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Abstract: Due to the shortage and high cost of shipping containers, manufacturers that distribute
products for worldwide customers must optimize their delivery. Commonly, they complete their
delivery schedule first before creating the production schedule. This article tries to address the
scheduling problem arising in the process of creating the production schedule to meet the delivery
schedule. The complexity of the situation is increased since there is concern about producing as few
product types as possible in a single period and having a balance of production load over multiple
periods. A mathematical programming model for addressing this production scheduling problem is
proposed in the form of integer programming. This model can be solved using LINGO, a commercial
mathematical programming software. Microsoft Excel® spreadsheets are used to store both the
data input and the output of the mathematical programming model. The advantages of using Excel
are its easy-to-read format and familiarity with most users in various companies. Computational
experiments in several cases show that the proposed method is effective to create the production and
delivery schedule in various problem settings as expected.

Keywords: production schedule; integrated production and delivery; mathematical programming;
integer programming

1. Introduction

This paper is motivated by the current situation in a manufacturing industry that
produces a variety of products in response to fulfilling orders from a large number of
customers from various countries. This manufacturing industry operates using a make-
to-order (MTO) strategy. Because shipping containers are currently very expensive, this
industry prioritizes that each container sent has the best load efficiency possible, which
is close to a full container load. In this manner, the production planning department will
await the shipping department’s product delivery schedule in the form of a container
delivery schedule and the contents of each container within a specific planning period,
such as the next 4 to 8 weeks.

The production planning department is in charge of creating a production schedule
in order to meet the delivery schedule established by the shipping department. Based on
their experience, the company needs to minimize product variation in each period of the
planning horizon. They also preferred to balance the production load across the period.

In the make-to-order environment, determining the production schedule is impor-
tant [1–10]. This decision is made for satisfying various purposes, with the most common
purpose being to meet the customer delivery due dates [1,4,10–15]. Frequently, this pro-
duction schedule decision is made in conjunction with other decisions. Furthermore, this
production schedule decision frequently influences subsequent decisions. Examples of
related decisions to production schedule are supplier selection [2,16], price [4,14,17,18], and
transportation [1,18–22].
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Previous research has demonstrated that the production schedule can be prepared
using a mathematical programming approach by considering a variety of settings, con-
straints, and objectives. Galbraith and Miller [23] discussed a scheduling problem for a
multi-objective, multi-period, multi-product manufacturing operation in terms of four
objectives: capacity utilization, delivery schedule compliance, cost minimization, and
overtime minimization. They compared the approaches of mathematical programming
and simulation to solve the problem. Hill [24] proposed a mathematical model in which
a manufacturer purchases raw materials, fabricates products, and distributes them on a
regular basis to a single customer. The model’s purchasing and production schedules are
output decisions with the goal of minimizing total costs, with each production run divided
into multiple shipments. Bahroun et al. [25,26] considered the situation in a factory that
produces multiple products and faces cyclic demand, i.e., the delivery schedule is repeated
in the long run. They proposed a production model for creating production sequences.
Li et al. [27] discussed a manufacturing environment in which machines operate in parallel
and require periodic maintenance. They proposed mathematical programming models for
creating production schedules. Sun et al. [28] proposed a novel mathematical programming
model for scheduling production in the steel industry that takes energy consumption and
carbon emissions into account in addition to traditional production performance indicators.

As demonstrated in the preceding studies, the production schedule is inextricably
linked to the delivery schedule. As a result, numerous researchers are also develop-
ing simultaneous or integrated planning between production and delivery schedules.
Li et al. [29] examined several integrated production, inventory, and delivery problems
where customers specify delivery dates. They proposed an integrated model with the
goal of finding an integrated schedule for processing orders, keeping finished goods, and
delivering them to customers that minimizes inventory and delivery costs. Fu et al. [30]
proposed an integrated production and delivery scheduling model, in which each job
is occupied with release dates and deadlines. Nogueira et al. [31] discussed integrated
production and delivery planning in which parallel batching machines are available and
orders are generic in size and processing time. Masruroh et al. [32] proposed an integrated
production and delivery scheduling model for manufacturers who produce many products
and whose manufacturing setup is dependent on the production sequence. They aimed to
reduce production costs to increase annual gross profit. Mohammadi et al. [33] discussed
an integrated production and delivery schedule, where the manufacturer is using a make-
to-order strategy supported by multi-purpose machines. Their mathematical model has
two objectives, which are minimizing total costs and minimizing precision on delivery.

Despite the extensive research in the past reviewed in the previous paragraphs, a new
situation has arisen that requires a solution, which is to develop a production schedule that
adheres to the load-optimized delivery schedule while minimizing production variation
and balancing production load. The purpose of this article is to propose a mathematical
model for addressing the production scheduling problem. The model is proposed in the
form of integer programming and can be solved using LINGO, a commercial mathematical
programming software. This article also demonstrates the effectiveness of the proposed
model through several examples. The mathematical model and its solution method for
coordinating production and delivery schedules is the main contribution of this article.

The remainder of this manuscript is organized as follows: In Section 2, Materials and
Methods, the problem and mathematical model are defined, and the solution method is
explained. Section 3 demonstrates the effectiveness of the proposed mathematical model
and solution method by applying them to solve several scheduling cases involving a variety
of problem settings. The conclusion of this manuscript is presented in Section 4, along with
some remarks for future development.

2. Materials and Methods

As stated in the preceding section, the purpose of this paper is to propose a new
mathematical model for optimizing the production schedule in a manufacturing industry
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where the delivery schedule has previously been optimized in terms of the container
delivery schedule. The production scheduling issue involves a multitude of products and
customers. It also planned for multiple time spans. In the mathematical model, the number
of products, customers, containers, and time span can be set flexibly, allowing the model
to be applied to a variety of situations, i.e., problems with varying numbers of products,
customers, containers, and time spans. After describing the problem and mathematical
model in Sections 2.1 and 2.2 explains the solution method.

2.1. Proposed Mathematical Model

This mathematical model is intended to solve the problem described below. The
problem is to create a production plan for P periods, that is, from t = 1 to t = P. For
these P periods, the shipping department has issued a tentative delivery schedule for K
containers, each of which contains L products. It is called tentative because there are three
possible delivery schedules for a container. Some containers must be shipped within a
specific time frame, such as the 3rd period. There are also containers that can be shipped
within a specific time frame, for example between the 5th and the 8th period. Finally, there
are also containers that can be sent at any time during the span.

The contents of each container have already been determined by the shipping depart-
ment. In other words, the data input for this problem is the quantity of product i inside
container j, denoted as Qij.

This problem has two sets of decision variables: the delivery schedule and the produc-
tion schedule. The delivery schedule set the shipping delivery time for each container. The
delivery schedule is specified in this mathematical model as binary variable xjt, which is
defined as

xjt =

{
1, if container j is scheduled at period t
0, otherwise

(1)

The production schedule details which products are manufactured during each period,
as well as the quantity produced for each product. In this problem, it is assumed that the
completed product within a specified time is shipped immediately in the same time period.
The production schedule is also specified as binary variable yit, which is defined as

yit =

{
1, if product i is scheduled at period t
0, otherwise

(2)

The company wants to minimize product variation in each period of the planning
horizon. Therefore, the sum of decision variables yit is being set to be minimized.

The quantity of product i to be shipped at period t can be calculated as Qijxjt. Based on
the assumption, this quantity is also equal to the quantity of product i to be manufactured
at period t. The load factor is also defined for product i or the total production time for one
item product i as li. Therefore, the production load at period t can be calculated as

L

∑
i=1

li
K

∑
j=1

Qijxjt (3)

The production load for each period needs to be balanced. If the total balance condition
can be satisfied, then the production load in each period is equivalent to the average overall
production load. The parameter α is introduced here to anticipate the variety of possible
cases and to provide production planners with flexibility, in which the production load at a
certain period is set within α fraction from the average. Mathematically, it is written as the
following two equations.

L

∑
i=1

li
K

∑
j=1

Qijxjt ≤ (1 + α)
1
P

L

∑
i=1

li
K

∑
j=1

Qij (4)



Appl. Syst. Innov. 2022, 5, 59 4 of 14

L

∑
i=1

li
K

∑
j=1

Qijxjt ≥ (1− α)
1
P

L

∑
i=1

li
K

∑
j=1

Qij (5)

It is anticipated that by providing greater flexibility to the production load balance,
i.e., a greater value of α, the problem is more relaxed, thereby increasing the likelihood of
achieving a better objective function value, i.e., a smaller sum of decision variables yit. In
the results section, these effects will be studied and discussed in detail.

The complete mathematical programming formulation is presented below. Equation (6)
is the objective function, while Equations (7)–(12) are the constraints. Equations (7) and (8)
are the constraint for balancing the production load for each period. Equation (9) is defined
to ensure that each container is only being scheduled to be delivered in only a single period.
Equation (10) is defined to ensure that the delivery schedule can be supported by the
production schedule, i.e., the product inside the container delivered at period t is scheduled
to be manufactured in the same period. The parameter M on the right-hand side of this
equation refers to a large positive number, like the parameter in the well-known Big-M
method. Equations (11) and (12) are the definition of binary decision variables.

Min Z =
L

∑
i=1

P

∑
t=1

yit (6)

L

∑
i=1

li
K

∑
j=1

Qijxjt ≤ (1 + α)
1
P

L

∑
i=1

li
K

∑
j=1

Qij, ∀t = 1 . . . P (7)

L

∑
i=1

li
K

∑
j=1

Qijxjt ≥ (1− α)
1
P

L

∑
i=1

li
K

∑
j=1

Qij, ∀t = 1 . . . P (8)

P

∑
t=1

xjt = 1, ∀j = 1 . . . K (9)

Qijxjt ≤ M · yit, ∀i = 1 . . . L, ∀j = 1 . . . K, ∀t = 1 . . . P (10)

xjt ∈ {0, 1}, ∀j = 1 . . . K, ∀t = 1 . . . P (11)

yjt ∈ {0, 1}, ∀i = 1 . . . L, ∀t = 1 . . . P (12)

Additional constraints may be added to address the tentative delivery schedule. If a
container must be shipped at a specific period, the respective delivery schedule decision
variable for that container for that period is set equal to 1 and the variables for other periods
are set equal to 0. For example, if container 3 must be shipped at period 2, the following
constraints are set

x32 = 1 (13)

x3t = 0, ∀t = 1, 3 . . . P (14)

Similarly, if container 4 can be shipped during periods 1 to 4, the following constraints
are set

x4t ≤ 1, ∀t = 1 . . . 4 (15)

x4t = 0, ∀t = 5 . . . P (16)

2.2. Proposed Solution Method

To assist the production planner in solving the proposed mathematical model pre-
sented in the previous subsection, the following solution method is proposed. This method
stores both the input and output data in Microsoft Excel® spreadsheets. By using a Mi-
crosoft Excel spreadsheet, the production planner gains the advantage of being able to
conveniently enter data and read the output in a format that is commonly used in their
company’s business processes. Hereinafter, the mathematical model described in Section 2.1
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above is solved using a well-known mathematical programming solver, LINGO® version
18. The designed solution procedure consists of the following steps:

(a) The data model is entered into the Excel spreadsheet file;
(b) The mathematical model is solved using LINGO;
(c) The production and delivery schedule output are read from the Excel spreadsheet file.

In the first step, a special effort should be made to make the data input and output
transferable between Microsoft Excel and LINGO, which uses the “Define Name” feature in
Microsoft Excel. All parameters and variables used in the mathematical model, which are P,
K, L, Q, l, α, x, and y, had to be identified by assigning a specific range in the worksheet to
each name. Figure 1 demonstrates how to define the selected range in the worksheet as the
parameter Q for the scheduling case of 18 products and 12 containers. Before the screenshot
in Figure 1 appears, two actions are required: selecting the cell range and clicking the
Formula tab’s “Define Name” button.
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In the second step, the mathematical model is solved using a well-known mathematical
programming solver, LINGO® version 18. Figure 2 illustrates a typical LINGO Model
of the proposed mathematical model. The SETS...ENDSETS statement defines the sets,
parameters, and variables. The values of parameters and variables are defined in the
DATA...ENDDATA statement, which uses the @OLE function to retrieve data from a
Microsoft Excel® worksheet. Additionally, the @OLE function returns the values of decision
variables x and y to the corresponding Excel worksheet. It is noted that the worksheet
referenced in the illustration is “DATA.XLSX”, which is located on the computer’s E
drive. The remainder of the LINGO statements represents the mathematical programming
expressed in Equations (5)–(10). For details on the syntax, please refer to the LINGO
Manual book.

It is also noted that this LINGO model is free from specific values for the number
of products (L), containers (K), and periods (P). These input parameters are set already
through the Microsoft Excel spreadsheet. Therefore, if there is a need to make a production
and distribution plan with a different number of products, containers, or periods, the same
LINGO model can be used directly, but the input parameters in the spreadsheet must
be updated.

In the third step, the production and delivery schedule as the solutions of the math-
ematical model, which are defined as decision variables x and y, can be obtained in the
corresponding range name in the Excel spreadsheet file. The format of these decision
variables in the Excel spreadsheet is also designed such that it is convenient to read by
the production planner. Figure 3 displays an example format for the variable y, which
represents the production schedule. It can be seen from the figure that the production
schedule for each product can be read from its corresponding line. A value of zero in a
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column indicates that the product is not scheduled to be manufactured during that period.
Otherwise, a value of one indicates that the product is scheduled to be manufactured
during that period. In Figure 3, for example, product P1 is scheduled to be manufactured
in period 3 and product P9 is scheduled to be manufactured in period 1.
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3. Results and Discussion

In order to demonstrate the effectiveness of the proposed mathematical model and
solution method, several scheduling cases are examined. Case 1 and Case 2 are the cases
that originated from the manufacturing company that motivated this research. Case 3 is
examined to demonstrate the generalizability of the model and solution method, as the
load factors for all products in both Case 1 and Case 2 are similar. In this instance, each
product has its own load factor. In Case 4, tentative delivery schedules are considered. The
results for various values of α are presented at the end of this section.

3.1. Case 1

In this case, which is directly taken from the company, 43 types of products that are
contained within 64 containers will be scheduled in 4 weeks. The quantity of each product
inside each container is presented in Figure 4. It is also known that the load factor of all
products is similar, i.e., l1 = l2 = . . . = l43 = 1. This case is solved using the proposed method
described in Section 2 above using α equal to 0.005.
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The results of the proposed method are presented in Figure 5, which are the value
of decision variables x and y. The decision variable x represents the delivery schedule of
containers. The interpretation of the results in Figure 5 are as follows: Containers C1, C2,
. . . , C8 are scheduled to be delivered at week 4; Containers C9, C10, . . . , C13 are scheduled
to be delivered at week 1; Container C14 is scheduled to be delivered at week 3; and so on.
Meanwhile, the decision variable y represents the production schedule of products. Our
interpretation of the results in Figure 5 is as follows: Products P1, P2, . . . , P14 are scheduled
to be produced at week 4; Products P15, P16, . . . , P21 are scheduled to be produced at week
1; Products P22 and P23 are scheduled to be produced at week 1 and week 3; Products P24
and P25 are scheduled to be produced at week 4; and so on.

A summary of the weekly decision variables and weekly production load are presented
in Table 1. As seen in Table 1, all 64 containers have been scheduled completely within four
weeks. Meanwhile, 43 products are scheduled to be manufactured within the next four
weeks. It is also found that five products are scheduled for two distinct weeks, which are
P22, P23, P28, P33, and P42. As a result, the total number of products, which is the objective
function of this mathematical model, equals 48. Since the α value is very small, the weekly
production load is similarly comparable, in which the production load is in the range of
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1255 to 1265. The production load range is consistent with the definition of constraints (7)
and (8). Following those constraints, the load must be within the range of 1252.7 to 1265.3.
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Table 1. Summary of the decision variables for Case 1.

Week Number of Containers Number of Products Production Load

Week 1 14 12 1258
Week 2 16 10 1265
Week 3 19 8 1255
Week 4 15 18 1258

Total 64 48 5036

3.2. Case 2

In this case, which is also directly taken from the company, 34 types of products that
are contained within 47 containers will be scheduled in 5 weeks. The quantity of each
product inside each container is presented in Figure 6. It is also known that the load factor
of all products is similar, i.e., l1 = l2 = . . . = l34 = 1. This case is also solved using the
proposed method described in Section 2 above using α equal to 0.005.

The result of this case is presented in Figure 7. It is implied from Figure 7 related to
the delivery schedule: Containers C1, C2, C3, C4 are scheduled to be delivered at week 2;
Container C5, C6, C7, C8 are scheduled to be delivered at week 5; Containers C9, C10,
C11 are scheduled to be delivered at week 3; and so on. Furthermore, it is implied from
the same figure related to production schedule: Products P1, P2, . . . , P8 are scheduled to
be produced at week 2; Products P9, P10, P11, P12 are scheduled to be produced at week
5; Product 13 is scheduled to be produced at week 3 and week 5; Products P14, P15 are
scheduled to be produced at week 3; and so on.

A summary of the weekly decision variables and weekly production load are presented
in Table 2. As seen in Table 2, all 47 containers have been scheduled completely within
five weeks. Meanwhile, 34 products are scheduled to be manufactured within the next five
weeks. It is also found that eight products are scheduled for two distinct weeks, which
are P13, P16, P17, P18, P19, P21, P28, and P29. Furthermore, Product P22 is scheduled
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for three distinct weeks. As a result, the total number of products, which is the objective
function of this mathematical model, equals 44. Since the α value is very small, the weekly
production load is similarly comparable, in which the production load is in the range of
1238 to 1249. The production load range is consistent with the definition of constraints (7)
and (8). Following those constraints, the load must be within the range of 1236.8 to 1249.2.
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Table 2. Summary of the decision variables for Case 2.

Week Number of Containers Number of Products Production Load

Week 1 8 7 1240
Week 2 13 18 1249
Week 3 7 6 1238
Week 4 8 6 1248
Week 5 11 7 1240

Total 47 44 6215
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3.3. Case 3

As mentioned in the beginning of this section, this hypothetical case is introduced for
testing the proposed method to deal with various load factors. This case is modified from
Case 1. All data but the load factor are similar. The load factor for Case 3 is as follows:
l1 = 1; l2 = 2; l3 = 3; . . . ; l43 = 43. The solution of this case with the parameter α = 0.005 is
summarized in Table 3. It is shown that the objective value is equal to 49 and the weekly
production load is distributed in the range of 33,667 to 33,929.

Table 3. Summary of the result for Case 3.

Week Number of Containers Number of Products Production Load

Week 1 13 5 33,667
Week 2 10 6 33,858
Week 3 14 14 33,696
Week 4 27 24 33,929

Total 64 49 135,150

3.4. Case 4

As mentioned at the beginning of this section, this hypothetical case is introduced
for testing the proposed method to deal with a tentative delivery schedule. This case is
developed based on Case 2. Instead of a similar load factor for all products, the load factor
for each product is presented in Table 4. In addition, there are additional constraints related
to the delivery schedule, which are that Container C2 must be delivered in week 2 and
Container C3 must be delivered in week 4 or earlier. The solution of this case with the
parameter α = 0.005 is displayed in Figure 8 and summarized in Table 5. It is shown that
the objective value is equal to 44 and the weekly production load is distributed in the
range 4098 to 4117. It is noted that both Container C2 and C3 are delivered in week 2 in
the results.

Table 4. Load Factor for Case 4.

Product Load Factor Product Load Factor Product Load Factor

P1 4 P13 5 P25 2
P2 1 P14 4 P26 3
P3 3 P15 5 P27 2
P4 5 P16 2 P28 4
P5 1 P17 1 P29 5
P6 2 P18 2 P30 2
P7 5 P19 3 P31 3
P8 1 P20 4 P32 5
P9 5 P21 5 P33 1
P10 4 P22 3 P34 2
P11 5 P23 4
P12 4 P24 1

Table 5. Summary of the result for Case 4.

Week Number of Containers Number of Products Production Load

Week 1 5 4 4106
Week 2 15 20 4101
Week 3 9 7 4117
Week 4 11 7 4098
Week 5 7 6 4108

Total 47 44 20,530
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3.5. Results on Different Value of α

As mentioned before, changing the value of α may have an impact on the results of
the proposed method. Setting a greater value of α makes the constraints (7) and (8) more
relaxed. Consequently, the likelihood of achieving a better objective function is increasing.

Whenever Case 1 is solved with a bigger value of α, i.e., α = 0.1, the result is different
from the result presented in Table 1. It results in a smaller objective function, which is 45.
However, the weekly production load is widened to the range 1149 to 1371. The results
using various values of α are presented in Table 6.

Table 6. Results of Case 1 at various values of α.

α Objective Function Value Weekly Production Load Range

0.0025 49 1257–1262
0.0050 48 1255–1265
0.0100 47 1249–1268
0.0500 46 1229–1299
0.1000 45 1149–1371
0.4000 44 925–1670
0.5000 43 744–1814

Similar results are obtained whenever Case 2, Case 3, and Case 4 are solved using
various values of α. A summary of the results is displayed in Tables 7–9, respectively. As
predicted, there is a tendency that the larger the α, the smaller the value of the optimum
objective function. However, the larger the α, the wider the range of weekly production
loads obtained. Naturally, these results must be communicated to the solution’s users,
for example, the company’s production manager. Finally, the manager can determine
which value of α is being used. For sure, not only the objective function value but also the
acceptable range of weekly production load is becoming the criteria for determining the α.
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Table 7. Results of Case 2 at various values of α.

α Objective Function Value Weekly Production Load Range

0.0025 1257–1262
0.0050 44 1238–1249
0.0100 43 1232–1253
0.0250 43 1216–1273
0.0500 41 1190–1291
0.1000 41 1190–1299
0.4000 40 791–1685
0.5000 39 625–1834

Table 8. Results of Case 3 at various values of α.

α Objective Function Value Weekly Production Load Range

0.0025 50 33,744–33,858
0.0050 49 33,667–33,929
0.0100 49 33,561–34,025
0.0250 49 33,310–34,316
0.0500 48 32,555–34,852
0.1000 47 30,970–36,787
0.4000 45 20,596–47,296
0.5000 45 18,189–46,064

Table 9. Results of Case 4 at various values of α.

α Objective Function Value Weekly Production Load Range

0.0025 4098–4117
0.0050 44 4098–4117
0.0100 44 4094–4131
0.0250 43 4043–4207
0.0500 42 4020–4297
0.1000 42 3782–4461
0.4000 39 2950–5464
0.5000 39 2862–5473

4. Conclusions and Further Works

Based on the results of the calculations for the four preceding cases, the mathematical
model and proposed solution were successful in resolving the problem of delivery and
production scheduling coordination. The four cases above illustrate a variety of possi-
ble real-world scenarios, including variations in the number of products, the number of
containers, the number of planning periods, and various tentative delivery schedules.

In the proposed mathematical model, there is a parameter called α, which is used
to balance the production load across periods. The computational results over all cases
considered concluded that the larger the α, the smaller the value of the optimum objective
function. However, that causes a wider range of production loads. It is essential to
communicate with the company’s production manager in order to determine the value of
α used in the model so that the solution method can obtain the best objective function for
the chosen α value.

This research can be expanded by considering some realistic aspects of production and
delivery schedules that exist in the real world. These additional factors may impose con-
straints on the mathematical model. Simultaneous scheduling of delivery and production
is another area of future research.

Despite the success of mathematical programming in coordinating delivery and pro-
duction schedules, the size of the resulting mathematical models will grow exponentially
as more containers, products, and planning periods are introduced. Case 1 involves 428 in-
teger variables and 11,081 constraints, whereas Case 2 involves 405 integer variables and
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8048 constraints. The size of the model increases to 972 integer variables and 19,248 con-
straints if the planning period for a case like Case 1 is increased from 4 to 12 periods. This
larger problem size will eventually cause the mathematical modeling solver’s computation
time to increase. For this reason, it is still necessary to develop the solution of mathematical
models using other techniques, such as metaheuristics or other computational techniques,
so that mathematical models can be solved more quickly.

Author Contributions: Conceptualization, T.J.A. and R.D.A.; methodology, T.J.A.; software, T.J.A.;
validation, T.J.A. and R.D.A.; formal analysis, T.J.A. and R.D.A.; investigation, T.J.A. and R.D.A.;
resources, R.D.A.; data curation, R.D.A.; writing—original draft preparation, T.J.A.; writing—review
and editing, T.J.A. and R.D.A.; visualization, R.D.A.; supervision, T.J.A.; project administration,
R.D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research is partially supported by Universitas Atma Jaya Yogyakarta, Indonesia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stecke, K.E.; Zhao, X. Production and transportation integration for a make-to-order manufacturing company with a commit-to-

delivery business mode. Manuf. Serv. Oper. Manag. 2007, 9, 206–224. [CrossRef]
2. Cakravastia, A.; Takahashi, K. Integrated model for supplier selection and negotiation in a make-to-order environment. Int.

J. Prod. Res. 2004, 42, 4457–4474. [CrossRef]
3. Sahin, F.; Robinson, E.P.; Gao, L.-L. Master production scheduling policy and rolling schedules in a two-stage make-to-order

supply chain. Int. J. Prod. Econ. 2008, 115, 528–541. [CrossRef]
4. Ebadian, M.; Rabbani, M.; Torabi, S.A.; Jolai, F. Hierarchical production planning and scheduling in make-to-order environments:

Reaching short and reliable delivery dates. Int. J. Prod. Res. 2009, 47, 5761–5789. [CrossRef]
5. Neureuther, B.D.; Polak, G.G.; Sanders, N.R. A hierarchical production plan for a make-to-order steel fabrication plant. Prod. Plan.

Control 2004, 15, 324–335. [CrossRef]
6. Zhang, L.; Wong, T.N. Solving integrated process planning and scheduling problem with constructive meta-heuristics. Inf. Sci.

2016, 340–341, 1–16. [CrossRef]
7. Ekici, A.; Elyasi, M.; Özener, O.Ö.; Sarıkaya, M.B. An application of unrelated parallel machine scheduling with sequence-

dependent setups at Vestel Electronics. Comput. Oper. Res. 2019, 111, 130–140. [CrossRef]
8. Nwanya, S.C.; Achebe, C.N.; Ajayi, O.O.; Mgbemene, C.A. Process variability analysis in make-to-order production systems.

Cogent Eng. 2016, 3, 1269382. [CrossRef]
9. Li, X.; Ventura, J.A. Exact algorithms for a joint order acceptance and scheduling problem. Int. J. Prod. Econ. 2020, 223, 107516.

[CrossRef]
10. Li, X.; Ventura, J.A.; Bunn, K.A. A joint order acceptance and scheduling problem with earliness and tardiness penalties

considering overtime. J. Sched. 2021, 24, 49–68. [CrossRef]
11. Wang, C.-N.; Wei, Y.-C.; So, P.-Y.; Nguyen, V.T.; Phuc, P.N.K. Optimization Model in Manufacturing Scheduling for the Garment

Industry. Comput. Mater. Contin. 2022, 71, 5875–5889. [CrossRef]
12. Chiu, S.W.; You, L.-W.; Sung, P.-C.; Wang, Y. Determining the fabrication runtime for a buyer-vendor system with stochastic

breakdown, accelerated rate, repairable items, and multi-delivery strategy. Int. J. Ind. Eng. Comput. 2020, 11, 491–508. [CrossRef]
13. Lee, J.-Y.; Shin, M. Prioritizing method of same due-date work orders for small- and medium-sized manufacturing enterprises

(SMEs). Asia Life Sci. 2019, 1, 313–324.
14. Kalantari, M.; Rabbani, M.; Ebadian, M. A decision support system for order acceptance/rejection in hybrid MTS/MTO

production systems. Appl. Math. Model. 2011, 35, 1363–1377. [CrossRef]
15. Zhao, Z.; Ball, M.O.; Kotake, M. Optimization-based available-to-promise with multi-stage resource availability. Ann. Oper. Res.

2005, 135, 65–85. [CrossRef]
16. Aisyati, A.; Samadhi, T.M.A.A.; Ma’Ruf, A.; Cakravastia, A. Freezing issue on stability master production scheduling for supplier

network: Decision making view. MATEC Web Conf. 2017, 124, 08002. [CrossRef]
17. Manavizadeh, N.; Hasani Goodarzi, A.; Rabbani, M.; Jolai, F. Order acceptance/rejection policies in determining the sequence in

mixed model assembly lines. Appl. Math. Model. 2013, 37, 2531–2551. [CrossRef]
18. Guhlich, H.; Fleischmann, M.; Stolletz, R. Revenue management approach to due date quoting and scheduling in an assemble-to-

order production system. OR Spectr. 2015, 37, 951–982. [CrossRef]

http://doi.org/10.1287/msom.1060.0138
http://doi.org/10.1080/00207540410001727622
http://doi.org/10.1016/j.ijpe.2008.05.019
http://doi.org/10.1080/00207540802010799
http://doi.org/10.1080/09537280410001703893
http://doi.org/10.1016/j.ins.2016.01.001
http://doi.org/10.1016/j.cor.2019.06.007
http://doi.org/10.1080/23311916.2016.1269382
http://doi.org/10.1016/j.ijpe.2019.107516
http://doi.org/10.1007/s10951-020-00672-5
http://doi.org/10.32604/cmc.2022.023880
http://doi.org/10.5267/j.ijiec.2020.6.002
http://doi.org/10.1016/j.apm.2010.09.015
http://doi.org/10.1007/s10479-005-6235-7
http://doi.org/10.1051/matecconf/201712408002
http://doi.org/10.1016/j.apm.2012.06.012
http://doi.org/10.1007/s00291-015-0401-3


Appl. Syst. Innov. 2022, 5, 59 14 of 14

19. Ma, H.L.; Chan, F.T.S.; Chung, S.H. Minimising earliness and tardiness by integrating production scheduling with shipping
information. Int. J. Prod. Res. 2013, 51, 2253–2267. [CrossRef]

20. Hung, Y.-F.; Huang, C.-C.; Yeh, Y. Real-time capacity requirement planning for make-to-order manufacturing with variable
time-window orders. Comput. Ind. Eng. 2013, 64, 641–652. [CrossRef]
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