
Citation: Zitouni, F.; Harous, S.

Integrating the Opposition

Nelder–Mead Algorithm into the

Selection Phase of the Genetic

Algorithm for Enhanced Optimization.

Appl. Syst. Innov. 2023, 6, 80. https://

doi.org/10.3390/asi6050080

Academic Editor: Claudio Zunino

Received: 13 July 2023

Revised: 14 August 2023

Accepted: 25 August 2023

Published: 4 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Integrating the Opposition Nelder–Mead Algorithm into
the Selection Phase of the Genetic Algorithm for
Enhanced Optimization
Farouq Zitouni 1,† and Saad Harous 2,*,†

1 Department of Computer Science, Kasdi Merbah University, Ouargla 30000, Algeria;
zitouni.farouq@univ-ouargla.dz

2 Department of Computer Science, College of Computing and Informatics, University of Sharjah,
Sharjah P.O. Box 27272, United Arab Emirates

* Correspondence: harous@sharjah.ac.ae; Tel.: +971-6505-3524
† These authors contributed equally to this work.

Abstract: In this paper, we propose a novel methodology that combines the opposition Nelder–
Mead algorithm and the selection phase of the genetic algorithm. This integration aims to enhance
the performance of the overall algorithm. To evaluate the effectiveness of our methodology, we
conducted a comprehensive comparative study involving 11 state-of-the-art algorithms renowned
for their exceptional performance in the 2022 IEEE Congress on Evolutionary Computation (CEC
2022). Following rigorous analysis, which included a Friedman test and subsequent Dunn’s post hoc
test, our algorithm demonstrated outstanding performance. In fact, our methodology exhibited equal
or superior performance compared to the other algorithms in the majority of cases examined. These
results highlight the effectiveness and competitiveness of our proposed approach, showcasing its
potential to achieve state-of-the-art performance in solving optimization problems.

Keywords: global optimization; genetic algorithms; Nelder–Mead algorithm; opposition-based
learning; chaotic maps

1. Introduction

Optimization is a fundamental concept in various fields, including mathematics,
computer science, engineering, economics, and operations research. It involves finding
the best possible solution to a problem within a given set of constraints. The goal of
optimization is to maximize or minimize an objective function, which represents the
measure of performance or utility [1].

In optimization, the objective is to find the optimal solution that achieves the highest
possible value for a maximization problem or the lowest possible value for a minimization
problem. The solution can be a single point in the search space or a set of values for mul-
tiple variables or parameters [2]. The process of optimization typically involves defining
the problem, specifying the objective function and constraints, selecting an appropriate
optimization algorithm or method, and iteratively refining the solution to converge toward
the optimal outcome [3]. The optimization algorithm explores the search space, evaluating
different candidate solutions and making adjustments based on specific rules or principles
to improve the objective function value [4]. Typically, a constrained optimization problem
can be mathematically formulated as follows: Minimize (or maximize) the objective func-
tion f (x) subject to a set of constraints gi(x) ≤ 0 and hj(x) = 0, where x is the vector of
decision variables with a dimension of D. Mathematically, it can be written as [2]:

Minimize:
f (x) (1)

Appl. Syst. Innov. 2023, 6, 80. https://doi.org/10.3390/asi6050080 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi6050080
https://doi.org/10.3390/asi6050080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0003-2566-1457
https://orcid.org/0000-0001-6524-7352
https://doi.org/10.3390/asi6050080
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi6050080?type=check_update&version=2

Appl. Syst. Innov. 2023, 6, 80 2 of 31

Subject to:
gi(x) ≤ 0 , i ∈ {1, . . . , M} (2)

hj(x) = 0 , j ∈ {1, . . . , N} (3)

x = [x(1), . . . , x(D)] ∈ [x(1)min, x(1)max]× . . .× [x(D)
min, x(D)

max] (4)

Here, f (x) represents the objective function that needs to be minimized or maxi-
mized. The decision variables are represented by the vector x, which can be a single
variable or a set of variables with a dimension of D. The constraints are defined by the
functions gi(x) and hj(x). The inequality constraints gi(x) ≤ 0 represent the conditions
that must be satisfied, and the equality constraints hj(x) = 0 represent the equality
relationships in the problem. The index i ranges from 1 to M for inequality constraints,
and the index j ranges from 1 to N for equality constraints. If the problem does not have
inequality and equality constraints, it is called an unconstrained optimization problem
[5]. The solution to the constrained optimization problem is a vector x∗ that optimizes
the objective function f (x) while satisfying all the constraints. The goal is to find the
values of the decision variables x∗ that minimize or maximize the objective function
while satisfying the given constraints.

Various optimization techniques and algorithms can be employed to solve constrained
optimization problems, such as gradient-based methods, linear programming, nonlinear
programming, and evolutionary algorithms, depending on the problem’s characteristics
and complexity. Optimization algorithms can be classified into several categories based
on their approach and characteristics [6]. Four common categories are exact methods,
approximation methods, metaheuristic methods, and derivative-based methods.

1.1. Exact Methods

Exact methods aim to find the optimal solution by exhaustively exploring the entire
solution space. These algorithms guarantee that the solution obtained is the global optimum,
but they may be computationally expensive and impractical for large-scale problems [7].
Some examples of exact methods include:

1. Branch and bound: Divides the problem into smaller subproblems and prunes
branches that are known to be suboptimal [8].

2. Integer programming: Optimizes linear functions subject to linear equality and in-
equality constraints, with some or all variables restricted to integer values [9].

3. Dynamic programming: Breaks down the problem into overlapping subproblems
and solves them recursively, storing and reusing the intermediate results [10].

1.2. Approximation Methods

Approximation methods focus on finding a solution that is close to the optimal solution
without guaranteeing optimality. These algorithms often provide good-quality solutions
within a reasonable time frame and are suitable for large-scale problems where finding
the global optimum is computationally infeasible. Some examples of approximation
methods include:

1. Greedy algorithms: Make locally optimal choices at each step to construct a solution
incrementally [11].

2. Randomized algorithms: Introduce randomness to explore the solution space and
find near-optimal solutions [12].

1.3. Metaheuristic Methods

Metaheuristic methods are general-purpose optimization algorithms that guide the
search for solutions by iteratively exploring the solution space. They are often inspired by
natural phenomena or analogies and are applicable to a wide range of problems. Some
popular metaheuristics methods include:

Appl. Syst. Innov. 2023, 6, 80 3 of 31

1. Simulated annealing: Mimics the annealing process in metallurgy, allowing occa-
sional uphill moves to escape local optima [13].

2. Genetic algorithms: Inspired by the process of natural selection, genetic algorithms
evolve a population of candidate solutions through selection, crossover, and mutation
operations [14].

3. Particle swarm optimization: Simulates the movement and interaction of a swarm of
particles to find optimal solutions by iteratively updating their positions [15].

4. Ant colony optimization: Mimics the foraging behavior of ants, where artificial ants
deposit pheromones to guide the search for optimal paths or solutions [16].

1.4. Derivative-Based Methods

Derivative-based methods, also known as gradient-based methods, utilize informa-
tion about the derivative of the objective function to guide the search for the optimum.
These methods are effective when the objective function is differentiable. In other words,
derivative-based methods are particularly useful in continuous optimization problems
where the objective function is smooth and the derivatives can be efficiently computed.
Some derivative-based optimization algorithms include:

1. Gradient descent: Iteratively updates the solution in the direction of the steepest
descent of the objective function [17].

2. Newton’s method: Utilizes both the first and second derivatives of the objective
function to approximate the optimum more efficiently [18].

3. Quasi-Newton methods: Approximate the Hessian matrix (second derivatives)
using a limited number of function and gradient evaluations to improve convergence
speed [19].

It is important to note that this classification is not exhaustive, and there are other spe-
cialized optimization algorithms and techniques available for different types of problems.
The choice of optimization algorithm depends on the problem characteristics, compu-
tational resources, and desired trade-offs between solution quality and computational
efficiency [20]. In addition, optimization has diverse applications across various domains,
such as engineering design, operations management, financial planning, scheduling, ma-
chine learning, and data analysis. It plays a crucial role in improving efficiency, resource
allocation, decision making, and overall performance in a wide range of real-world prob-
lems. Here are some notable applications of optimization in our everyday lives:

1. Transportation and routing: Optimization algorithms are used in transportation
systems to optimize routes, schedules, and logistics. Whether it involves finding the
shortest path for navigation apps, optimizing traffic signal timings, or planning public
transportation routes, optimization helps minimize travel time, reduce congestion,
and enhance overall transportation efficiency [21–23].

2. Resource management: Optimization techniques are employed in diverse areas of re-
source management. For instance, energy companies optimize power generation and
distribution to meet demand while minimizing costs. Water management systems op-
timize water distribution to ensure equitable supply and minimize wastage. Optimiza-
tion is also applied in inventory management, supply-chain logistics, and workforce
scheduling to optimize resource allocation and improve operational efficiency [24–26].

3. Financial planning and investment: Optimization is widely used in financial plan-
ning and investment strategies. It helps investors optimize their portfolios by con-
sidering risk-return trade-offs. Optimization algorithms can determine the optimal
allocation of funds across different assets or investment opportunities, aiming to
maximize returns while managing risk within specified constraints [27,28].

4. Production and manufacturing: Optimization is crucial in production and manufac-
turing processes to improve efficiency, reduce costs, and maximize output. Production
scheduling optimization algorithms help determine the optimal sequence and timing
of manufacturing operations. Additionally, optimization is utilized in capacity plan-

Appl. Syst. Innov. 2023, 6, 80 4 of 31

ning, facility layout design, and supply-chain optimization to streamline operations
and minimize waste [29–31].

5. Energy optimization: Energy optimization plays a significant role in promoting sus-
tainable practices and reducing environmental impact. Optimization techniques
are employed in energy-efficient buildings, where they control heating, ventila-
tion, and air-conditioning systems to optimize energy consumption while main-
taining comfort levels. Smart grid technologies also leverage optimization algorithms
to optimize power generation, distribution, and consumption, facilitating energy
conservation [32–35].

6. Personal health and fitness: Optimization algorithms are increasingly being used in
personal health and fitness applications. Fitness trackers and mobile apps employ
optimization techniques to provide personalized exercise and diet plans, optimizing
the balance between calorie intake and expenditure. These algorithms consider
individual goals, preferences, and constraints to help users achieve desired health
and fitness outcomes [36–40].

7. Internet and e-commerce: Optimization algorithms are utilized in internet-based
applications and e-commerce platforms to enhance the user experience and optimize
various processes. From search engine algorithms that rank search results to recom-
mendation systems that personalize product suggestions, optimization is employed
to improve relevance, efficiency, and customer satisfaction [41–43].

These are just a few examples that highlight the wide range of applications where
optimization algorithms and techniques are utilized to improve efficiency, decision making,
and resource allocation in our daily lives. Optimization continues to drive advancements
and contribute to enhancing various aspects of our modern society.

Hybrid metaheuristic algorithms represent a critical and evolving frontier in optimiza-
tion research, addressing the inherent limitations of individual algorithms by harnessing
the collective strengths of diverse optimization techniques. In a complex and dynamic
problem landscape where no single algorithm universally excels, hybridization offers a
compelling approach to achieving enhanced performance, increased robustness, and supe-
rior convergence rates. By fusing different algorithms, these hybrids can adapt to various
problem characteristics, balance exploration and exploitation, and efficiently navigate high-
dimensional solution spaces. As real-world challenges become more intricate, the ability of
hybrid metaheuristics to provide innovative solutions is paramount, driving the progress
of optimization methodologies across domains ranging from engineering and finance to
artificial intelligence and beyond. Over the past few years, numerous hybrid algorithms
have emerged in the literature, and we will examine a selection of these. The study out-
lined in [44] demonstrates two hybrid metaheuristic algorithms, specifically the genetic
algorithm and the multiple population genetic algorithm, that are synergistically combined
with variable neighborhood search to tackle some challenging NP-hard problems. The
research highlighted in [45] portrays an innovative hybrid algorithm that merges genetic
algorithms with the spotted hyena algorithm to effectively address the complexities of the
production shop scheduling problem. The research work showcased in [46] describes an
advanced hybrid metaheuristic approach for solving the traveling salesman problem with
drones. This approach draws from two algorithms, namely the genetic algorithm and the
ant colony optimization algorithm. The paper in [47] establishes an innovative approach
known as the hybrid muddy soil fish optimization-based energy-aware routing scheme,
designed to enhance the efficiency of routing in wireless sensor networks, facilitated by
the Internet of Things. The research discussed in [48] introduces a novel metaheuristic
approach, the hybrid brainstorm optimization algorithm, to effectively address the emer-
gency relief routing problem. This innovative algorithm amalgamates concepts from the
simulated annealing algorithm and the large neighborhood search algorithm into the foun-
dation of the former, to significantly enhance its capacity to evade local optima and speed
up the convergence process. The examination in [49] exposes a groundbreaking hybrid
metaheuristic algorithm, termed the chaotic sand-cat swarm optimization, as a potent

Appl. Syst. Innov. 2023, 6, 80 5 of 31

solution for intricate optimization problems that exhibit constraints. This algorithm seam-
lessly merges the attributes of the newly introduced technique with the innovative concept
of chaos, promising enhanced performance in handling complex scenarios. The inquiry
described in [50] introduces the hybridization of the particle swarm optimization with
variable neighborhood search and simulated annealing to tackle permutation flow-shop
scheduling problems. The findings detailed in [51] highlight an original hybrid algorithm
integrating principles from the particle swarm optimization and puffer fish algorithms,
aiming to accurately estimate parameters related to fuel cells. The study in [52] showcases
the fusion of the brainstorm optimization algorithm with the chaotic accelerated particle
swarm optimization algorithm. The purpose is to explore the potential enhancements
that this amalgamated approach could offer over using the individual algorithms inde-
pendently. The research elucidated in [53] presents an innovative hybrid learning moth
search algorithm. This algorithm uniquely integrates two distinct learning mechanisms:
global-best harmony search learning and Baldwinian learning. The objective is to effectively
address the multidimensional knapsack problem, harnessing the benefits of these combined
learning approaches.

The research described in this paper proposes a novel contribution by integrating the
opposition Nelder–Mead algorithm into the selection phase of genetic algorithms to address
the premature convergence problem and enhance exploration capabilities. This integration
offers several significant advantages and advancements to the field of optimization and
evolutionary computation, including:

1. Prevention of premature convergence: Premature convergence is a common issue in
genetic algorithms [54–56], where the algorithm converges to suboptimal solutions
without adequately exploring the search space. By incorporating the opposition
Nelder–Mead algorithm into the selection phase, our research provides a solution to
this problem. The opposition Nelder–Mead algorithm, known for its effectiveness in
local search and optimization [57], brings its exploratory power to the genetic algo-
rithm. This integration ensures that the algorithm can avoid premature convergence
by continuously exploring and exploiting promising regions of the search space.

2. Enhanced exploration capabilities: The integration of the opposition Nelder–Mead
algorithm into the selection phase enhances the exploration capabilities. Genetic
algorithms traditionally rely on genetic operators such as crossover and mutation for
exploration. However, these operators may not be sufficient to thoroughly explore
complex search spaces [58]. By incorporating the opposition Nelder–Mead algorithm,
which excels in local exploration, our methodology enhances the exploration capabili-
ties of genetic algorithms. This integration enables a more comprehensive search of
the search space, leading to the discovery of diverse and potentially better solutions.

3. Improved convergence speed and solution quality: The integration of the opposi-
tion Nelder–Mead algorithm offers the potential for improved convergence speed
and solution quality. The opposition Nelder–Mead algorithm is known for its effi-
ciency in converging toward local optima. By utilizing this algorithm during the
selection phase, our methodology aims to guide the genetic algorithm toward bet-
ter solutions at a faster rate. This combination of global exploration from genetic
algorithms and local optimization from the Nelder–Mead algorithm results in an
algorithm that can converge faster and produce high-quality solutions. It is worth
pointing out that the convergence speed in metaheuristics refers to the rate at which
an algorithm approaches a solution of acceptable quality. It indicates how quickly
an algorithm narrows down its search space and refines its solutions, ultimately
aiming to find an optimal or near-optimal solution. A faster convergence speed
implies that the algorithm reaches promising solutions in fewer iterations, whereas
a slower convergence speed suggests that more iterations are needed to achieve
comparable results. It is clear now that the integration of the iterative process of the
Nelder–Mead algorithm into the iterative process of the genetic algorithm would
improve its convergence speed.

Appl. Syst. Innov. 2023, 6, 80 6 of 31

4. Practical applicability and generalizability: The proposed methodology holds prac-
tical applicability and generalizability. Genetic algorithms are widely used in various
fields and domains for optimization problems. By addressing the premature con-
vergence problem and enhancing exploration capabilities, our research contributes
to the broader applicability and effectiveness of genetic algorithms in real-world
scenarios. The integration can potentially be applied to a wide range of optimization
problems, providing practitioners and researchers with a valuable tool to improve
their optimization processes.

In summary, our research paper makes a significant contribution by integrating the
opposition Nelder–Mead algorithm into the selection phase of genetic algorithms. This
integration addresses the premature convergence problem, enhances exploration capabili-
ties, improves convergence speed and solution quality, and offers practical applicability
and generalizability. The proposed approach has the potential to advance the field of
optimization and evolutionary computation, empowering practitioners and researchers
with an effective tool for solving complex optimization problems.

This paper is organized into four sections: Section 2: Background; Section 3: Proposed
Methodology; Section 4: Experimental Results and Discussion; and Section 5: Conclusions
and Future Scope. Section 2 provides an overview of the relevant concepts used to establish
the context for the research. Section 3 outlines the specific approach used to integrate
the opposition Nelder–Mead algorithm into the selection phase of genetic algorithms and
highlights its potential benefits. Section 4 presents the empirical evaluation of the proposed
methodology, including the experimental setup, results, and analysis. Finally, Section 5
summarizes the key findings, discusses the implications of the research, and suggests
potential future directions for further exploration.

2. Background

In this section, we broadly describe the underlying algorithms and techniques that
are used to design our proposed methodology. Section 2.1 presents an overview of genetic
algorithms as a powerful optimization technique. Genetic algorithms are population-
based search algorithms that mimic the process of natural evolution to explore the solution
space and find optimal solutions. Section 2.2 delves into the Nelder–Mead algorithm,
which is a direct search method for optimization. It provides a detailed description of the
algorithm’s basic operations, including reflection, expansion, contraction, and shrinkage,
to iteratively converge toward the optimum. Lastly, Section 2.3 introduces the opposition-
based learning technique, which is a novel concept that enhances optimization algorithms.
It incorporates the use of opposite solutions to improve the exploration capabilities and
convergence speed.

2.1. Genetic Algorithms

Genetic algorithms (GAs) [59] are a class of optimization algorithms inspired by
the process of natural selection and genetics. They are widely used in various fields to
solve complex optimization problems. This section provides an overview of the working
principle of genetic algorithms, highlighting the key components and steps involved in
their operation [60]:

1. Initialization: The first step in a genetic algorithm is the initialization of a population.
A population consists of a set of potential solutions to the optimization problem,
known as individuals or chromosomes. Each individual represents a possible solution
in the search space. The population is typically randomly generated or initialized
based on prior knowledge of the problem domain.

2. Fitness evaluation: Once the initial population is created, the fitness of each individ-
ual is evaluated. Fitness represents the quality or suitability of an individual solution
with respect to the optimization objective. It is determined by an objective function
that quantifies how well the individual performs. The objective function could be
based on specific criteria, constraints, or a combination of both.

Appl. Syst. Innov. 2023, 6, 80 7 of 31

3. Selection: The selection process simulates the concept of survival of the fittest,
where individuals with higher fitness values have a higher probability of being
selected for reproduction. Various selection methods can be employed, such as
roulette-wheel selection, tournament selection, or rank-based selection [61]. The
goal of selection is to create a mating pool consisting of individuals that are more
likely to produce better offspring.

4. Reproduction: Reproduction involves the creation of new individuals (offspring)
through genetic operators, namely crossover and mutation. Crossover is the process of
exchanging genetic information between two parent individuals, typically at specific
points or positions within their representation. This exchange generates offspring that
inherit characteristics from both parents. Mutation introduces random changes or
modifications to the offspring’s genetic information, allowing for the exploration of
new regions in the search space [62].

5. Replacement: After the offspring are generated, a replacement strategy is applied
to determine which individuals from the current population will be replaced by
the newly created offspring. The replacement strategy can be based on various
criteria, such as fitness-based replacement, elitism (preserving the best individuals),
or a combination of both. This step ensures that the population evolves over time,
favoring better solutions [62].

6. Termination criteria: Genetic algorithms continue to iterate through the selection,
reproduction, and replacement steps until a termination condition is met. Termination
conditions can be based on a maximum number of generations, a specific fitness
threshold, or a predefined computational budget. Once the termination condition
is satisfied, the algorithm stops, and the best individual in the final population is
considered the solution to the optimization problem.

Genetic algorithms offer a powerful approach to solving complex optimization prob-
lems. By mimicking the principles of natural selection and genetics, these algorithms
iteratively evolve a population of potential solutions to converge toward an optimal or
near-optimal solution. Understanding the working principle of genetic algorithms is crucial
for effectively applying them to various domains and harnessing their potential in solving
real-world optimization challenges. The advantages and disadvantages of GAs can vary
depending on the problem domain and specific implementation. Some commonly cited
advantages and disadvantages are described below [58,63].

2.1.1. Advantages of GAs

Some commonly cited advantages of GAs are:

1. Global search capability: GAs are effective in exploring a large search space, allowing
them to find global or near-global optimal solutions.

2. Flexibility: GAs can handle various types of optimization problems, including con-
tinuous, discrete, and mixed-variable problems.

3. Parallel processing: The parallel nature of GAs allows for distributed computing, en-
abling faster convergence and the ability to tackle computationally intensive problems.

4. Robustness: GAs are often robust against noise or uncertainty in the objective function,
making them suitable for real-world problems with noisy data or incomplete information.

5. Solution diversity: GAs inherently maintain a diverse population, which helps avoid
premature convergence and allows for the exploration of multiple regions of the
search space.

2.1.2. Disadvantages of GAs

Some commonly cited disadvantages of GAs are:

1. Computational complexity: GAs can be computationally expensive, especially for
problems with large population sizes and complex fitness evaluations.

2. Premature convergence: GAs may converge prematurely to a suboptimal solution if
the selection pressure is too high or the genetic operators are not properly balanced.

Appl. Syst. Innov. 2023, 6, 80 8 of 31

3. Parameter sensitivity: The performance of GAs can be sensitive to the choice of
algorithmic parameters, such as population size, crossover and mutation rates, and
termination criteria.

4. Lack of problem-specific knowledge: GAs do not leverage problem-specific knowl-
edge, and thus may require a significant number of function evaluations to converge
to the optimal solution.

5. Representation limitations: The choice of representation for the individuals can
impact the performance of GAs, and certain problems may require specialized repre-
sentations for effective optimization.

2.2. Nelder–Mead Algorithm

The Nelder–Mead algorithm [64], also known as the simplex method, is a popular
optimization technique introduced by John Nelder and Roger Mead in 1965. It is a direct
search method that does not require derivative information and is capable of handling both
smooth and non-smooth objective functions.

The algorithm begins with an initial simplex, which is a geometric shape consisting of
n + 1 vertices in an n-dimensional space. Each vertex represents a potential solution to the
optimization problem. The Nelder–Mead algorithm iteratively modifies and explores the
simplex to search for the optimal solution.

At each iteration, the algorithm evaluates the objective function at each vertex of
the simplex, identifying the best (lowest) function value (viz. f (x1)), the worst (highest)
function value (viz. f (xn+1), and the second-worst function value (viz. f (xn))) among the
vertices. Based on these evaluations, the algorithm performs various operations to update
the simplex:

1. Reflection: The worst vertex is reflected through the centroid of the remaining n
vertices. If the reflected vertex yields a better function value than the second-worst
vertex but worse than the best vertex, it replaces the worst vertex. The reflection
operation helps the algorithm explore the search space in the direction of the reflected
vertex. The reflection phase can be summarized as follows:

(a) Compute the reflection vertex xr using Equation (5), where x is the centroid of
the n first best points (i.e., x = 1

n ∑n
i=1 xi) and ρ is the coefficient of reflection.

xr = (1 + ρ)x + ρxn+1 (5)

(b) If f (x1) ≤ f (xr) < f (xn), accept the reflected point xr and terminate the
iteration.

2. Expansion: If the reflected vertex has a better function value than the best vertex, the
algorithm performs an expansion operation. It calculates a new point by extrapolating
beyond the reflected vertex and evaluates the function at this new point. If the new
point is better than the reflected vertex, it replaces the worst vertex. The expansion
operation allows the simplex to grow in the direction of the reflected vertex, potentially
discovering better solutions. The expansion phase can be recapitulated as follows:

(a) If f (xr) < f (x1), compute the expansion vertex xe using Equation (6), where χ
is the coefficient of expansion.

xe = (1 + ρχ)x− ρχxn+1 (6)

(b) If f (xe) < f (xr), accept xe and terminate the iteration; otherwise, accept xr and
terminate the iteration.

3. Contraction: If the reflected vertex does not improve the function value compared to
the second-worst vertex, the algorithm performs a contraction operation. It calculates
a new point by contracting toward the best vertex from the reflected vertex and
evaluates the function at this new point. If the new point yields a better function
value than the reflected vertex, it replaces the worst vertex. The contraction operation

Appl. Syst. Innov. 2023, 6, 80 9 of 31

helps the algorithm converge toward the best vertex. The contraction phase can be
described as follows:

(a) If f (xn) ≤ f (xr) < f (xn+1), perform an outside contraction as follows:

i. Compute the outside contraction vertex xoc using Equation (7), where
γ is the coefficient of contraction.

xoc = (1 + ργ)x− ργxn+1 (7)

ii. If f (xoc) < f (xr), accept xoc and terminate the iteration; otherwise, go
to step 4.

(b) If f (xr) ≥ f (xn+1), perform an inside contraction as follows:

i. Compute the inside contraction vertex xic using Equation (8), where γ
is the coefficient of contraction.

xic = (1− γ)x + γxn+1 (8)

ii. If f (xic) < f (xn+1), accept xic and terminate the iteration; otherwise,
go to step 4.

4. Shrinkage: If none of the above operations result in a better vertex, the algorithm
performs a shrinkage operation. It shrinks the simplex toward the best vertex by
updating each vertex, except the best vertex, to move closer to the best vertex by a
certain fraction. This contraction of the simplex assists in refining the search around
the current best solution. The shrinkage phase can be described as follows:

(a) Update the vertices x2, . . . , xn, xn+1 using Equation (9), where σ is the coeffi-
cient of shrinkage.

xi = x1 + σ(xi − x1) , i ∈ {2, . . . , n, n + 1} (9)

(b) The new vertices calculated using Equation (9) are to be considered for the
next iteration.

The iterations continue until certain convergence criteria are met, such as reaching a
maximum number of iterations, achieving a small improvement in the function value, or
obtaining a small change in the size of the simplex. The Nelder–Mead algorithm is widely
used in various domains, including engineering, computer science, and mathematical
optimization. It is particularly suitable for problems with non-smooth or non-convex
objective functions. Although it does not guarantee finding the global optimum, it often
converges to good local optima [57]. The Nelder–Mead algorithm is a derivative-free
optimization algorithm commonly used to solve unconstrained optimization problems.
Here are some advantages and disadvantages of the Nelder–Mead algorithm [64]:

2.2.1. Advantages of the Nelder–Mead Algorithm

Some advantages of the Nelder–Mead algorithm are:

1. Simplicity: The Nelder–Mead algorithm is relatively easy to understand and imple-
ment compared to more complex optimization methods.

2. No derivative information required: The algorithm does not rely on derivative infor-
mation, making it suitable for optimizing functions that are not easily differentiable
or when computing derivatives is computationally expensive.

3. Convergence in certain cases: The Nelder–Mead algorithm can converge quickly for
low-dimensional problems with smooth, convex objective functions.

4. Robustness: It is relatively robust against noisy or imperfect function evaluations.

2.2.2. Disadvantages of the Nelder–Mead Algorithm

Some disadvantages of the Nelder–Mead algorithm are:

Appl. Syst. Innov. 2023, 6, 80 10 of 31

1. Sensitivity to initial conditions: The performance of the Nelder–Mead algorithm is
highly dependent on the initial simplex configuration. Poor initial setups may result
in slow convergence or even failure to converge.

2. Lack of global convergence guarantee: Unlike some other optimization algorithms,
the Nelder–Mead algorithm does not have a guaranteed global convergence property.
It can converge to a local minimum or even get trapped in non-optimal regions of the
search space.

3. Inefficiency in high-dimensional spaces: The performance of the Nelder–Mead al-
gorithm deteriorates as the dimensionality of the problem increases, known as the
“curse of dimensionality”. It may struggle to converge or require significantly more
function evaluations in high-dimensional spaces.

2.3. Opposition-Based Learning

Opposition-based learning (OBL) [65] is a heuristic technique used in optimization
algorithms to enhance the search process and improve the quality of solutions. It is
inspired by the concept of opposition, which involves considering the opposite or con-
trasting characteristics of a given solution or search-space point. OBL introduces the
notion of “opposition” to generate new candidate solutions by incorporating contrasting
information. The general working principle of opposition-based learning involves the
following steps [66]:

1. Initialization: A population of candidate solutions is randomly generated or initial-
ized within the search space.

2. Evaluation: Each candidate solution is evaluated using an objective function to
determine its fitness or quality.

3. Opposition generation: Opposite solutions or individuals are generated for each
candidate solution by incorporating contrasting information. This can be achieved in
various ways, such as flipping binary values, negating numerical values, or applying
specific transformation functions.

4. Fitness evaluation for opposite solutions: The fitness of the opposite solutions is
evaluated using the same objective function.

5. Update and selection: The original candidate solutions and their opposite counter-
parts are compared based on their fitness values. The better solution between each pair
(original and opposite) is selected and considered for the next iteration or generation.

6. Repeat: Steps 2–5 are iteratively repeated until a termination condition is met, such as
reaching a maximum number of iterations or achieving a desired level of convergence.

The use of opposition-based learning aims to promote exploration in the search space by
considering contrasting information and potentially discovering new regions that may not be
explored by traditional optimization techniques. By incorporating opposite solutions, OBL
attempts to enhance the diversity and convergence properties of the optimization algorithm.
Opposition-based learning has been applied in various optimization algorithms, including
evolutionary algorithms, particle swarm optimization, and simulated annealing, among
others. It has shown promising results in improving solution quality, convergence speed,
and robustness in solving complex optimization problems [66]. The advantages and disad-
vantages of opposition-based learning can vary depending on the specific implementation
and problem domain. Some commonly cited advantages and disadvantages are described
below [66].

2.3.1. Advantages of OBL

Some advantages of OBL are:

1. Improved solution quality: By considering contrasting information through opposite
solutions, OBL can enhance the exploration of the search space, potentially leading to
improved solution quality and diversity.

Appl. Syst. Innov. 2023, 6, 80 11 of 31

2. Enhanced convergence properties: OBL can help optimization algorithms converge
faster by introducing additional diversity and promoting the search in unexplored
regions of the search space.

3. Robustness: OBL has been shown to improve the robustness of optimization algo-
rithms by reducing the risk of becoming trapped in local optimums.

4. Widely applicable: OBL can be applied to various optimization algorithms and prob-
lem domains, making it a versatile approach to improving optimization performance.

5. Simple implementation: OBL is relatively easy to implement, as it involves generat-
ing opposite solutions by incorporating contrasting information.

2.3.2. Disadvantages of OBL

Some disadvantages of OBL are:

1. Increased computational complexity: The introduction of opposite solutions adds
computational overhead, as it requires additional fitness evaluations and solution
comparisons.

2. Sensitivity to parameters: The performance of OBL can be sensitive to the choice
of specific parameters, such as the method of generating opposite solutions or the
selection criteria between original and opposite solutions.

3. Limited exploration: Although OBL can enhance exploration, it may not always
guarantee exploration of the entire search space, especially in complex and high-
dimensional optimization problems.

4. Lack of universally optimal opposite generation strategy: The choice of method for
generating opposite solutions depends on the problem domain and algorithm used,
and there is no universally optimal strategy applicable to all scenarios.

3. Proposed Methodology

In this section, we provide a comprehensive and detailed description of the proposed
methodology, which involves the integration of the Nelder–Mead algorithm into the se-
lection phase of the genetic algorithm. We delve into the specific steps and procedures
involved in this integration, elucidating how the two algorithms interact and complement
each other. Furthermore, we present the mathematical formulations and algorithms em-
ployed, providing a clear and systematic explanation of the modified selection process.
By providing a thorough and meticulous description, we aim to ensure that readers have
a comprehensive understanding of the proposed methodology and its underlying mech-
anisms. The flowchart presented in Figure 1 depicts the main phases of the proposed
methodology. In the subsequent sections, we provide a detailed description of each phase.

Appl. Syst. Innov. 2023, 6, 80 12 of 31

Figure 1. Flowchart of the proposed methodology.

Appl. Syst. Innov. 2023, 6, 80 13 of 31

3.1. Phase 1: Initialization of Parameters

The initial phase of our methodology involves the crucial step of parameter initializa-
tion, which lays the foundation for the subsequent stages. In this phase, we meticulously
define and set the values of the parameters that govern the different algorithms and tech-
niques of the proposed methodology. These parameters act as the guiding principles and
variables that influence its behavior and performance. It is essential to establish appropriate
initial values for these parameters, as they significantly impact the overall effectiveness
and accuracy of the subsequent computations. Thus, by conscientiously determining the
initial values, we ensure a solid starting point for our methodology, enabling reliable and
meaningful results throughout the entire process. The parameters and symbols used are:

1. D: The dimensionality of the search space.
2. N: The population size.

3. x(j)
min: The component x(j) of vector x is bounded below by x(j)

min.

4. x(j)
max: The component x(j) of vector x is bounded above by x(j)

max.
5. N (µ, σ): The normal distribution with mean µ and variance σ.
6. Beta(α, β): The beta distribution, where α and β are real numbers.
7. IterMax1: The maximum number of iterations for the GA.
8. IterMax2: The maximum number of iterations for the Nelder–Mead algorithm.
9. ρ: The coefficients of reflection.
10. χ: The coefficients of expansion.
11. γ: The coefficients of contraction.
12. σ: The coefficients of shrinkage.
13. rc: The probability of performing crossover between pairs of selected individuals

during reproduction.
14. rm: The probability of introducing random changes or mutations in the offspring to

promote diversity.

3.2. Phase 2: Generation of the First Population

Chaotic maps are employed to initialize the first population in metaheuristics. These
maps provide a stochastic and highly randomized approach to generating diverse and
exploratory initial solutions within the search space. By leveraging the chaotic dynamics of
these maps, initial population agents are assigned initial positions in a manner that ensures
wide coverage and dispersion across the solution space. This initial diversity is essential for
promoting exploration and preventing premature convergence, allowing the metaheuristic
algorithm to effectively explore the search space and discover promising regions that
may contain optimal or near-optimal solutions. By incorporating chaotic maps in the
initialization process, our methodology can enhance its ability to escape local optima and
improve the overall performance and convergence characteristics. Equation (10) serves as a
fundamental tool for generating the positions of individuals within the initial population.

xi = [ϕ
(1)
i (x(1)max − x(1)min) + x(1)min, . . . , ϕ

(D)
i (x(D)

max − x(D)
min) + x(D)

min] , i ∈ {1, . . . , N} (10)

We compare seven distinct chaotic schemes [67], which are Tent (Equation (11)), Sinu-
soidal (Equation (12)), Iterative (Equation (13)), Singer (Equation (14)), Sine (Equation (15)),
Chebyshev (Equation (16)), and Circle maps (Equation (17)), to determine which one ex-
hibits the best performance. The initial term ϕ1 of the chaotic sequence ϕ1, . . . , ϕN is a
random number drawn from the interval [0, 1].

ϕz+1 =

ϕz
0.7 , ϕz < 0.7

10
3 (1− ϕz) , ϕz ≥ 0.7

(11)

ϕz+1 = 2.3ϕ2
z sin(πϕz) (12)

Appl. Syst. Innov. 2023, 6, 80 14 of 31

ϕz+1 = sin
(

0.7π

ϕz

)
(13)

ϕz+1 = µ
(
7.86ϕz − 23.31ϕ2

z + 28.75ϕ3
z − 13.302875ϕ4

z
)

, µ = 1.07 (14)

ϕz+1 = sin(πϕz) (15)

ϕz+1 = cos(z cos−1 ϕz) (16)

ϕz+1 = mod(ϕz + 0.2−
(

0.5
2π

)
sin(2πϕz), 1) (17)

Although chaotic maps have proven to be useful in generating population members
with higher diversity levels, they can lead to the initialization of candidate solutions that
are far from the global optimum, particularly in real-world optimization problems where
the global optimum is often unknown. This undesirable situation can impede the rapid
convergence of solutions toward promising regions in the search space, compromising the
algorithm’s convergence characteristics. To address these limitations of chaotic maps, an
OBL strategy is incorporated into the initialization scheme of our methodology. The purpose
of this strategy is to explore the broader coverage of the search space by searching for the
opposite information of the chaotic population. The inclusion of OBL allows for the simul-
taneous evaluation of the original chaotic population and its opposite information, thereby
increasing the probability of finding fitter solutions in the search space. We compare six
distinct OBL strategies, named Strategy 1 [65] (Equation (18)), Strategy 2 [68] (Equation (19)),
Strategy 3 [69] (Equation (20)), Strategy 4 [70] (Equation (21)), Strategy 5 [71] (Equation (22)),
and Strategy 6 [71] (Equation (23)), to determine which one exhibits the best performance.
Let x = [x(1), . . . , x(D)] be a point in the n-dimensional space, where x(1), . . . , x(D) are real
numbers and x(j) ∈ [x(j)

min, x(j)
max] , j = 1, . . . , D. The opposite point of x is denoted by

x̆ = [x̆(1), . . . , x̆(D)] and can be calculated using one of Equations (18)–(22), or (23).

x̆(j) = x(j)
min + x(j)

max − x(j) (18)

x̆(j) = rand
(

x(j)
min + x(j)

max

2
, x(j)

min + x(j)
max − x(j)

)
(19)

x̆(j) =
x(j)

min + x(j)
max

2
+

(
υ(j) cos

(
πN (1, 0.25)

)
− ν(j) sin

(
πN (1, 0.25)

))
(20)

υ(j) = x(j) −
x(j)

min + x(j)
max

2

ν(j) =

√
(x(j) − x(j)

min)(x(j)
max − x(j))

x̆i = 2×
(

x1 + . . . + xN
N

)
− xi (21)

x̆(j) = (x(j)
max − x(j)

min) · Beta(α, β) + x(j)
min (22)

x̆(j) = (x(j)
max − x(j)

min) · Beta(α, β) + x(j)
min (23)

α =

{
s · p , M < 0.5
s , M ≥ 0.5

Appl. Syst. Innov. 2023, 6, 80 15 of 31

β =

{
s , M < 0.5
s · p , M ≥ 0.5

s =
(

1√
ν

)1+N (0,0.5)

, for Equation (22)

s = 0.1
√

ν + 0.9 , for Equation (23)

p =

(s−2)M+1

s(1−M)
, M < 0.5

2−s
s + s−1

s·M , M ≥ 0.5

M =
x(j)

max − x(j)

x(j)
max − x(j)

min

, for Equation (22)

M =
x(j) − x(j)

min

x(j)
max − x(j)

min

, for Equation (23)

ν =
1
N

N

∑
i=1

argmin
c∈{x1,...,xN}−{xi}

√√√√ 1
D

D

∑
j=1

(
x(j) − c(j)

x(j)
max − x(j)

min

)2

Algorithm 1 serves as a valuable tool for demonstrating the operational principles of
the initialization phase within our methodology. By presenting a step-by-step procedure,
it effectively showcases how the initial population of candidate solutions is generated.
Through Algorithm 1, we highlight the specific techniques and strategies employed to
create a diverse and representative set of individuals at the beginning of the optimization
process. It is worth pointing out that if a candidate solution exceeds the boundaries of the
search space after undergoing an opposition operation, it is subsequently restored to within
the valid range utilizing Equation (24).{

x(j) ← x(j)
max , x(j) > x(j)

max

x(j) ← x(j)
min , x(j) < x(j)

min

(24)

Algorithm 1: The pseudocode for the initialization phase of our methodology.
Input: D: The dimensionality of the search space.
Input: N: The population size.

Input: x(1)min, . . . , x(D)
min: The lower boundaries of entries x(1), . . . , x(D).

Input: x(1)max, . . . , x(D)
max: The upper boundaries of entries x(1), . . . , x(D).

Input: f (.): The multivariate function to be minimized.

1 for i← 1 to N do
2 for j← 1 to D do
3 if (i = 1) then
4 ϕ

(j)
i ← rand(0,1);

5 end
6 else
7 ϕ

(j)
i is updated using the selected chaotic map (Equations (11)–(16) or (17);

8 end
9 end

10 Compute xi using Equation (10);
11 Compute x̆i using the selected opposition-based learning strategy (Equations (18)–(22) or (23);
12 xi ← argmin{ f (xi), f (x̆i)};
13 end

Appl. Syst. Innov. 2023, 6, 80 16 of 31

3.3. Phase 3: Augmentation of the Population

The Nelder–Mead algorithm requires the construction of a simplex with exactly
D + 1 vertices, where D represents the dimensionality of the problem. However, in some
cases, the number of individuals available in the initial population is smaller than D + 1,
i.e., N < (D + 1). To overcome this limitation and enable the application of the Nelder–
Mead algorithm, we augment the population size by generating additional individuals. By
introducing these extra individuals, we ensure that the simplex can be properly formed,
allowing the algorithm to proceed as intended. This augmentation step ensures that the
optimization process can fully leverage the capabilities of the Nelder–Mead algorithm,
even when the initial population size is insufficient to construct the required simplex.

In optimization, when the population size is insufficient or does not meet the re-
quirements of certain algorithms, techniques can be employed to augment or expand the
population. These techniques aim to increase the diversity, coverage, or exploration capa-
bilities of the population to enhance the optimization process. Some common techniques
used to augment a population in optimization include:

1. Scaling: Scaling a vector x in an n-dimensional search space involves adjusting the
magnitude of its components uniformly. Mathematically, the scaled vector x́ can be
obtained by multiplying each component of the original vector x by a scaling factor s
(Equation (25)) [72].

x́ = s× x (25)

where x represents the original vector in n-dimensional space, and x́ represents the
scaled vector. The scaling factor s determines the magnitude of the scaling applied to
the vector, allowing for the contraction (s < 1) or expansion (s > 1) of its length. In our
methodology, the scaling factor s is generated randomly from the normal distribution
N (0, 1− t1

IterMax1
).

2. Rotation: Rotating a vector x in an n-dimensional search space involves changing its
direction or orientation while preserving its magnitude. Mathematically, the rotated
vector x́ can be obtained by multiplying the original vector x by a rotation matrix R
(Equation (26)) [72].

x́ = R× x (26)

R =

rkk = 1 , k 6∈ {p, q}
rkk = cos θ , k ∈ {p, q}
rij = 0 , otherwise
rxy = sin θ
ryx = − sin θ

where x represents the original vector in the n-dimensional space, x́ represents the
rotated vector, p and q represent the spanned plane, and θ is the rotation angle. The
rotation matrix R depends on the specific rotation operation being applied and is
typically constructed using a combination of trigonometric functions, such as sine
and cosine, to represent the desired rotation angles and axes in the n-dimensional
space. In our methodology, the rotation angle θ is computed using the expression
θ = B(0.5) · rand(−π, π), where the term B(0.5) denotes the Bernoulli distribution
with a probability of success equal to 0.5.

3. Translation: Translating a vector x in an n-dimensional search space involves shifting
its position without changing its direction or magnitude. Mathematically, the trans-
lated vector x́ can be obtained by adding a translation vector t to the original vector x
(Equation (27)) [72].

x́ = x + t (27)

where x represents the original vector in the n-dimensional space, x́ represents the
translated vector, and t represents the translation vector. The translation vector t
contains the amounts by which each component of the original vector is shifted along

Appl. Syst. Innov. 2023, 6, 80 17 of 31

its respective axes. In our methodology, the vector t is generated randomly from the
normal distribution N (0, 1− t1

IterMax1
).

4. Reflection: Reflecting a vector x in an n-dimensional search space involves creating
its mirror image across a specified line or plane while preserving its magnitude.
Mathematically, the reflected vector x́ can be obtained by subtracting the original
vector x from the double of the projection of x onto the reflection line or plane
(Equation (28)) [72].

x́ = 2× (x · v)× v− x (28)

where x represents the original vector in the n-dimensional space, x́ represents the
reflected vector, v represents the normal vector of the reflection line or plane, and
· denotes the dot product between two vectors. The reflection operation effectively
flips the sign of the component along the reflection axis, resulting in the mirror image
of the original vector. In our methodology, the vector v is generated randomly from
the normal distribution N (0, 1− t1

IterMax1
).

5. Similarity transformation: The similarity transformation of a vector x in an n-
dimensional search space involves scaling and rotating the vector while preserving
its shape. Mathematically, the transformed vector x́ can be obtained by first scaling
the original vector x by a scaling factor s and then rotating it using a rotation matrix
R (Equation (29)) [72].

x́ = s× R× x (29)

where x represents the original vector in the n-dimensional space, x́ represents the
transformed vector, s is the scaling factor, and R is the rotation matrix. The similarity
transformation allows for modifications in size and orientation while preserving the
relative positions of the vector’s components.

Algorithm 2 serves as a concise representation, capturing the key stages of the augmen-
tation phase. This algorithm effectively distills the fundamental procedures and essential
processes involved in augmenting a given population. By encapsulating the primary steps
in a succinct form, Algorithm 2 enables a clear understanding of the augmentation phase,
offering a compact yet comprehensive guide for implementing this crucial component
of our methodology. It is worth mentioning that if the generated candidate solution ex-
ceeds the boundaries of the search space after undergoing a geometric transformation, it is
subsequently restored to within the valid range utilizing Equation (24).

Algorithm 2: The pseudocode for the augmentation phase of our methodology.
Input: D: The dimensionality of the search space.
Input: x(1)min, . . . , x(D)

min: The lower boundaries of entries x(1), . . . , x(D).

Input: x(1)max, . . . , x(D)
max: The upper boundaries of entries x(1), . . . , x(D).

Input: P = {x1, . . . , xN}: The candidate solutions within the current population.

1 while
(
|P| < (D + 1)

)
do

2 Select a random vector xr, where r ∈ {1, . . . , |P|}, using roulette-wheel
selection;

3 Compute the vector x́r using the selected augmentation operation (Equations
(25)–(28) or (29);

4 Compute ˘́xr using the selected opposition-based learning strategy (Equations
(18)–(22) or (23);

5 x́r ← argmin{ f (x́r), f (˘́xr)};
6 Add the new vector x́r to the population P;
7 end

Appl. Syst. Innov. 2023, 6, 80 18 of 31

3.4. Phase 4: Building the Mating Pool

During this phase, the individuals within the population undergo a sorting process
to identify the most promising candidates. The goal is to select D + 1 candidate solutions,
where D represents the dimensionality of the problem. These selected individuals will serve
as the entry points for the subsequent application of the opposition Nelder–Mead algorithm.
By carefully sorting and choosing these initial candidates, the mating pool is effectively
formed, paving the way for further optimization and refinement through the proposed
methodology. This critical phase ensures that the subsequent steps of our methodology are
initiated with a set of highly competitive solutions, maximizing the potential for successful
optimization and convergence.

In the process of building the mating pool, we employ the roulette-wheel selection
method [73]. The specific approach varies depending on the size of the population. In
the case where the population size is equal to or less than D + 1, we apply roulette-wheel
selection to the augmented population. This augmented population includes additional
individuals that have been generated to meet the minimum population size requirement.
However, if the population size exceeds D + 1, we solely utilize roulette-wheel selection on
the current population without any augmentation.

3.5. Phase 5: Application of the Opposition Nelder–Mead Algorithm

Algorithm 3 serves as a demonstration of the working principle underlying the opposi-
tion Nelder–Mead algorithm, which plays a pivotal role in our methodology. By following
the steps outlined in Algorithm 3, we can witness firsthand how the opposition Nelder–
Mead algorithm operates to optimize a given objective function. This algorithm showcases
the dynamic interplay between reflection, expansion, contraction, and shrinking, allowing
us to iteratively refine and improve the selection phase of the GA. Algorithm 3 encapsulates
the essence of the opposition Nelder–Mead algorithm’s working principle, providing a
clear and practical illustration of its effectiveness in guiding the selection phase of the GA
on the one hand, and the optimization process within our methodology on the other hand.
It is worth mentioning that if a vertex exceeds the boundaries of the search space after
undergoing the operations described in Algorithm 3, it is consequently restored to within
the valid range using Equation (24).

y1 = argmin
xi∈{x1,...,xD+1}

{ f (xi)} (30)

yD+1 = argmax
xi∈{x1,...,xD+1}

{ f (xi)} (31)

yD = argmax
xi∈{x1,...,xD+1}−{yD+1}

{ f (xi)} (32)

x̄ =
1
D ∑

xi∈{x1,...,xD+1}−{yD+1}
xi (33)

Appl. Syst. Innov. 2023, 6, 80 19 of 31

Algorithm 3: The pseudocode for the opposition Nelder–Mead algorithm.

Input: x(1)min, . . . , x(D)
min: The lower boundaries of entries x(1), . . . , x(D).

Input: x(1)max, . . . , x(D)
max: The upper boundaries of entries x(1), . . . , x(D).

Input: {x1, . . . , xD+1}: The candidate solutions within the mating pool.
Input: ρ, χ, γ, and σ: The coefficients of reflection, expansion, contraction, and shrinkage, respectively.
Input: f (.): The multivariate function to be minimized.

1 for t2 ← 1 to IterMax2 do
2 Compute the best vertex y1 using Equation (30);
3 Compute the worst vertex yD+1 using Equation (31);
4 Compute the next-worst vertex yD using Equation (32);
5 Compute the centroid x̄ excluding the worst vertex using Equation (33);
6 Compute the reflection vertex xr using Equation (5);
7 Compute x̆r using the selected opposition-based learning strategy (Equations (18)–(22) or (23);
8 if

(
f (y1) ≤ f (xr) < f (yD)

)
then

9 xD+1 ← argmin{ f (xr), f (x̆r)};
10 end
11 if

(
f (xr) < f (y1)

)
then

12 Compute the expansion vertex xe using Equation (6);
13 Compute x̆e using the selected opposition-based learning strategy (Equations (18)–(22) or (23);
14 if

(
f (xe) < f (xr)

)
then

15 xD+1 ← argmin{ f (xe), f (x̆e)};
16 end
17 else
18 xD+1 ← argmin{ f (xr), f (x̆r)};
19 end
20 end
21 if

(
f (xr) ≥ f (yD)

)
then

22 if
(

f (yD) ≤ f (xr) < f (yD+1)
)

then
23 Compute the outside contraction vertex xoc using Equation (7);
24 Compute x̆oc using the selected opposition-based learning strategy (Equations (18)–(22) or

(23);
25 if

(
f (xoc) < f (xr))

)
then

26 xD+1 ← argmin{ f (xoc), f (x̆oc)};
27 end
28 end
29 if

(
f (xr) ≥ f (yD+1)

)
then

30 Compute the inside contraction vertex xic using Equation (8);
31 Compute x̆ic using the selected opposition-based learning strategy (Equations (18)–(22) or

(23);
32 if

(
f (xic) < f (yD+1)

)
then

33 xD+1 ← argmin{ f (xic), f (x̆ic)};
34 end
35 end
36 end
37 for xi ∈ {x1, . . . , xD+1} do
38 Update the vertex xi using Equation (9);
39 Compute x̆i using the selected opposition-based learning strategy (Equations (18)–(22) or (23);
40 xi ← argmin{ f (xi), f (x̆i)};
41 end
42 end

3.6. Phase 6: Application of Genetic Operators

The presented study provides a comprehensive understanding of the GA by delineat-
ing its key components into distinct sections. Section 3.6.1 elucidates the intricate details
of the selection process, where individuals from the population are carefully chosen to
pass on to the next generation. Section 3.6.2 focuses on the reproduction process, outlining
how the selected parents generate offspring through recombination operations. Lastly, in
Section 3.6.3, the mutation process takes center stage, elucidating the mechanisms through
which the genetic material of the individuals undergoes random modifications to introduce
novel genetic information. It is worth pointing out that if an individual exceeds the bound-
aries of the search space after undergoing the genetic operators, it is consequently restored
to within the valid range using Equation (24).

Appl. Syst. Innov. 2023, 6, 80 20 of 31

3.6.1. Selection

Genetic algorithms are a type of evolutionary algorithm that mimics the process of
natural selection to solve optimization problems. In GAs, the selection mechanism deter-
mines which individuals from a given population will be passed to the next generation.
The selection process is crucial in driving the search for better solutions over successive gen-
erations. Several common selection mechanisms are used in GAs [74]. In our methodology,
we use elitism [75]. Elitism involves selecting a certain number of the best individuals from
the current population and directly transferring them to the next generation without any
changes. This ensures that the best solutions found so far are preserved across generations,
preventing the loss of fitness during the evolution process.

3.6.2. Crossover

The crossover technique used to deal with continuous values in genetic algorithms
is known as BLX-α (Blend Crossover) [76]. BLX-α is a variation of the traditional
crossover operator used in genetic algorithms, which is typically designed for binary
or discrete variables. BLX-α allows for the combination of parent solutions that have
continuous values.

In the BLX-α crossover, a new offspring is created by blending the values of corre-
sponding variables from two parent solutions. The process involves selecting a random
value within a defined range for each variable and using the blending factor to determine
the range of values for the offspring. The blending factor, denoted as alpha (α), controls the
amount of exploration and exploitation during the crossover process. The following steps
present a high-level description of the BLX-α crossover technique used in our methodology.
Steps 1, 2, and 3 are iteratively performed until the size of the next population becomes N.
It is worth highlighting that two parent individuals will undergo a crossover process based
on a specified crossover rate (rc):

1. Select two parent individuals xp1 and xp2 from the mating pool using roulette-wheel
selection [73].

2. Compute the offspring xo using Equation (34).

xo = [rand(λ1 − απi, ω1 + απi), . . . , rand(λD − απD, ωD + απD)] (34)

λj = min(x(j)
p1 , x(j)

p2)

ωj = max(x(j)
p1 , x(j)

p2)

πj = |ωj − λj|

α = 1− rand(0, 1)×
(

1− t1

IterMax1

)
3. Add the new offspring to the next population.

The value of α determines the extent of exploration and exploitation during crossover.
A smaller value of α encourages more exploration, allowing for a wider range of values
in the offspring. Conversely, a larger value of α encourages more exploitation, resulting
in offspring closer to the parent solutions. The BLX-α crossover technique enables the
combination of continuous variables in genetic algorithms and provides a way to effectively
explore and exploit the search space.

3.6.3. Mutation

The mutation technique, commonly used to deal with continuous values in genetic
algorithms, is known as Gaussian mutation or normal distribution mutation [77]. This
technique introduces random perturbations to the values of the variables in a continuous
search space, mimicking the behavior of a Gaussian or normal distribution. In Gaussian
mutation, a random value is generated from a Gaussian distribution with a mean of zero

Appl. Syst. Innov. 2023, 6, 80 21 of 31

and a predefined standard deviation. This random value is then added to each variable
of an individual in the population, causing a small random change in its value. The
standard deviation determines the magnitude of the mutation, controlling the exploration
and exploitation trade-off during the search process. It is worth emphasizing that an
individual will undergo a mutation process based on a designated mutation rate (rm). The
following steps introduce a high-level description of the Gaussian mutation technique used
in our methodology:

1. For each variable in an individual, generate a random value from a Gaussian distribu-
tion with a mean of zero and a predefined standard deviation.

σ =

(
1− t1

IterMax1

)
2. Generate a random number drawn from the uniform distribution. If the generated

number is less than or equal to the specified mutation rate, then add the mutation
amount to the current value of the variable to obtain the mutated value.

3. Repeat steps 1 and 2 for all individuals in the population.

The standard deviation parameter plays a crucial role in Gaussian mutation. A
smaller standard deviation leads to smaller random perturbations, resulting in finer
exploration and a higher likelihood of converging to a local optimum. Conversely, a
larger standard deviation allows for larger random perturbations, promoting broader
exploration and the potential to escape local optima. Gaussian mutation enables the
exploration of the continuous search space in genetic algorithms by introducing random
perturbations to the individuals. It provides a way to balance exploration and exploita-
tion, aiding the algorithm’s ability to search for optimal or near-optimal solutions in
continuous domains.

3.7. Time Complexity of the Proposed Methodology

In this section, we delve into the time complexity of the proposed methodology. The
efficiency of the methodology is intricately tied to its various phases, namely Phase 2,
Phase 3, Phase 4, Phase 5, and Phase 6. The time complexity analysis of each stage provides
valuable insights into the overall performance of the methodology. By understanding the
time complexities of these individual stages, we gain a comprehensive understanding of
how the methodology scales with larger dimensions or more complex problems. Through
this examination, we can assess the computational demands and make informed decisions
regarding the feasibility and efficiency of implementing the proposed methodology in
real-world scenarios. Table 1 provides a comprehensive summary of the time complexity
associated with each phase of the proposed methodology. Finally, by computing the
complexities of all phases, we can determine the global complexity of the methodology. It
is worth mentioning that the time complexity of a function evaluation is O(n2).

Table 1. Time complexity of the proposed methodology.

Phase Time Complexity

Phase 2 O(n3)

Phase 3 O(n3)

Phase 4 O(n3)

Phase 5 O(n3)

Phase 6 O(n3)

Methodology’s time complexity O(n3)

Appl. Syst. Innov. 2023, 6, 80 22 of 31

4. Experimental Results and Discussion

The workstation utilized for conducting the experimental study is equipped with a
well-suited hardware and software configuration to support the required tasks. The work-
station runs on a Windows 11 Home operating system, providing a user-friendly interface
and compatibility with a wide range of software applications. The hardware configuration
features an Intel(R) Core(TM) i7-9750H CPU, with a base frequency of 2.60 GHz and a
maximum turbo frequency of 4.50 GHz. This high-performance processor ensures the
efficient execution of computational tasks and data processing. Additionally, the worksta-
tion includes 16.0 GB of RAM, enabling the handling of complex calculations with ease.
The software suite installed on the workstation consists of Matlab R2020b, a powerful
programming language and environment for numerical computing and algorithm develop-
ment. Furthermore, the IBM SPSS Statistics 26 software is also installed on the workstation,
providing a comprehensive platform for statistical analysis and conducting various statisti-
cal tests. This combination of hardware and software configurations offers a robust and
capable environment for conducting the experimental study, effectively facilitating data
analysis, statistical modeling, and computational tasks.

The effectiveness of the proposed methodology was assessed through rigorous testing
on the CEC 2022 (https://github.com/P-N-Suganthan/2022-SO-BO (accessed on 28 June
2023)) benchmark, which comprises a set of 12 hard and challenging test functions. Among
these functions, one is unimodal in nature, whereas four are multimodal. Additionally,
three functions are designed as hybrid, and the remaining four functions are composite. The
use of the unimodal function aims to evaluate the methodology’s exploitation capability, as
it requires focusing on refining solutions within a simple search space. The inclusion of
multimodal functions allows for assessing the methodology’s exploration capability, as it
necessitates exploring a complex search space with multiple optima. Furthermore, the hy-
brid and composite functions were employed to evaluate the methodology’s ability to strike
a balance between exploration and exploitation, as they combine different characteristics
and complexities. The comprehensive testing on this diverse set of test functions provided
valuable insights into the performance and robustness of the proposed methodology across
various optimization scenarios. Table 2 depicts the features of the test problems suite.

Table 2. Information and features of the test problems suite.

N° Functions F∗
i

Unimodal function 1 Shifted and full Rotated Zakharov Function 300

Basic
functions

2 Shifted and full Rotated Rosenbrock’s Function 400

3 Shifted and full Rotated Expanded Schaffer’s f6 Function 600

4 Shifted and full Rotated Non-Continuous Rastrigin’s Function 800

5 Shifted and full Rotated Lévy Function 900

Hybrid
functions

6 Hybrid Function 1 (N = 3) 1800

7 Hybrid Function 2 (N = 6) 2000

8 Hybrid Function 3 (N = 5) 2200

Composition
functions

9 Composition Function 1 (N = 5) 2300

10 Composition Function 2 (N = 4) 2400

11 Composition Function 3 (N = 5) 2600

12 Composition Function 4 (N = 6) 2700

Search range: [−100, 100]D

D: The dimensionality of the search space.

https://github.com/P-N-Suganthan/2022-SO-BO

Appl. Syst. Innov. 2023, 6, 80 23 of 31

To thoroughly assess the effectiveness of the proposed methodology, it was subjected to
a comparative analysis against 11 highly influential and powerful algorithms, specifically:

1. Co-PPSO: Performance of Composite PPSO on Single Objective Bound Constrained
Numerical Optimization Problems of CEC 2022 [78].

2. EA4eigN100-10: Eigen Crossover in Cooperative Model of Evolutionary Algorithms
applied to CEC 2022 Single Objective Numerical Optimization [79].

3. IMPML-SHADE: Improvement of Multi-Population ML-SHADE [80].
4. IUMOEAII: An improved IMODE algorithm based on Reinforcement Learning [81].
5. jSObinexpEig: An adaptive variant of jSO with multiple crossover strategies employ-

ing Eigen transformation [82].
6. MTT-SHADE: Multiple Topology SHADE with a tolerance-based composite frame-

work for CEC 2022 Single Objective Bound Constrained Numerical Optimization [83].
7. NL-SHADE-LBC: NL-SHADE-LBC algorithm with linear parameter adaptation bias

change for CEC 2022 Numerical Optimization [84].
8. NL-SHADE-RSP-MID: A version of the NL-SHADE-RSP algorithm with Midpoint for

CEC 2022 Single Objective Bound Constrained Problems [85].
9. OMCSOMA: Opposite Learning and Multi-Migrating Strategy-Based Self-Organizing

Migrating algorithm with a convergence monitoring mechanism [86].
10. S-LSHADE-DP: Dynamic Perturbation for Population Diversity Management in Dif-

ferential Evolution [87].
11. NLSOMACLP: NL-SOMA-CLP for Real Parameter Single Objective Bound Con-

strained Optimization [88].

Each of these algorithms represents a significant approach in the field of optimization.
The comparison was conducted by measuring and reporting the average and standard
deviation values for each algorithm. This comprehensive evaluation allowed for a compre-
hensive understanding of the proposed methodology’s performance in relation to other
well-established algorithms. By considering a diverse range of state-of-the-art algorithms,
we were able to gain valuable insights into the strengths, weaknesses, and comparative
performance of the proposed methodology. To enhance clarity, the algorithms originally
labeled Co-PPSO are renamed A2, and the algorithms originally labeled EA4eigN100-10
are renamed A3. This renaming convention was also used for the remaining algorithms.
By utilizing the new nomenclature (A2, A3, . . . , A12), the presentation and interpretation
of the results are more straightforward and unambiguous. Finally, our methodology is
renamed A1.

Table 3 presents the diversity measurements (∆) calculated using Equation (35)
during the initialization of the initial population. The diversity values were examined
for two different dimensions, D = 10 and D = 20. For D = 10, it was observed that
the highest diversity value was achieved when employing the chaotic map outlined in
Equation (13) in conjunction with the opposition-based learning technique provided in
Equation (23). On the other hand, for D = 20, the maximum diversity value was obtained
when utilizing the chaotic map described in Equation (11) and the opposition-based
learning technique provided in Equation (20). Consequently, these specific parameters
were chosen to conduct the comparative study, as they demonstrated superior diversity
in the initial population.

∆ =
1
D

D

∑
j=1

(
1
N

N

∑
i=1
‖x̄− xi‖

)
(35)

x̄ =
x1 + . . . + xN

N

Appl. Syst. Innov. 2023, 6, 80 24 of 31

Table 3. Different diversity measurements obtained for the chosen configurations.

Chaotic Schemes

OBL Strategies Equation (18) Equation (19) Equation (20) Equation (21) Equation (22) Equation (23)

D = 10 D = 20 D = 10 D = 20 D = 10 D = 20 D = 10 D = 20 D = 10 D = 20 D = 10 D = 20

Equation (11) 38.67 39.45 33.89 32.74 44.32 45.24 37.59 36.75 43.48 43.38 45 46.17

Equation (12) 39.49 40.32 34.01 32.44 44.65 46.3 36.28 37.35 43.49 43.36 44.92 46.22

Equation (13) 38.22 39.43 34.28 32.56 44.44 45.95 37.33 37.31 43.48 43.37 45.15 45.61

Equation (14) 38.77 40.43 33.76 33.04 44.3 45.43 38.72 38.39 43.5 43.38 45.57 46.26

Equation (15) 38.77 39.88 33.91 32.56 44.2 45.54 37.9 38.19 43.5 43.37 45.4 45.95

Equation (16) 39.93 39.56 34.07 32.61 44.63 45.71 37.46 36.5 43.58 43.37 45.3 46.28

Equation (17) 39.73 40.15 33.66 33.11 44.79 45.32 37.25 38.02 43.49 43.37 45.14 46.05

Table 4 presents the initial values selected for the various parameters of the pro-
posed methodology. This table serves as a comprehensive reference for the parameter
configurations utilized during the initial stages of the study. Additionally, it is im-
portant to note that the initialization of the parameters for the algorithms employed
in the comparative study was derived from their respective papers. By incorporating
the parameters outlined in the original research papers, we ensure consistency and
comparability between our study and previous works. This approach allows for a
fair evaluation and unbiased comparison of the performance and effectiveness of the
proposed methodology against existing algorithms. The proposed methodology was
executed 30 times in order to facilitate the application of the Friedman statistical test.
The Cayley–Menger determinant is a determinant that provides the volume of a simplex
in D dimensions. If S is a D-simplex in RD with vertices {x1, . . . , xD+1} and B = (βij)
denotes the (D + 1)× (D + 1) matrix modeled in Equation (36), then the volume of the
simplex S, denoted by V(S), is computed using Equation (37).

βij = ‖xi − xj‖2 (36)

V(S) =

√
(−1)D+1

2D(D!)2 det(B̂) (37)

where B̂ is the (D + 2)× (D + 2) matrix obtained from B by bordering B with a top vector
[0, 1, ..., 1] and a left column [0, 1, ..., 1]T . Here, the vector L2-norms |xi − xj|2 are the edge
lengths, and the determinant in Equation (37) is the Cayley–Menger determinant [89,90].

Table 4. Initial values of parameters utilized in our methodology.

Parameter Initial Value

D 10 or 20

N 50

ρ 1

χ 2

γ 0.5

σ 0.5

rc 0.7

rm 0.05

Stopping criterion of the genetic algorithm The error value is smaller than 10−8

Stopping criterion of the Nelder–Mead algorithm The V value is smaller than 10−8

Appl. Syst. Innov. 2023, 6, 80 25 of 31

Tables 5 and 6 report the mean and standard deviation values derived using our
methodology and the algorithms employed in our comparative study. These values
were calculated for the 12 test functions outlined in Table 2, providing a comprehen-
sive analysis of their performance and reliability. The computed values were based
on D = 10 and D = 20, representing the dimensions considered in our analysis. It is
worth emphasizing that as the standard deviation value approaches 0, it signifies better
algorithm performance, indicating that the algorithm has discovered a solution that is
close to optimal. The optimal scenario occurs when the standard deviation value is
exactly 0, indicating that the algorithm has successfully identified the optimal solution
reported in Table 2. Moreover, to assess the behavior of the algorithms, the standard
deviation values underwent a comprehensive analysis. Following a Friedman test, which
evaluated the statistical significance of the differences among the multiple algorithms,
Dunn’s post hoc test was applied. This post hoc test allows for further examination of
pairwise comparisons, enabling a more detailed understanding of the variations in the
performance of the algorithms and identifying significant differences between specific
algorithms. The significance level used for the statistical analysis was set at 0.05, indicat-
ing that any observed differences between algorithms must have a p-value less than 0.05
to be considered statistically significant. Additionally, a confidence interval of 95% was
employed, which means that there is a 95% probability that the true population parameter
falls within the calculated interval. This level of confidence provides a reliable estimation
of the performance of the algorithms and allows for robust conclusions to be drawn from
the analysis.

Friedman’s two-way analysis of variance by ranks test conducted on related sam-
ples yielded p-values of 1.80× 10−03 for D = 10 and 1.16× 10−01 for D = 20. These
p-values indicate the statistical significance of differences in the performance of the al-
gorithms across the tested dimensions. Specifically, for D = 10, the obtained p-value of
1.80× 10−03 suggests a highly significant difference in the performance of the algorithms,
whereas for D = 20, the p-value of 1.16× 10−01 indicates that the observed differences
were not statistically significant at the chosen significance level. The obtained ranks are
reported in the final rows of Tables 5 and 6. Notably, our methodology achieved the second
rank for D = 10, indicating its strong performance compared to the other algorithms
considered. In the case of D = 20, our methodology secured the first rank, demonstrating
its superior performance relative to the other algorithms in this dimension. These rank-
ings highlight the effectiveness and competitiveness of our methodology across different
problem complexities.

For D = 10, the comparison of the performance of the algorithms is presented,
highlighting the differences between the algorithms (1.80× 10−03 ≤ 0.05). Since for D = 20,
there was no observed difference in performance (1.16× 10−01 > 0.05), the focus is solely
on showcasing the variations in performance among the algorithms for D = 10. In Table 7,
the p-values obtained using Dunn’s test for D = 10 are presented, illustrating the pairwise
comparisons of the performance of the algorithms. A value in bold signifies that the
algorithm listed in the row outperformed the algorithm listed in the corresponding column.
Conversely, a value not in bold indicates that there was no statistically significant difference
in terms of performance between the compared algorithms. The values in bold provide a
clear indication of the superior performers within the set of algorithms analyzed.

Appl. Syst. Innov. 2023, 6, 80 26 of 31

Table 5. Statistical results obtained for D = 10.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank

A1
avg 0.00E+00 0.00E+00 0.00E+00 1.30E+00 0.00E+00 1.80E-02 0.00E+00 2.50E-02 0.00E+00 1.00E+02 0.00E+00 1.60E+02

4.17
std 0.00E+00 0.00E+00 0.00E+00 2.40E-01 0.00E+00 3.30E-03 0.00E+00 9.70E-02 0.00E+00 1.80E+01 0.00E+00 3.00E+01

A2
avg 0.00E+00 1.70E+00 0.00E+00 6.70E+00 0.00E+00 3.33E+02 8.84E+00 1.54E+01 2.30E+02 1.00E+02 2.50E+01 1.65E+02

8.04
std 0.00E+00 2.42E+00 0.00E+00 2.60E+00 0.00E+00 4.30E+02 9.81E+00 9.20E+00 8.70E-02 6.54E-02 7.96E+01 4.31E-01

A3
avg 8.31E-09 1.50E+00 8.59E-09 1.30E+00 8.04E-09 1.74E-02 8.54E-09 7.09E-02 1.90E+02 1.00E+02 9.10E-09 1.50E+02

7.00
std 1.34E-09 2.00E+00 9.98E-10 1.00E+00 1.62E-09 3.57E-02 1.17E-09 6.81E-02 5.78E-14 3.60E-02 1.06E-09 3.90E+00

A4
avg 0.00E+00 1.20E-03 2.51E-05 4.00E+00 0.00E+00 4.50E-01 5.70E-04 6.00E-01 2.30E+02 2.70E+01 0.00E+00 1.60E+02

6.38
std 0.00E+00 1.80E-03 2.80E-05 9.70E-01 0.00E+00 3.50E-01 2.40E-03 5.60E-01 0.00E+00 3.40E+01 0.00E+00 5.10E-01

A5
avg 0.00E+00 0.00E+00 0.00E+00 1.12E+01 0.00E+00 2.02E-01 0.00E+00 2.06E-01 2.22E+02 1.50E+01 0.00E+00 1.62E+02

6.21
std 0.00E+00 0.00E+00 0.00E+00 2.67E+00 0.00E+00 1.33E-01 0.00E+00 5.48E-01 4.19E+01 3.43E+01 0.00E+00 1.00E+00

A6
avg 7.68E-09 5.20E+00 8.72E-09 3.20E+00 8.04E-09 4.36E-02 3.50E-07 1.31E-01 2.30E+02 1.00E+02 9.04E-09 1.60E+02

6.67
std 1.77E-09 2.40E+00 1.04E-09 8.13E-01 1.47E-09 7.30E-02 1.19E-06 7.94E-02 8.67E-14 2.39E-02 7.83E-10 9.18E-01

A7
avg 0.00E+00 5.00E+00 0.00E+00 4.01E+00 0.00E+00 3.10E-01 8.47E-02 6.43E+00 2.29E+02 1.04E+02 0.00E+00 1.62E+02

6.79
std 0.00E+00 2.31E+00 0.00E+00 1.56E+00 0.00E+00 1.42E-01 8.56E-02 7.02E+00 0.00E+00 1.91E+01 0.00E+00 1.66E+00

A8
avg 0.00E+00 1.33E-01 0.00E+00 1.30E+00 0.00E+00 1.24E-01 0.00E+00 4.60E-02 2.29E+02 1.00E+02 0.00E+00 1.65E+02

3.5
std 0.00E+00 7.16E-01 0.00E+00 7.78E-01 0.00E+00 1.25E-01 0.00E+00 3.80E-02 5.68E-14 2.95E-02 0.00E+00 4.04E-01

A9
avg 1.00E-08 1.00E-08 1.00E-08 1.00E+01 1.69E+00 1.67E-01 1.00E-08 2.38E-01 2.29E+02 4.53E+00 1.01E-08 1.65E+02

6.38
std 0.00E+00 0.00E+00 0.00E+00 4.55E+00 3.88E+00 2.45E-01 0.00E+00 2.78E-01 0.00E+00 1.83E+01 6.50E-10 9.72E-01

A10
avg 9.39E-09 7.22E-03 1.03E-07 7.20E+00 8.93E-09 7.44E-01 1.33E-01 3.97E-01 2.22E+02 7.90E-01 9.79E-09 1.64E+02

9.17
std 8.68E-10 1.31E-02 3.52E-07 3.04E+00 1.08E-09 6.36E-01 3.38E-01 2.98E-01 4.12E+01 1.27E+00 2.45E-09 1.30E+00

A11
avg 0.00E+00 0.00E+00 0.00E+00 4.72E+00 0.00E+00 2.60E-01 0.00E+00 1.89E-01 1.91E+02 1.25E-02 0.00E+00 1.62E+02

5.29
std 0.00E+00 0.00E+00 0.00E+00 1.33E+00 0.00E+00 1.27E-01 0.00E+00 2.73E-01 8.54E+01 6.35E-02 0.00E+00 1.77E+00

A12
avg 9.09E-09 1.98E-01 2.07E-08 1.02E+01 9.47E-09 7.50E-01 3.32E-02 3.37E-01 2.29E+02 3.42E-01 9.30E-09 1.64E+02

8.42
std 5.55E-10 8.15E-01 6.21E-08 3.26E+00 4.52E-10 4.67E-01 1.79E-01 2.99E-01 5.68E-14 6.10E-01 4.94E-10 1.61E+00

Appl. Syst. Innov. 2023, 6, 80 27 of 31

Table 6. Statistical results obtained for D = 20.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank

A1
avg 0.00E+00 4.50E+01 0.00E+00 7.61E+00 0.00E+00 9.85E-02 2.97E+00 2.13E+01 0.00E+00 0.00E+00 5.56E-02 2.32E+02

3.79
std 0.00E+00 8.21E+00 0.00E+00 1.39E+00 0.00E+00 1.80E-02 5.42E-01 3.89E+00 0.00E+00 0.00E+00 1.02E-02 4.24E+01

A2
avg 0.00E+00 1.66E+01 6.48E-05 1.92E+01 5.36E-01 5.59E+03 2.96E+01 2.18E+01 1.80E+02 1.17E+02 3.13E+02 1.96E+02

8.04
std 0.00E+00 1.16E+00 2.71E-04 6.02E+00 9.21E-01 5.62E+03 7.31E+00 1.29E+00 3.76E-01 7.37E+01 9.73E+01 1.00E+00

A3
avg 8.74E-09 1.10E+00 9.14E-09 8.70E+00 9.07E-09 1.49E-01 3.50E+00 1.70E+01 1.70E+02 1.10E+02 3.20E+02 2.00E+02

7.00
std 1.14E-09 1.80E+00 9.38E-10 4.10E+00 8.89E-10 1.16E-01 4.80E+00 7.50E+00 2.89E-14 3.04E+01 4.30E+01 2.07E+00

A4
avg 3.76E-08 2.55E+00 4.14E-05 7.60E+00 0.00E+00 2.42E+01 1.44E+01 1.83E+01 1.81E+02 8.12E+00 2.41E+00 2.32E+02

6.38
std 6.84E-08 1.49E+00 2.69E-05 1.26E+00 0.00E+00 6.81E+00 6.30E+00 4.56E+00 1.86E-13 1.02E+01 3.61E+00 7.97E-01

A5
avg 0.00E+00 4.04E+01 0.00E+00 6.91E+01 4.83E+02 3.45E+00 2.97E+00 1.81E+01 1.87E+02 0.00E+00 2.80E+02 2.38E+02

6.83
std 0.00E+00 1.59E+01 0.00E+00 1.01E+01 3.88E+02 3.07E+00 2.66E+00 5.66E+00 8.67E-14 0.00E+00 7.61E+01 2.07E+00

A6
avg 8.82E-09 4.50E+01 9.12E-09 8.92E+00 9.07E-09 9.88E-02 5.40E+00 1.53E+01 1.81E+02 1.00E+02 3.07E+02 2.31E+02

5.63
std 9.51E-10 7.65E-01 6.96E-10 1.72E+00 7.60E-10 1.02E-01 5.47E+00 7.67E+00 2.89E-14 3.59E-02 2.54E+01 1.15E+00

A7
avg 0.00E+00 4.84E+01 2.66E-09 8.13E+00 0.00E+00 1.45E+00 1.20E+01 1.98E+01 1.81E+02 9.70E+01 3.03E+02 2.35E+02

6.25
std 0.00E+00 1.59E+00 1.46E-08 1.65E+00 0.00E+00 1.21E+00 6.32E+00 2.85E+00 8.67E-14 1.83E+01 1.83E+01 2.83E+00

A8
avg 0.00E+00 4.73E+01 0.00E+00 4.45E+00 0.00E+00 6.36E-01 2.58E+00 1.65E+01 1.81E+02 1.00E+02 3.03E+02 2.39E+02

5.13
std 0.00E+00 8.82E+00 0.00E+00 1.40E+00 0.00E+00 5.60E-01 5.74E+00 6.33E+00 0.00E+00 2.29E-02 1.80E+01 4.13E+00

A9
avg 1.00E-08 8.93E+00 1.00E-08 2.79E+01 1.47E+02 6.35E+00 1.16E+01 2.00E+01 1.81E+02 2.08E-03 1.50E+02 2.43E+02

7.25
std 0.00E+00 1.67E+01 0.00E+00 7.83E+00 7.61E+01 5.41E+00 8.99E+00 1.18E+00 0.00E+00 7.92E-03 1.53E+02 3.99E+00

A10
avg 9.46E-09 4.13E+01 9.46E-09 2.30E+01 1.49E-02 3.26E+02 8.84E+00 2.13E+01 1.78E+02 3.50E-01 1.79E-05 2.38E+02

8.17
std 6.32E-10 1.64E+01 4.95E-10 6.37E+00 4.06E-02 6.30E+02 9.95E+00 6.98E-01 1.42E+01 6.59E-01 8.03E-05 7.11E+00

A11
avg 0.00E+00 4.03E-01 0.00E+00 1.34E+01 2.98E-03 2.14E+00 1.31E+01 1.87E+01 1.81E+02 0.00E+00 3.00E+01 2.34E+02

5.96
std 0.00E+00 1.21E+00 0.00E+00 2.94E+00 1.61E-02 2.72E+00 8.57E+00 4.88E+00 5.68E-14 0.00E+00 9.00E+01 2.08E+00

A12
avg 9.48E-09 3.55E+01 9.29E-09 3.30E+01 6.61E-02 4.47E+01 5.46E+00 2.05E+01 1.81E+02 2.52E-01 1.38E-03 2.37E+02

7.58
std 5.23E-10 2.07E+01 6.85E-10 9.67E+00 1.28E-01 1.70E+01 6.33E+00 1.29E+00 5.68E-14 2.92E-01 7.42E-03 2.67E+00

Appl. Syst. Innov. 2023, 6, 80 28 of 31

Table 7. Pairwise comparisons of the p-values obtained using Dunn’s test.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 1.00E-02 5.00E-02 1.30E-01 1.70E-01 9.00E-02 7.00E-02 1.30E-01 6.82E-04 4.40E-01 0.00E+00

A2 4.40E-01 8.00E-01

A3 4.80E-01 1.40E-01 3.40E-01

A4 2.60E-01 6.70E-01 8.40E-01 7.80E-01 1.00E+00 6.00E-02 1.70E-01

A5 2.10E-01 5.90E-01 9.10E-01 7.60E-01 6.90E-01 9.10E-01 4.00E-02 1.30E-01

A6 3.50E-01 8.20E-01 9.30E-01 9.00E-02 2.30E-01

A7 4.00E-01 8.90E-01 1.10E-01 2.70E-01

A8 6.50E-01 0.00E+00 2.00E-02 5.00E-02 7.00E-02 3.00E-02 3.00E-02 5.00E-02 1.18E-04 2.20E-01 8.37E-04

A9 2.60E-01 6.70E-01 8.40E-01 7.80E-01 6.00E-02 1.70E-01

A10

A11 6.00E-02 2.50E-01 4.60E-01 5.30E-01 3.50E-01 3.10E-01 4.60E-01 1.00E-02 3.00E-02

A12 6.10E-01

5. Conclusions and Future Scope

In conclusion, this paper introduced a novel methodology that integrates the opposition
Nelder–Mead algorithm into the selection phase of the genetic algorithm, aiming to improve
its performance. Through a comprehensive comparative study, our methodology was rig-
orously evaluated against 11 highly regarded state-of-the-art algorithms known for their
exceptional performance in the 2022 IEEE Congress on Evolutionary Computation (CEC
2022). The evaluation included Dunn’s post hoc test following a Friedman test. The results
obtained were highly promising, showcasing the outstanding performance of our algorithm.
In the majority of cases examined, our methodology demonstrated equal or superior perfor-
mance compared to the competing algorithms. These findings affirm the effectiveness and
competitiveness of our proposed approach for solving optimization problems.

In future work, we plan to further explore and refine the integration of the opposition
Nelder–Mead algorithm with other stages of the genetic algorithm. Additionally, we aim
to conduct more extensive experiments on diverse benchmark problems to evaluate the
robustness and generalizability of our methodology. Furthermore, investigating the scala-
bility and efficiency of our approach for larger problem dimensions will be an important
area of future research. Overall, we believe that our proposed methodology opens up
promising avenues for advancements in evolutionary optimization techniques.

Author Contributions: Conceptualization, F.Z. and S.H.; methodology, F.Z. and S.H.; software, F.Z.
and S.H.; validation, F.Z. and S.H.; formal analysis, F.Z. and S.H.; writing—original draft preparation,
F.Z. and S.H.; writing—review and editing, F.Z. and S.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, MA, USA, 2004.
2. Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization; Athena Scientific: Belmont, MA, USA, 1997; Volume 6.
3. Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming: Theory and Algorithms; John Wiley & Sons: Hoboken, NJ,

USA, 2013.
4. Bertsekas, D. Convex Optimization Algorithms; Athena Scientific: Belmont, MA, USA, 2015.
5. Fletcher, R. An Overview of Unconstrained Optimization; Springer: Berlin/Heidelberg, Germany, 1994.
6. Gill, P.E.; Murray, W.; Wright, M.H. Practical Optimization; SIAM: Philadelphia, PA, USA, 2019.

Appl. Syst. Innov. 2023, 6, 80 29 of 31

7. Winston, W.L.; Venkataramanan, M.; Goldberg, J.B. Introduction to Mathematical Programming: Operations Research; Thom-
son/Brooks/Cole: Pacific Grove, CA, USA, 2003; Volume 1.

8. Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; Mit Press: Cambridge, MA, USA, 2019.
9. Wolsey, L.A. Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 2020.
10. Bertsekas, D.P. Dynamic Programming and Optimal Control, 4th ed.; Athena Scientific: Belmont, MA, USA, 2015; Volume 2.
11. Skiena, S.S. The Algorithm Design Manual; Springer: Berlin/Heidelberg, Germany, 1998; Volume 2.
12. Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis;

Cambridge University Press: Cambridge, MA, USA, 2017.
13. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

[PubMed]
14. Sampson, J.R. Adaptation in Natural and Artificial Systems, Holland, J.H., Ed.; Mit Press: Cambridge, MA, USA, 1976.
15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948.
16. Dorigo, M. The Any System Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 1–13.

[CrossRef] [PubMed]
17. Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. 1847, 25, 536–538.
18. Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010;

Volume 37.
19. Dennis J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA,

USA, 1996.
20. Floudas, C.A.; Pardalos, P.M. Encyclopedia of Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008.
21. Sluijk, N.; Florio, A.M.; Kinable, J.; Dellaert, N.; Van Woensel, T. Two-echelon vehicle routing problems: A literature review. Eur.

J. Oper. Res. 2023, 304, 865–886. [CrossRef]
22. Wang, Y.; Roy, N.; Zhang, B. Multi-objective transportation route optimization for hazardous materials based on GIS. J. Loss Prev.

Process. Ind. 2023, 81, 104954. [CrossRef]
23. Zhang, G.; Jia, N.; Zhu, N.; Adulyasak, Y.; Ma, S. Robust drone selective routing in humanitarian transportation network

assessment. Eur. J. Oper. Res. 2023, 305, 400–428. [CrossRef]
24. Rines, M.R.; Balchanos, M.G.; Mavris, D.N. Application of Reinforcement Learning Agents to Space Habitat Resource Manage-

ment. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 2376.
25. Kouka, N.; BenSaid, F.; Fdhila, R.; Fourati, R.; Hussain, A.; Alimi, A.M. A novel approach of many-objective particle swarm

optimization with cooperative agents based on an inverted generational distance indicator. Inf. Sci. 2023, 623, 220–241. [CrossRef]
26. Du, X.; Du, C.; Chen, J.; Liu, Y. An energy-aware resource allocation method for avionics systems based on improved ant colony

optimization algorithm. Comput. Electr. Eng. 2023, 105, 108515. [CrossRef]
27. Taheri, M.; Amalnick, M.S.; Taleizadeh, A.A.; Mardan, E. A fuzzy programming model for optimizing the inventory management

problem considering financial issues: A case study of the dairy industry. Expert Syst. Appl. 2023, 221, 119766. [CrossRef]
28. Alina, P. Improvement of Methods for Estimation of the Construction Investment Projects Efficiency. Ph.D. Thesis, Technical

University of Moldova, Chisinau, Moldova, 2004.
29. Muhammad, F.; Jalal, S. Optimization of stirrer parameters by Taguchi method for a better ceramic particle stirring performance

in the production of Aluminum Alloy Matrix Composite. Cogent Eng. 2023, 10, 2154005. [CrossRef]
30. Shafi, I.; Mazhar, M.F.; Fatima, A.; Alvarez, R.M.; Miró, Y.; Espinosa, J.C.M.; Ashraf, I. Deep Learning-Based Real Time Defect

Detection for Optimization of Aircraft Manufacturing and Control Performance. Drones 2023, 7, 31. [CrossRef]
31. Lu, S.; Chen, C.; Wang, Y.; Li, Z.; Li, X. Coordinated scheduling of production and logistics for large-scale closed-loop

manufacturing using Benders decomposition optimization. Adv. Eng. Inform. 2023, 55, 101848. [CrossRef]
32. Khan, F.A.; Ullah, K.; ur Rahman, A.; Anwar, S. Energy optimization in smart urban buildings using bio-inspired ant colony

optimization. Soft Comput. 2023, 27, 973–989. [CrossRef]
33. Yuan, X.; Karbasforoushha, M.A.; Syah, R.B.; Khajehzadeh, M.; Keawsawasvong, S.; Nehdi, M.L. An Effective Metaheuristic

Approach for Building Energy Optimization Problems. Buildings 2023, 13, 80. [CrossRef]
34. Chiatti, C.; Fabiani, C.; Pisello, A.L. Toward the energy optimization of smart lighting systems through the luminous potential of

photoluminescence. Energy 2023, 266, 126346. [CrossRef]
35. Salawu, S.; Obalalu, A.; Shamshuddin, M. Nonlinear solar thermal radiation efficiency and energy optimization for magnetized

hybrid Prandtl–Eyring nanoliquid in aircraft. Arab. J. Sci. Eng. 2023, 48, 3061–3072. [CrossRef]
36. Dhandapani, S.; Jerald Rodriguez, A.R. Poor and rich dolphin optimization algorithm with modified deep fuzzy clustering for

COVID-19 patient analysis. Concurr. Comput. Pract. Exp. 2023, 35, e7456. [CrossRef]
37. Fan, Z.; Gou, J. Predicting body fat using a novel fuzzy-weighted approach optimized by the whale optimization algorithm.

Expert Syst. Appl. 2023, 217, 119558. [CrossRef]
38. Bajaj, N.S.; Patange, A.D.; Jegadeeshwaran, R.; Pardeshi, S.S.; Kulkarni, K.A.; Ghatpande, R.S. Application of metaheuristic

optimization based support vector machine for milling cutter health monitoring. Intell. Syst. Appl. 2023, 18, 200196. [CrossRef]
39. Elkhovskaya, L.O.; Kshenin, A.D.; Balakhontceva, M.A.; Ionov, M.V.; Kovalchuk, S.V. Extending Process Discovery with Model

Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes. Algorithms 2023, 16, 57. [CrossRef]

http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://dx.doi.org/10.1016/j.ejor.2022.02.022
http://dx.doi.org/10.1016/j.jlp.2022.104954
http://dx.doi.org/10.1016/j.ejor.2022.05.046
http://dx.doi.org/10.1016/j.ins.2022.12.021
http://dx.doi.org/10.1016/j.compeleceng.2022.108515
http://dx.doi.org/10.1016/j.eswa.2023.119766
http://dx.doi.org/10.1080/23311916.2022.2154005
http://dx.doi.org/10.3390/drones7010031
http://dx.doi.org/10.1016/j.aei.2022.101848
http://dx.doi.org/10.1007/s00500-022-07537-3
http://dx.doi.org/10.3390/buildings13010080
http://dx.doi.org/10.1016/j.energy.2022.126346
http://dx.doi.org/10.1007/s13369-022-07080-1
http://dx.doi.org/10.1002/cpe.7456
http://dx.doi.org/10.1016/j.eswa.2023.119558
http://dx.doi.org/10.1016/j.iswa.2023.200196
http://dx.doi.org/10.3390/a16010057

Appl. Syst. Innov. 2023, 6, 80 30 of 31

40. Wang, S. Optimization health service management platform based on big data knowledge management. Optik 2023, 273, 170412.
[CrossRef]

41. Navaneethan, M.; Janakiraman, S. An optimized deep learning model to ensure data integrity and security in IoT based
e-commerce block chain application. J. Intell. Fuzzy Syst. 2023, 44, 8697–8709. [CrossRef]

42. Pethuraj, M.S.; bin Mohd Aboobaider, B.; Salahuddin, L.B. Analyzing QoS factor in 5 G communication using optimized data
communication techniques for E-commerce applications. Optik 2023, 272, 170333. [CrossRef]

43. Hu, X.; Chuang, Y.F. E-commerce warehouse layout optimization: Systematic layout planning using a genetic algorithm. Electron.
Commer. Res. 2023, 23, 97–114. [CrossRef]

44. Pan, L.; Shan, M.; Li, L. Optimizing Perishable Product Supply Chain Network Using Hybrid Metaheuristic Algorithms.
Sustainability 2023, 15, 10711. [CrossRef]

45. Mzili, T.; Mzili, I.; Riffi, M.E.; Dhiman, G. Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop Scheduling Problem.
Algorithms 2023, 16, 265. [CrossRef]

46. Gunay-Sezer, N.S.; Cakmak, E.; Bulkan, S. A Hybrid Metaheuristic Solution Method to Traveling Salesman Problem with Drone.
Systems 2023, 11, 259. [CrossRef]

47. Rizwanullah, M.; Alsolai, H.K.; Nour, M.; Aziz, A.S.A.; Eldesouki, M.I.; Abdelmageed, A.A. Hybrid Muddy Soil Fish Optimization-
Based Energy Aware Routing in IoT-Assisted Wireless Sensor Networks. Sustainability 2023, 15, 8273. [CrossRef]

48. Wang, X.; Zhou, J.; Yu, X.; Yu, X. A Hybrid Brain Storm Optimization Algorithm to Solve the Emergency Relief Routing Model.
Sustainability 2023, 15, 8187. [CrossRef]

49. Kiani, F.; Nematzadeh, S.; Anka, F.A.; Findikli, M.A. Chaotic Sand Cat Swarm Optimization. Mathematics 2023, 11, 2340.
[CrossRef]

50. Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization with
Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling
Problem. Systems 2023, 11, 221. [CrossRef]

51. Singla, M.K.; Gupta, J.; Singh, B.; Nijhawan, P.; Abdelaziz, A.Y.; El-Shahat, A. Parameter Estimation of Fuel Cells Using a Hybrid
Optimization Algorithm. Sustainability 2023, 15, 6676. [CrossRef]

52. Michaloglou, A.; Tsitsas, N.L. A Brain Storm and Chaotic Accelerated Particle Swarm Optimization Hybridization. Algorithms
2023, 16, 208. [CrossRef]

53. Feng, Y.; Wang, H.; Cai, Z.; Li, M.; Li, X. Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack
Problems. Mathematics 2023, 11, 1811. [CrossRef]

54. Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 15, 56–69.
55. Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 2, research topics. Univ. Comput. 1993, 15, 170–181.
56. Goldberg, D.E.; Deb, K. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic

Algorithms; Elsevier: Amsterdam, The Netherlands, 1991; Volume 1, pp. 69–93.
57. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder–Mead simplex method in low

dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]
58. Deb, K. Multi-Objective Optimisation Using Evolutionary Algorithms: An Introduction; Springer: Berlin/Heidelberg, Germany, 2011.
59. Jh, H. Adaptation in natural and artificial systems. SIAM Rev. 1976, 18. [CrossRef]
60. Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2004.
61. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
62. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
63. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015.
64. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
65. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference

on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; IEEE: Piscataway, NJ, USA,
2005; Volume 1, pp. 695–701.

66. El-Abd, M. Opposition-based artificial bee colony algorithm. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 109–116.

67. Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution with modified initialization scheme using chaotic
oppositional based learning strategy. Alex. Eng. J. 2022, 61, 11835–11858. [CrossRef]

68. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Quasi-oppositional differential evolution. In Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007, pp. 2229–2236.

69. Liu, H.; Wu, Z.; Li, H.; Wang, H.; Rahnamayan, S.; Deng, C. Rotation-based learning: A novel extension of opposition-based
learning. In Proceedings of the PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim International Conference on
Artificial Intelligence, Gold Coast, QLD, Australia, 1–5 December 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 511–522.

70. Rahnamayan, S.; Jesuthasan, J.; Bourennani, F.; Salehinejad, H.; Naterer, G.F. Computing opposition by involving entire
population. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 1800–1807.

http://dx.doi.org/10.1016/j.ijleo.2022.170412
http://dx.doi.org/10.3233/JIFS-220743
http://dx.doi.org/10.1016/j.ijleo.2022.170333
http://dx.doi.org/10.1007/s10660-021-09521-9
http://dx.doi.org/10.3390/su151310711
http://dx.doi.org/10.3390/a16060265
http://dx.doi.org/10.3390/systems11050259
http://dx.doi.org/10.3390/su15108273
http://dx.doi.org/10.3390/su15108187
http://dx.doi.org/10.3390/math11102340
http://dx.doi.org/10.3390/systems11050221
http://dx.doi.org/10.3390/su15086676
http://dx.doi.org/10.3390/a16040208
http://dx.doi.org/10.3390/math11081811
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/1018105
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/j.aej.2022.05.028

Appl. Syst. Innov. 2023, 6, 80 31 of 31

71. Park, S.Y.; Lee, J.J. Stochastic opposition-based learning using a beta distribution in differential evolution. IEEE Trans. Cybern.
2015, 46, 2184–2194. [CrossRef] [PubMed]

72. Rogers, D.F.; Adams, J.A. Mathematical Elements for Computer Graphics; McGraw-Hill, Inc.: New York, NY, USA, 1989.
73. Deb, K. Genetic algorithm in search and optimization: The technique and applications. In Proceedings of the International

Workshop on Soft Computing and Intelligent Systems, ISI, Calcutta, India, 12–13 January 1998; pp. 58–87.
74. Jebari, K.; Madiafi, M. Selection methods for genetic algorithms. Int. J. Emerg. Sci. 2013, 3, 333–344.
75. Yadav, S.L.; Sohal, A. Comparative study of different selection techniques in genetic algorithm. Int. J. Eng. Sci. Math. 2017,

6, 174–180.
76. Takahashi, M.; Kita, H. A crossover operator using independent component analysis for real-coded genetic algorithms. In

Proceedings of the 2001 Congress on Evolutionary Computation (IEEE cat. no. 01th8546), Seoul, Republic of Korea, 27–30 May
2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 643–649.

77. Lan, K.T.; Lan, C.H. Notes on the distinction of Gaussian and Cauchy mutations. In Proceedings of the 2008 Eighth International
Conference on Intelligent Systems Design and Applications, Kaohsiung, Taiwan, 26–28 November 2008; IEEE: Piscataway, NJ,
USA, 2008; Volume 1, pp. 272–277.

78. Sun, B.; Li, W.; Huang, Y. Performance of composite PPSO on single objective bound constrained numerical optimization
problems of CEC 2022. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

79. Bujok, P.; Kolenovsky, P. Eigen crossover in cooperative model of evolutionary algorithms applied to CEC 2022 single objective
numerical optimisation. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

80. Tseng, T.R. Improvement-of-multi-population ML-SHADE. In Proceedings of the Congress on Evolutionary Computation, Padua,
Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022.

81. Sallam, K.M.; Abdel-Basset, M.; El-Abd, M.; Wagdy, A. IMODEII: An Improved IMODE algorithm based on the Reinforcement
Learning. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1–8.

82. Kolenovsky, P.; Bujok, P. An adaptive variant of jSO with multiple crossover strategies employing Eigen transformation. In
Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 1–8.

83. Sun, B.; Sun, Y.; Li, W. Multiple topology SHADE with tolerance-based composite framework for CEC2022 single objective bound
constrained numerical optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua,
Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

84. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC
2022 Numerical Optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

85. Biedrzycki, R.; Arabas, J.; Warchulski, E. A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective
bound constrained problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23
July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

86. Gu, Y.; Ding, H.; Wu, H.; Zhou, J. Opposite learning and multi-migrating strategy-based self-organizing migrating algorithm with
the convergence monitoring mechanism. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
Boston, MA, USA, 9–13 July 2022; pp. 7–8.

87. Van Cuong, L.; Bao, N.N.; Phuong, N.K.; Binh, H.T.T. Dynamic perturbation for population diversity management in differential
evolution. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July
2022; pp. 391–394.

88. Ding, H.; Gu, Y.; Wu, H.; Zhou, J. NL-SOMA-CLP for real parameter single objective bound constrained optimization. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Boston, MA, USA, 9–13 July 2022; pp. 5–6.

89. Sommerville, D. MY Introduction to the Geometry of N Dimensions; Courier Dover Publications: Mineola, NY, USA, 2020.
90. Gritzmann, P.; Klee, V. On the complexity of some basic problems in computational convexity: II. Volume and mixed volumes. In

Proceedings of the Polytopes: Abstract, Convex and Computational; Springer: Berlin/Heidelberg, Germany, 1994; pp. 373–466.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCYB.2015.2469722
http://www.ncbi.nlm.nih.gov/pubmed/26390506

	Introduction
	Exact Methods
	Approximation Methods
	Metaheuristic Methods
	Derivative-Based Methods

	Background
	Genetic Algorithms
	Advantages of GAs
	Disadvantages of GAs

	Nelder–Mead Algorithm
	Advantages of the Nelder–Mead Algorithm
	Disadvantages of the Nelder–Mead Algorithm

	Opposition-Based Learning
	Advantages of OBL
	Disadvantages of OBL

	Proposed Methodology
	Phase 1: Initialization of Parameters
	Phase 2: Generation of the First Population
	Phase 3: Augmentation of the Population
	Phase 4: Building the Mating Pool
	Phase 5: Application of the Opposition Nelder–Mead Algorithm
	Phase 6: Application of Genetic Operators
	Selection
	Crossover
	Mutation

	Time Complexity of the Proposed Methodology

	Experimental Results and Discussion
	Conclusions and Future Scope
	References

