromonas hydrophila
0.991 31.7 Aeromonas hydrophila
0.992 29.4 Aeromonas hydrophila

17

6.8
0.990 8.7 Aeromonas hydrophila
0.991 8.1 Aeromonas hydrophila
0.992 7.6 Aeromonas hydrophila

6.9
0.990 8.8 Aeromonas hydrophila
0.991 8.2 Aeromonas hydrophila
0.992 7.7 Aeromonas hydrophila

The sample analysed in cabbage study is strongly marked by contamination by
Aeromonas hydrophila, given that, for the combinations shown, there is no contamination by
any of the remaining bacteria considered.

At the most unfavourable scenario for bacterial growth: water activity, storage temper-
ature and pH at minimum values (aw = 0.990; T = 2 ◦C; pH = 5.2), the shelf life is limited to
t = 413.4 h after the entrance of the batch of the studied horticultural product into storage
is established at the threshold of contamination by the only bacteria capable of replicate
under those conditions, Aeromonas hydrophila. At the inverse end of the study range, when
the selected values for water activity, temperature and pH are maximum, given the study
range (aw = 0.992; T = 17 ◦C; pH = 6.9), shelf life is dictated when food safety threshold is
reached, after t = 7.7 h of storage. At an intermediate storage scenario (aw = 0.991; T = 9 ◦C;
pH = 6), a remaining shelf life of t = 34 h is estimated.

5. Discussion

The subsequent analysis is based on the comparison of the values predicted by the
DSS, in matters of shelf life, with the values collected in literature [30–32]. Comparison
between optimal storage conditions ascertained in literature (0 to 4 ◦C) and the conditions
most favourable for food preservation capable of being analysed by the DSS (minimum aw,
T and pH values) are listed in Table 10. Given that the times collected in the literature do
not specify pH values, it is assumed they already consider variations resulting from the
different acidity values specific to each horticultural product under study.

Table 10. Comparison between the shelf time values obtained by the DSS and the values collected in literature.

Literature [30–32] DSS

T (◦C) ϕ (%) pH SL (Days) T (◦C) ϕ (%) pH SL (Days)

Lettuce 0 95–100 - 7–21 1 99.6 5.8 6
Onion 0 65–75 - 14–91 2 97.4 5.3 66
Carrot 0 95–100 - 31–152 2 98.3 4.9 55

Cabbage 0 95–100 - 21–42 2 99.0 5.2 17
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It must be noticed that, in a general way, the values obtained by the DSS are somewhat
lower than the literature. According to [30,31], when storing lettuce at a temperature
of T = 0 ◦C, in an atmosphere with relative humidity set between 95% ≤ ϕ ≤ 100%, a
remaining shelf life of 7 ≤ t ≤ 21 days is indicated. The developed DSS, on the other hand,
determines a remaining shelf life of t = 6 days, when the storage temperature is fixed at
T = 1 ◦C, pH = 5.8 and relative humidity ϕ = 99.6%. This value turns out to be somewhat
lower than the range collected in the literature.

DSS determines for the case study of onion, SL values that meet the ones collected
bibliographically. When storage occurs at T = 2 ◦C, ϕ = 97.4% and the vegetable’s pH = 5.3,
the developed tool estimates a remaining shelf life of t = 66 days. In [31,32], a SL between
14 ≤ t ≤ 91 days is indicated, when storage occurs at T = 0 ◦C and 65% ≤ ϕ ≤ 75%.
However, the large divergence between the values for storage relative humidity pointed in
both cases should be noted.

The carrot case study also points to very consistent values in both cases, when storage
conditions are the most favourable to the preservation of this product. The developed DSS
estimates a SL value of t = 66 days, while a value in the range of 31 ≤ t ≤ 152 is collected
in [30,31].

When it comes to the last studied product, cabbage, and similarly to what was ob-
served in the study of lettuce, DSS canvasses SL values that are slightly lower compared to
those collected in the literature. When stored at a relative humidity of ϕ = 99%, temperature
of T = 2 ◦C and for a pH = 5.2, the DSS predicts t = 17 days. In [30,31], a remaining SL for
cabbage is found to be comprised between 21 ≤ t ≤ 42 days, when stored at T = 0 ◦C and
95% ≤ ϕ ≤ 100%.

The practical implications of this study are related to a new approach to predict the
shelf life of fresh horticultural products that have direct impact on the logistics sector by
easing the decision-making around when and where to sell products. This condition is
directly related to food waste and the profit of these companies. The practical implications
for the small retailers and grocers are directly related to the availability of a simple and
expedited decision support system that can be used in the everyday life that predicts not
only the available shelf life of the stored and displayed horticultural products but also their
price depending on the predicted safety. Academically, this new approach provides future
research opportunities. This approach can be followed to include other horticultural prod-
ucts or even of food products beside horticultural ones, and developing experimental tests
related to the comparison of the predicted and real values of organoleptic characteristics.

6. Conclusions

A decision support system (DSS) is proposed to simultaneously help reduce food
waste for traditional food retailers while allowing for the selling of fresh horticultural
products and promoting food safety and quality. This computational DSS allows for
the predicting of the remaining shelf life of fresh horticultural products, namely lettuce,
onion, carrot, and cabbage, based on its microbial growth status, governed by extrinsic
(temperature and water activity) and intrinsic parameters (pH). The online predictive
food microbiology tool Combined Database for Predictive Microbiology (Combase) was
used to predict the time to reach the infectious doses of bacteria considered in the study.
Additionally, the DSS encompasses the dynamic price of the produce that should be set
each day, depending on the predicted end of the marketing period.

The shelf life determined by the DSS for optimal storage conditions is, in general,
conservative, ensuring food safety. The prediction of shelf life through multiple criteria is
reflected in the inaccuracy of times reflected in the literature, since these intervals present
large amplitudes. Furthermore, when considering the remaining shelf life of a food item,
priority should always be given to the microbiological criterion over others, given that a
product may present satisfactory sensory indices and, at a same time, carrying microbial
doses that go beyond safety threshold, thus rendering itself harmful to the consumer. It
is considered, thus, that the conservative prediction provided by the DSS is aligned with
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the growing demand in matters of safety and quality required by all parts of the food
chain, from the producer to the consumer, including wholesalers and retailers, as well as
regulatory and governmental entities.

It should also be noted that small deviations between the values collected in the
literature and the values estimated by the DSS were observed. In the case study of the onion,
despite the obtained results being strongly aligned with the literature, other humidity
scenarios closer to the optimal storage conditions should be investigated, as a humidity
content set between 65% and 75% results in a drier storage environment than the one
proposed by the current model.

Regarding the analysis of bacterial growth in each of the studied vegetables, in the
sampled cases analysed, most shelf lives are set by contaminations of Aeromonas hydrophila,
so it is considered that this bacterial colony most influences the DSS results. The versatility
in the growth requirements inherent to this bacterial colony may justify this fact, given that
it has a large pH and, especially, survives in a wide range of temperatures.

For the adoption of the DSS and its effective usage by its target market, it is con-
sidered that it still needs to undergo some. First, the studied water activity scenarios
should be extended beyond the currently proposed minimum, average, and maximum
values, undergoing adaptations whenever necessary. This refinement becomes particularly
important in cases in which the difference between the water activity scenarios proves to
be considerable in terms of remaining shelf life, as seen in the onion and carrot case studies
at reduced storage temperatures. The effects of vegetables’ regular distribution chain on
bacterial growth should be quantified more effectively than by simply disregarding the
lag phase, since this parameter may affect, both positively and negatively, the estimated
remaining shelf life of a food product. Finally, fluctuations of extrinsic factors in the storage
environment should be considered. The proposed model assumes that the temperature
and relative humidity of the storage environment remains constant over time, from the
moment that the horticultural batch under study enters storage until the moment it is
marketed. This assumption does not translate in practice, even though these fluctuations
may be residual.

The proposed DSS contributes to sustainable development by promoting information
to retailers and encouraging sustainable consumption based on perishable horticultural
safety and quality across time and fair pricing depending on that quality.
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