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Abstract: In computer vision and image processing, the shift from traditional cameras to emerging
sensing tools, such as gesture recognition and object detection, addresses privacy concerns. This study
navigates the Integrated Sensing and Communication (ISAC) era, using millimeter-wave signals
as radar via a Convolutional Neural Network (CNN) model for event sensing. Our focus is on
leveraging deep learning to detect security-critical gestures, converting millimeter-wave parameters
into point cloud images, and enhancing recognition accuracy. CNNs present complexity challenges
in deep learning. To address this, we developed flexible quantization methods, simplifying You Only
Look Once (YOLO)-v4 operations with an 8-bit fixed-point number representation. Cross-simulation
validation showed that CPU-based quantization improves speed by 300% with minimal accuracy
loss, even doubling the YOLO-tiny model’s speed in a GPU environment. We established a Raspberry
Pi 4-based system, combining simplified deep learning with Message Queuing Telemetry Transport
(MQTT) Internet of Things (IoT) technology for nursing care. Our quantification method significantly
boosted identification speed by nearly 2.9 times, enabling millimeter-wave sensing in embedded
systems. Additionally, we implemented hardware-based quantization, directly quantifying data
from images or weight files, leading to circuit synthesis and chip design. This work integrates AI
with mmWave sensors in the domain of nursing security and hardware implementation to enhance
recognition accuracy and computational efficiency. Employing millimeter-wave radar in medical
institutions or homes offers a strong solution to privacy concerns compared to conventional cameras
that capture and analyze the appearance of patients or residents.

Keywords: mmWave radar; integrated sensing and communication; convolutional neural network;
artificial intelligence of things; gesture recognition

1. Introduction

Due to the issue of increasing numbers of aged people in recent years, there is a trend
toward home-care systems. While there are some safety protection devices, such as cameras
and phones, on the market today [1,2], they cannot protect a person’s privacy, so they
cannot be used in bathrooms, toilets, and changing rooms, nor can they be used in dark
places without lighting. The elderly are more likely to need assistance in these private
spaces and times. For the above reasons, Wi-Fi waves, up to 5 GHz, have been used for
gesture recognition with AI computing models to detect human behaviors [3–5]. Due
to factors of lower frequency, the effects of electromagnetic interference seriously hinder
the recognition rate and then affect the promotion of its application [6]. Increasing the
application frequency will help to improve this phenomenon.

Millimeter wave (mmWave), above 20 GHz, is a special radar technology that uses
short-wave electromagnetic waves [7]. A study proposes an integration of the Car-to-
Car Network-Hierarchical deep neural network (CtCNET-HDRNN) model with Fifth
generation (5G) mmWave [8]. However, this linear machine learning approach does not
perform well in recognizing two-dimensional images. The integration of sensing functions
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is becoming a key feature of 6G Radio Access Networks (RANs) [9], allowing the use of
dense small-area infrastructure to build sensing networks. Millimeter-wave radar transmits
signals with wavelengths in the millimeter range, which is one of the advantages of the
technology. By capturing the reflected signals, the radar system can determine the distance,
velocity, and angle of an object to create a micro-Doppler effect, which can be processed
to provide a unique data set, such as distance, velocity, and angle, as well as the ability to
distinguish between different targets, so that the sensor can detect the characteristics of
different objects within the detection range. For example, this data allows sensors to sense
echo signals, and modulation effects from tiny motions, including characteristics typical
of objects such as the rotational speed of a bicycle wheel, a person’s swaying arm, or an
animal’s running limbs. In this paper, we will build a sensing system that can detect the
object position and gesture recognition for nursing-secure care using an AI model, which
can be used in embedded systems. We take the MQTT [10] IoT protocols to transmit our
identification results to create an intelligent system on a smart embedded platform and run
a test system to validate our research.

The general architecture of this paper is as shown in Figure 1. Sensors can detect user
gestures or postures, and after computation through our system, commands can be emitted
to control designated IoT devices.
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2. Background
2.1. ISAC

The ISAC system mainly integrates sensing and communication [11], and is considered
to be one of the most promising technologies to realize the two key requirements in 6G. With
the development of networks and the evolution of wireless systems, ISAC has gradually
become a hot research topic.

ISAC has recently been proposed for numerous emerging applications, including
but not limited to in-vehicle networking, environmental monitoring, remote sensing, IoT,
smart cities, and indoor services such as human activity and gesture recognition. More
importantly, ISAC was recently identified as an enabling technology for 5G/6G and next-
generation Wi-Fi systems.

An important focus in the future of ISAC development is to improve the accuracy, so
as to facilitate the communication between UAVs for more complex tasks, and enable simul-
taneous imaging, mapping, and localization to achieve mutual performance improvements
for these functions.

In addition, it is hoped that human senses can be enhanced, such as adding some
features to detect things that humans cannot see with their eyes, such as information on
blood vessels, organ status, or information on vital signs such as breathing, heartbeat, etc.

2.2. Widar3.0

Wireless devices often use ubiquitous commercial Wi-Fi for sensing systems, which
is named DFWS (device-free wireless sensing), called Wi-Fi sensing [5]. The research
focuses on how to extract highly identifiable features from channel state information (CSI).
In order to obtain more CSI identification features in cross-domain gesture recognition,
a system named Widar3.0 was proposed in mid-2019. It combines the advantages of
convolutional neural networks and long short-term memory networks into a joint CNN
and LSTM in a model. The spatial features learned by the CNN are used as the inputs for
the LSTM to simulate the temporal features. Widar3.0 can be used directly through existing
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equipment without retraining. However, after the actual test, it is found that after the noise
information in the environment is eliminated, redundant echoes will still be generated,
which will directly affect the recognition rate after passing through CNN, and this method
is not suitable for subtle gesture recognition.

2.3. YOLO-v4 Machine Learning Model

In this paper, we use the YOLO-v4 machine learning model as the recognition tool
for AI approaches and apply the detection methods of millimeter wave to create a secure-
care system with mmWave radar. The YOLO (You Only Look Once) series, an excellent
object detection model, is based on the Convolutional Neural Network (CNN) architecture,
known for its high accuracy and speed. However, the YOLO [12] series still faces significant
challenges when dealing with embedded systems or resource-constrained environments.
The YOLO-v4 and YOLO v4-tiny models utilize Darknet [13] capabilities for neural net-
work construction, weight initialization, forward propagation, and backward propagation,
facilitating the processes of training and recognition.

The YOLO-v4 network architecture is shown in Figure 2. YOLO-v4 is roughly com-
posed of four parts: Darknet, SPP, PANet, and YOLO-output, with a total of 161 layers.

• CSPDarknet53: The CSPDarknet53 layer is the entrance of the whole network, as part
of the Backbone. (the blue frame part)

• SPP: Feature maps given before the last layer Concate of CSPDarknet53, as part of the
Neck. (green frame part)

• PANet: The actions of sitting down and sampling and upsampling in PANet are also
used here as part of the Neck.

• YOLO-Output: Finally, YOLO-Output outputs the final results, including the target
position of the prediction frame and the reliability of the detection target. (Yellow
frame part)
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Currently, YOLO series networks are often processed using Graphics Processing Units
(GPUs) or custom hardware designs, such as Field Programmable Gate Arrays (FPGAs)
that enable high degrees of parallelism for computations [14,15]. However, in the context of
embedded systems or resource-limited scenarios, CNN-based models still face challenges
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due to data computation latency and limited data access bandwidth. To address this,
some studies have started applying hardware accelerators to CNN models to enhance
computational efficiency. For specific image data, such as sensor data images with lower
information content, optimizing the number of layers without sacrificing model accuracy
can directly impact the model’s speed.

In deep learning, a convolutional neural network (CNN) is widely used for image
recognition. To accurately identify similar images, the number of convolutional layers
can be increased to obtain and abstract features of the image. However, as the number
of layers increases, a large number of weight tables are generated, which increases the
demand for computing resources, computing complexity, and storage space required for the
weight tables, thus limiting the performance of embedded systems using CNNs. To solve
related problems, many related studies have explored various methods, such as processing
computing data, computing directly in memory, or designing a dedicated CNN model to
retrain weight tables [16,17], to increase computing speed and reduce storage space. As the
CNN calculation results indicate whether a feature is prominent, the classification process
finds the category with the highest value among all the categories as the classification
result. Based on this principle, this study demonstrates that as long as the relationships
between the magnitudes of the calculation results are maintained, the accuracy can be
nearly lossless.

2.4. YOLO v4-Tiny Machine Learning Model

YOLO v4-tiny [18], as a lightweight object detection model of YOLO-v4, continues the
advantages of the YOLO series and has higher accuracy and fast identification capabilities.
It provides effective and accurate object detection in resource-constrained environments
and is suitable for a variety of application scenarios, including embedded systems, mobile
devices, and real-time vision applications.

Compared with YOLO-v4, YOLO v4-tiny has only one-tenth of the weight parameter,
has considerable advantages in speed and storage space, and is easier to adapt to resource-
limited situations such as embedded systems. YOLO v4-tiny is an object detection model
based on the convolutional neural network (CNN), with a total of 38 layers and can be
divided into three parts, Backbone, Neck, and YOLO head, as shown in Figure 3.
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• Backbone

The backbone consists of a series of convolutional layers and a Resblock body [19].
A Resblock body is one of the key parts of the backbone. This structure retains low-level
features while extracting deeper features, effectively increasing the depth of the model
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and helping the convolutional layer to capture features of different scales, thereby better-
capturing targets of different sizes to improve the accuracy of the model.

• Neck

The features of feature maps of different scales are fused through upsampling and
convolution layers to improve the detection capabilities of targets of different scales without
increasing excessive calculations.

• YOLO head

YOLO v4-tiny uses two detection layers of different scales, which are responsible for
bounding boxes of three specific scales. YOLO v4-tiny converts the received feature maps
into target detection results through the detection layer and predicts the corresponding
bounding boxes with classified labels and confidence scores.

3. Materials and Methods

The comparison of the advantages and disadvantages of the previously introduced
methods with those of our method are shown in Table 1. To safeguard user information
and offer comprehensive security protection across all time frames and areas, establishing
a stable signal to enhance recognition rates is essential. Due to the increasingly complex
electromagnetic environment and signals, traditional identification methods struggle to
achieve desired recognition rates. This paper proposes a deep learning-based approach
that analyzes the received signals to generate point cloud diagrams, enabling classification
algorithms to more effectively differentiate between data points.

The architecture of the nursing-secure-care system is shown in Figure 4, which is con-
structed by a Millimeter sensor, gesture recognition system, and IoT communication system.
In this paper, we focus on how to make the point-cloud image, how to build the recognition
system with YOLO, and how to make the MQTT commands to control secure devices for
the embedded systems. The confirmed posture results are sent via MQTT to the Topic
within the Broker, which in this case is Pi-4. Subsequently, messages are sent separately
based on the subscribed content of the subscribers, enabling the rapid transmission of the
current posture to users’ devices. Millimeter sensors transmit electromagnetic wave signals,
which are reflected by objects, similar to radar systems. By capturing reflected signals, radar
systems can determine the distance, velocity, and angle of objects for micro-Doppler effects,
which can be processed to provide unique data sets such as, distance, velocity, and angle,
as well as the ability to distinguish different targets, which enables the sensor to detect
the characteristics of different objects within the detection range. These data, for example,
allow sensors to sense the echo signals—modulation effects from tiny movements—that
include the typical features of objects such as, the spinning speed of a bicycle wheel, the
swaying arms of a person, or the running limbs of an animal. In this project, we will build
a sensing system with an AI model that can be used in the embedded systems. To approach
these goals, we will go through this project as follows. First, we will generate the pixel
coordinates by calculating the echo signals of the Doppler effects in period. Second, the
pixel coordinates will be used to build the pixel cloud images with layer-coloring meth-
ods. Noise can be filtered with mathematical morphologies, such as erosion and dilation
methods,. Third, we classify the pixel cloud images and train them with machine learning
models, such as YOLO-v4, to obtain weight tables for sensing event recognition. Fourth,
we simplify the machine learning models and build up the performance-oriented programs
to ensure that we can run the mmWave sensing system in the embedded systems.
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Table 1. A comparison of the previously introduced method with those of this paper.

Name Type of
Sensor Application Recognition

Technology Disadvantages Advantages Recognition
Rate

Traditional hand/face
recognition

[19]

Optical
camera hand/face recognition Various types of CNN

models

only suitable for
static objects,

incapable of posture
movement or changes,

dependent on
light sources

actual images
are obtained,
the highest

recognition rate

about
90~100%

Multi-sensor [2] Optical/depth camera
Radar

hand
recognition

DNN
combining of Con3D

higher interdependence
among sensors

affected by
environmental

conditions

enhance a certain level of
recognition accuracy

without environmental
influence

about
75–93%

Widar3.0 [5] Wi-Fi

hand
recognition,

Person
localization

CNN-LSTM
combining of Con3D

Environmental noise
reduces recognition rates,

especially for subtle
gestures.

Capable of using
existing devices without
the need for retraining

gestures.

about
92.7%

This paper mmWave

pose/gesture recognition,
Person

localization,
heartbeat
detection

YOLO-v4
YOLO-tiny

need to involve
moving objects,

overlapping objects are
harder to distinguish

unaffected by
environmental

conditions,
can expedite

computations through
quantization methods

about
92–95%
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Figure 4. The architecture of the proposed system.

This paper employs the TI IWR6843AOP single-chip mmWave sensor as shown in
Figure 5. This chip operates within the frequency range of 60 GHz to 64 GHz and functions
adequately in general environments ranging from −40 degrees to 105 degrees Celsius. It
consists of 4 receiver (RX) and 3 transmitter (TX) antenna modules. The receiver operates at
a Baud rate of 115,200 while the transmitter can reach up to 921,600, facilitating high-speed
and precise data transmission. It offers a transmission speed of 50 ms/frame. In this study,
we utilize the UART interface to connect with a computer. The received data is analyzed
by the computer and plotted on the canvas (Mat window) within the program, enabling
our observation.
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Figure 5. mmWave IWR6843AOP module.

To make it easier for users to use our entire system, we assign colors to the point
cloud according to the distance. When the position is far away from what we need to
identify, we will lighten the color. In this way, we will tell the user where the setting needs
to be adjusted. to find the best distance for attitude recognition. Through the results, it
is found that this method has the following advantages. From walking (Stand), sitting
(Sit), lying down (for sleep time: Lie), falling (abnormal motion detection: Fall), switching
lights (Light), and help (distress: Help) gestures, such as those shown in Figure 6, all can be
completed within the complete set of safety protection behavior system in our designs.
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When the mmWave detects objects by the micro-Doppler effect, the parameters of ele-
vation, azimuth, and Doppler velocity, will be obtained. We will utilize Equations (1)–(3) to
compute coordinates, thereby converting the mmWave spherical coordinates into Cartesian
coordinates, as shown in Figure 7, as follows:

X = R × cos(elevation) × sin(azimuth) (1)

Y = R × cos(elevation) × cos(azimuth) (2)

Z = R × sin(elevation) (3)
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To increase the gesture recognition rate, we propose the layer-coloring method. These
points will be made as semi-coloring pixel cloud images according to the height, distance,
and direction. The coloring mapped table for height is shown in Table 2. We use pixel cloud
images, as illustrated in Figure 8, to create classifying and labelling as training target objects
for the machine learning model. After training is complete, we can use the weight tables to
make an event recognition system. To obtain the time sequence of the scenario, we grab the
pixel cloud images of each frame and overlap them by an adaptive time paragraph, such as
0.2 s. The semi-coloring pixel cloud images become the input source data of the mmWave
sensing system.
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Table 2. The coloring mapped table for height.

Coloring Mapped Table

Height 0~60 cm 60~110 cm 110~220 cm Over 220 cm

color Red Green Blue Yellow
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From Table 3, the recognition rates without semi-coloring illustrate that misjudgments
are serious, such that the gesture Fall can be recognized as the gesture Lie, the gesture Light,
and the gesture Fall, making it impossible to accurately identify the correct one.

Table 3. The recognition rates without semi-coloring.

Stand Sit Lie Help Light Fall

Stand 60% 30% 0% 10% 0% 0%

Sit 30% 60% 0% 8% 2% 0%

Lie 0% 0% 40% 0% 20% 40%

Help 10% 8% 0% 82% 0% 0%

Light 0% 2% 20% 0% 50% 28%

Fall 0% 0% 40% 0% 28% 32%

From Table 4, the recognition rates with semi-coloring illustrate that the error rate
decreases and approaches 0%, which means that the correct posture can be accurately
identified. Therefore, the semi-coloring method is an excellent approach to recognizing
the gestures.
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Table 4. The recognition rates with semi-coloring.

Stand Sit Lie Help Light Fall

Stand 99% 1% 0% 0% 0% 0%

Sit 1% 98% 0% 0% 1% 0%

Lie 0% 0% 97% 0% 1% 2%

Help 0% 0% 0% 97% 3% 0%

Light 0% 1% 1% 3% 94% 1%

Fall 0% 0% 2% 0% 1% 97%

In deep learning, the convolutional neural network (CNN) is a type of deep neural
network, which is the most common mode in current applications and is best at image
processing. It is inspired by the human visual nervous system and is designed using a
variant of multilayer perceptron that requires minimal preprocessing, based on their shared
weight architecture and translation-invariant features.

The CNN method has two major characteristics:

1. It can effectively reduce the dimensionality of pictures with large amounts of data
into small amounts of data.

2. It can effectively retain image features and conform to the principles of image processing.

The first problem solved by CNN is to simplify complex problems. It reduces the
dimension of a large number of parameters into a small number of parameters and then
processes them. It retains the characteristics of the image in a visual-like way, and when
the image is flipped, rotated, or positionally changed, it can also effectively identify similar
images. The YOLO-v4 model is a machine learning operation model with an optimization
strategy in the CNN field. The YOLO v4-tiny model is often used in embedded envi-
ronments due to its large number of layers. We will deeply survey and implement the
mmWave sensing system in theYOLO-v4 model in the embedded platform. To speed the
edge computing, three target problems will be studied in depth:

1. Domain Quantization for saving storage and improving computing performance.
2. CNN layers to be reduced, based on the YOLO v4-tiny model as the specific light

CNN model to speed up object recognition computing.
3. Data Parallelism programming method to be used for coding the CNN model to

approach power-efficient computing in embedded systems.

In this paper, we will focus on four objective tasks: (1) Preparation of precise pixel
cloud images. (2) Build a mmWave sensing system on an embedded system to detect
object location, recognize gesture and posture, distinguish life signs, and track movement
of objects. (3) Simplify the machine learning models and create performance-oriented
programs to enable the running of a mmWave sensing system in the embedded systems.
(4) Test and verify our design. When this project is completed, the effective mmWave
sensing system will be created on a smart embedded platform and a demon system will be
run to verify our studies.

4. Results
4.1. The Proposed Quantization Mechanism

To improve the complex problem of YOLO-v4 computing, we propose a quantization
method to increase computation speed and reduce storage space. To reduce time wasting
in the process of quantization, we established a network model without retraining, and
a YOLO-v4 identification method that can maintain a certain accuracy. We convert the
input image data and weight data into fixed-point representation through our quantization
method to improve the huge computing process with floating-point representation. In
this way, the computational complexity and the required computational resources can
be reduced.
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The proposed quantization mechanism is shown in Figure 9. In the initial stage of
floating-point quantization, the initial value of the integer part is set to 1 because of the
hidden bit of the floating-point number. To retain the maximum value of the decimal part,
we initiate the decimal part of the quantization format with the 9th to 14th digits of the
decimal part at the floating-point number. In the second step, we subtract 127 from the
exponent part of the value to determine the displacement value (N), which represents the
displacement direction and displacement amount of the integer decimal boundary. When
N is greater than 0, it means that the integer part of this value needs more than 2 bits, so the
integer-decimal boundary is right-shifted; when N is less than 0, the value has no integer
part, so the integer-decimal boundary is left-shifted to preserve the maximum decimal bit
precision. In the third step, before the dynamic quantization of floating-point numbers, the
image data and the distribution range of the weight data will be integrated separately, and
the displacement data of the respective floating-point numbers will be found and stored.
In the fourth step, the quantized integer bits will be aligned according to the size of the
displacement data N, and the quantization will be completed. The quantized value can be
used for direct calculation.
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4.2. Results of Quantization

The analysis results, as shown in Table 5, illustrate that the computing speed has been
greatly improved after using our proposed quantization method on the YOLO-v4 model.
Compared with the performance of personal computers, the original 32-bit floating-point
number is converted into an 8-bit fixed-point number, and the time to identify a photo is
approximately decreased from 3000 ms to about 1500 ms, an improvement of about 2 fold.
In the embedded system (Raspberry Pi4), the execution time is reduced to 11,700 ms, which
is about 3.2 times faster. We also start to test by the In the YOLO v4-tiny model results, the
computing speed can be improved by about 3 times in both the personal computer and the
embedded system. Importantly, the recognition rate is lower by only 0.04 times, which is
within an acceptable range. The line chart of time comparisons is shown in Figure 10.
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Table 5. Comparison of results before and after YOLO-v4 model quantization.

Model Computer Type Data Type Time (per Picture) Accuracy Improvement

YOLO-v4
(161 layers)

Computer Intel
i7-6700

float32 3051 ms 98.7% 1556 ms
Up to 2.04 timesint8 1495 ms 98%

Notebook Intel
i5-5200

float32 4587 ms 99.2% 2487 ms
Up to 2.18 timesint8 2100 ms 99.1%

pi-4 ARM
Cortex-A72

float32 17,144 ms 99.2% 11,793 ms
Up to 3.2 timesint8 5351 ms 99.1%

YOLO-v4 tiny
(38 layers)

Computer Intel
i7-6700

float32 406 ms 95.2% 269 ms
Up to 2.96 timesint8 137 ms 94.1%

Notebook Intel
i5-5200

float32 649 ms 95.3% 400 ms
Up to 2.6 timesint8 249 ms 92.8%

pi-4 ARM
Cortex-A72

float32 1944 ms 95.4% 1338 ms
Up to 3.2 timesint8 606 ms 92.8%
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Based on Figures 11 and 12, we can conclude that the computation time of the proposed
quantification method and model simplification in this paper can indeed enhance the
competitiveness of the YOLO model’s computation, especially in embedded systems
(YOLO v4-tiny model + int8).
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4.3. Results of the Optimization of YOLO v4-Tiny Architecture

mmWave point cloud images are different from ordinary photos. The amount of
information contained in the image is created using a coloring algorithm. Therefore, we
believe that during training and recognition, we can optimize the YOLO v4-tiny architecture
layer by layer to obtain ohe same recognition effect. YOLO v4-tiny contains three Resblock
bodies. After replacing the Resblock bodies with the convolution layer in the sequence case,
we analyzed the impact on the accuracy of the point cloud image recognition after training
and used mAP (mean average precision) [20] to judge the recognition ability. According
to the evaluation results, shown in Table 6, for the identification of mmWave point cloud
images, replacing Resblock body 1 with a convolutional layer will cause a sharp drop in
mAP. Replacing Resblock body 2 with 1 convolution operation and Resblock body 3 with
2 convolution operations will not have a drastic impact on mAP. Therefore, we can conclude
that when identifying mmWave point cloud images, Resblock body 2 and Resblock body 3
should be replaced by 3 convolutional layers to reduce the number of layers, which do not
significantly affect the identification ability.

Table 6. mAP changes after the convolutional layer replaces the Resblock body.

YOLO-v4 Tiny Architecture mAP(@0.50)

Original 0.562309

Reduce the Resblock body 1 to 1 convolution operation 0.170274

Reduce the Resblock body 2 to 1 convolution operation 0.477842

Reduce the Resblock body 3 to 2 convolution operation 0.548834

Reduce the Resblock body 2 and 3 to 3 convolution operation 0.421765

5. Discussion

Although the integration of sensing tools and communication systems has been rec-
ognized as a pivotal area, there is a deficiency in comprehensive exploration aimed at
simplifying these models to achieve heightened efficiency and reduced resource consump-
tion. There are limited comprehensive studies showcasing the effective amalgamation of
these components.

This paper aims to integrate sensing tools with communication systems to facilitate
efficient data transmission and processing. It addresses the challenge of simplifying intri-
cate machine learning models, specifically the YOLO v4-tiny model, in order to improve
performance, while minimizing resource utilization. Additionally, the research focuses
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on the development of hardware-based quantization techniques designed to convert data
from floating-point to fixed-point number formats. This endeavor is intended to expedite
computation processes and reduce storage requirements.

Simplified machine learning models and hardware-based quantization techniques
can benefit scientists and researchers by providing efficient methods for processing data
and reducing computational resources, thereby accelerating the pace of research in ma-
chine learning and related fields. Moreover, for society, these advancements can lead to
the creation of more efficient and accurate systems for healthcare, security, and surveil-
lance, contributing to improved safety measures, healthcare monitoring, and technological
advancements that benefit society at large.

We analyze the effects of the proposed quantization method to be used in YOLO
models, which are computed on PC CPU-only (tagged as CPU) stations and CPU + GPU
(tagged as GPU) stations. Figure 9 illustrates that computing performance with the pro-
posed quantization method on CPU is lower by a time difference of 280 ms compared with
GPU in YOLO-v4 models. Figure 10 shows that computing performance with the proposed
quantization method on CPU is higher by a time difference of 153 ms compared with GPU
in YOLO v4-tiny models. Following the above results, the proposed quantization method
is an important mechanism for the computing of the YOLO-v4 model. In particular, the
YOLO v4-tiny model with the proposed quantization method on CPU has excellent perfor-
mance compared with GPU. This result proves that the proposed quantization method is
suitable for use on the YOLO v4-tiny model in the embedded systems to create a smart IOT
system. According to the evaluation results, we can replace Resblock body 2 and Resblock
body 3 with convolutional layers to simplify the number of layers. In this way, the total
reduced convolution operations are 5 layers and the computing performance of the YOLO
v4-tiny model will be improved by up to 20%.

Currently, performance testing relies primarily on C language for estimating the
prediction time of images. In the future, the aim is to implement the entire framework
onto a chip and establish a complete computing architecture. Regarding the utilization of
YOLO-v4 in this paper, there is a hope to adjust the architecture to design a learning model
that better suits the goals of this research with enhanced performance.

6. Conclusions

This work integrates AI with mmWave sensors in the domain of nursing security.
Millimeter-wave radar solely detects object movements and aids in preventing patients or
occupants from falling without notice or assistance. Employing millimeter-wave radar in
medical institutions or homes can offer a strong solution to privacy concerns compared to
conventional cameras that capture and analyze the appearance of patients or residents.

We use the point cloud coordinates with semi-coloring methods to enhance the recog-
nition rate. Based on the 8-bit fixed-point number representation method to quantize the
weights and image data, the YOLO-v4 model can be streamlined to operate with fixed-point
number types. This approach reduces the required resources for operations and accelerates
the processing speed. Our quantization methods were simulated and validated using
various PC CPUs and embedded systems. Prioritizing the retention of the integer part
maintained a certain level of precision, successfully accelerating our computational pro-
cesses. Finally, we present our design system with the data from mmWave millimeter-wave
radar sensor to make the form of a point cloud and obtain the identification results through
AI computing technology with the Yolo v4-tiny model. After the identification is completed,
the results are transmitted to the Broker with the MQTT protocol to control light on/off.
To effectively integrate the results into a long-term care application environment, we also
built this system in Raspberry Pi4 and simplified the deep learning model to adapt to the
embedded system.
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