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Abstract: Shaped porous ceramics have proven to be the most adapted materials for several
industrial applications, both at low and high temperatures. Recent research has been focused
on developing shaping techniques, allowing for a better control over the total porosity and the
pores characteristics. In this study, macroporous alumina foams were fabricated by gel-casting
using pre-expanded polymeric microspheres with average sizes of 40 µm, 20 µm, and 12 µm as
sacrificial templates. The gel-casting method, as well as the drying, debinding, and presintering
conditions were investigated and optimized to process mechanically strong and highly porous
alumina scaffolds. Furthermore, a reliable model relating the amount of pre-expanded polymeric
microspheres and the total porosity of the presintered foams was developed and validated by mercury
intrusion porosimetry measurements. The electron microscopy investigation of the presintered foams
revealed that the size distribution and the shape of the pores could be tailored by controlling the
particle size distribution and the shape of the wet pre-expanded microspheres. Highly uniform and
mechanically stable alumina foams with bimodal porosity ranging from 65.7 to 80.2 vol. % were
processed, achieving compressive strengths from 3.3 MPa to 43.6 MPa. Given the relatively open
pore structure, the pore size distribution, the presintered mechanical strength, and the high porosity
achieved, the produced alumina foams could potentially be used as support structures for separation,
catalytic, and filtration applications.

Keywords: gel-casting; sacrificial templating; macroporous alumina; pre-expanded polymeric
microspheres

1. Introduction

Several industrial applications, such as water filters [1], catalyst supports for hot gas filtration [2,3],
molten metal filters [4], thermal insulators [5], and bio-compatible scaffolds [6] require the properties
offered by shaped ceramic materials with controlled porosity. Each of these particular applications
have requirements regarding the pore size distribution, the volume fraction of porosity, the fraction of
open porosity, and the degree of connectivity [7]. For instance, filtration and biomedical applications
usually require macropores and high pore space accessibility, while mesopores and closed porosity are
preferred for thermal insulation purposes. In general, the porosity has a strong influence on physical
and mechanical properties such as the thermal conductivity [8], the fluid and gas permeability [9],
and the mechanical strength [10]. Therefore, the processing of porous ceramics foams with tailored
porosity is of interest.

Ceramics 2018, 1, 329–342; doi:10.3390/ceramics1020026 www.mdpi.com/journal/ceramics

http://www.mdpi.com/journal/ceramics
http://www.mdpi.com
http://dx.doi.org/10.3390/ceramics1020026
http://www.mdpi.com/journal/ceramics
http://www.mdpi.com/2571-6131/1/2/26?type=check_update&version=3


Ceramics 2018, 1 330

A wide variety of techniques have been reported as suitable for the production of hierarchically
structured porous ceramics. These are usually classified in three main processing strategies: replication,
direct foaming, and sacrificial templating [11]. Replication [12] consists of impregnating or infiltrating
a template with highly dispersed ceramic suspensions. Upon sintering, the template is removed and a
positive replica of it is obtained. Ceramic foams with high porosity and highly open pore space could be
obtained in replication method. In direct foaming [13] air bubbles are incorporated into highly loaded
slurries, either by mechanical frothing or direct gas injection. Alternatively, multiple direct foaming
techniques based on the emulsification of a polymer phase within a ceramic powder suspension have
been recently developed [14–16]. Reticulated ceramics with moderate to high porosity and partially
open pore space have also been obtained. Both colloidal particles [17] and surfactants [18] have been
reported as effective foam and emulsion stabilizers to prevent the coarsening of the microstructure
due to coalescence. In sacrificial templating [11], a sacrificial disperse phase is incorporated into highly
loaded ceramic slurries. After complete drying of the ceramic foams, the template is removed and pores
representing a negative replica of the original templating phase are left behind. Multiple techniques
are included in this processing strategy. For instance, freeze casting [19] uses the solvent of highly
dispersed slurries as templating phase.

Gel-casting is a colloidal near-net shape forming technique that was developed in the early 1990s
that can be easily combined with sacrificial templating to process highly tailored porous ceramics [20].
It comprises the casting of highly-loaded suspensions containing ceramic powder and organic additives
such as binders and dispersants (typically around 3–4 wt. %). The gelation of the binder in the slurry
is induced by either thermal or chemical means, which results in the formation of a hydrophilic
cross-linked polymeric network. The gel holds the ceramic particles together during the drying
and organics burn-out prior to the sintering of green bodies [21,22]. Gel-cast ceramic bodies are
characterized by relatively high green mechanical strengths, low debinding shrinkages, and highly
homogeneous microstructures with small or no defects [23]. Several materials, both natural and
synthetic, have been reported in literature as suitable sacrificial templates. For instance, Qian et al. [24]
used fly ash cenospheres (FAC) in the gel-casting of macroporous mullite. FAC are usually formed
during the combustion of mineral coal, and their particle size distribution and morphology can
be controlled by tuning the coal composition and the cooling conditions. Consequently, the size
distribution and the morphology of the pores can be directly controlled. Nevertheless, the addition of
FAC was observed to mainly contribute to the formation of closed pores, resulting in ceramic foams
with significantly low permeabilities [24].

Dash et al. [25] used naphthalene particles in the gel-casting of macroporous hydroxyapatite
scaffolds. It was found that these particles increased both the total porosity and the connectivity
between individual pores. However, the agglomeration of naphthalene particles at higher contents
resulted in the interdependency between the total porosity and the pore size distribution. Furthermore,
the difficulty to predict the morphology of these aggregates resulted in a lack of control over the final
shape and size of the pores. Wan et al. [26] used glutinous rice flour (GRF) in the manufacturing of
mesoporous silica. The GRF content determined the total porosity of the foams. However, GRF is
mainly composed of starch, which swells as it absorbs hot water. The risk of cracking during the
drying process is thus significant, and neither the morphology nor the size distribution of the pores
can be controlled.

A promising alternative to the pore-forming agents mentioned above is the use of expandable
polymeric microspheres, which consist of a thermoplastic shell encapsulating an appropriate blowing
agent. These microspheres are obtained in the unexpanded state, but their expansion can be
easily induced by heating them to temperatures close to the glass transition temperature of the
thermoplastic shell. For instance, Andersson et al. [27] used unexpanded thermoplastic microspheres
in the gel-casting of macroporous alumina. With the processing method developed by the authors,
the thermal gelation of the binder induced the softening of the polymeric shell and resulted in
subsequent expansion of the microspheres. Highly homogeneous foams with almost spherical pores,
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a high fraction of open porosity and a relatively high permeability were obtained. Nevertheless,
the expansion of the microspheres cannot be fully controlled and can limit the control over the final
pore size distribution and the total porosity of the foams.

In the present study, the viability of wet pre-expanded polymeric microspheres as sacrificial
templates for shaping porous alumina ceramics is assessed. These microspheres are dispersed in water
and expanded prior to the processing of the ceramic foams. As a result, they do not expand during the
gel-casting process, enabling a stricter control over the pore size distribution and the total porosity
of the sintered foams. Furthermore, small mass of expanded microspheres are required to process
ceramic foams with high volume fraction of porosity. In this work, a suitable fabrication method based
on gel-casting and sacrificial-templating has been developed and optimized. Particular attention has
been given to the dispersion of the microspheres within the suspension and degassing of entrapped air
bubbles. The mass loss and the shrinkage of the specimens throughout the drying process, the thermal
behavior of the green bodies, as well as the mechanical strength, the density, the porosity, and the pore
structure of presintered alumina ceramics have been investigated.

2. Materials and Methods

2.1. Materials

Two different commercially available α-alumina powders were used: A-16 SG (Alcoa,
Blount County, TN, USA), with an average particle size of 0.4 µm and specific surface area of
9.0 m2/g, and AKP-15 (Sumitomo Chemical Co., Ltd., Tokyo, Japan), with an average particle size
of 0.6 µm and specific surface area of 3.5 m2/g. A 25 vol. % aqueous solution of polyacrylic acid
(PAA, Polysciences, Inc., Warrington, PA, USA) with MW = 50,000 g/mol was used as a dispersing
agent. Alternatively, sodium dodecyl sulfate (SDS, Sigma-Aldrich Chemie GmbH, Darmstadt,
Germany) with MW = 288.38 g/mol was also used as a dispersing agent. The amount of SDS or
PAA added to the slurry was equal to 1 wt. % with respect to the alumina powder. Regarding the
acrylic binder, methyl methacrylate (MMA, Sigma-Aldrich Chemie GmbH, Darmstadt, Germany)
with MW = 100.12 g/mol, and N,N′-methylenebisacrylamide (MBAM, Sigma-Aldrich Chemie GmbH,
Darmstadt, Germany) with MW = 154.17 g/mol were used as monomer and cross-linker, respectively.
The total amount of binder corresponded to 4 wt. % of the total alumina, and the monomer to
cross-linker weight ratio was set to 5:1. Ammonium persulfate (APS, Sigma-Aldrich Chemie GmbH,
Darmstadt, Germany) with MW = 228.20 g/mol was used as a free radical initiator. The amount of APS
added to the slurry was equal to 0.5 wt. % with respect to the monomer. 1-butanol (Merck Millipore,
Darmstadt, Germany) was used as an anti-foaming agent. Finally, tetramethylethylenediamine
(TEMED, Sigma-Aldrich Chemie GmbH, Germany) with MW = 116.20 g/mol was used as a catalyst.
The total amount of TEMED added to the slurry corresponded to 20 wt. % with respect to the
monomer. Three different types of Expancel® wet-expanded microspheres (Akzo Nobel Pulp and
Performance Chemicals AB, Sundsvall, Sweden) were used as sacrificial templates (Figure 1). The
product density and the solid content of each Expancel® type were provided by Akzo Nobel Pulp and
Performance Chemicals AB (Table 1). The volume of dried microspheres per unit mass of wet product,
v, was determined with Equation (1):

v =
wt. % solid content

ρproduct
(1)
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Figure 1. Scanning electron microscopy (SEM) micrographs of the three types of wet expanded 
Expancel® microspheres used in this study: (a) WE 40 μm, (b) WE 20 μm, and (c) WE 12 μm. 
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agent (1-butanol) was then added, followed by the remaining ceramic powder. The resulting slurry 
was transferred to a high-density polyethylene bottle already containing zirconia milling balls. The 
weight ratio between the zirconia balls and the alumina powder was 1:1. After milling at high speed 
for 24 h, the ceramic slurry was filtered to remove the milling balls. The initiator (APS) and a water-
based dispersion containing the appropriate amount of Expancel® microspheres were then added, 
and the ceramic slurry was homogenized by magnetic stirring for 30 min at room temperature. After 
ultrasonic degassing, the catalyst (TEMED) was added and the slurry was mixed for 30 s before 
casting. In this study, commercially available truncated cone shaped rubber molds were used. The 
dimensions of the upper and lower diameters were 70 mm and 45 mm, respectively, while the height 
was 35 mm. Depending on the batch, the molds were filled up to a height of 17 to 27 mm, in order to 
allow the casting of three specimens of equal dimensions. The molds were not covered after casting, 
so that the upper surface of the cast bodies was in contact with the air throughout the whole process.  

After 6 h of gelation at room condition, the specimens were dried in a furnace to better control 
both the temperature and the relative humidity during the process. Based on the drying conditions 
proposed by Andersson et al. [27], the temperature was increased stepwise from 25 °C to 50 °C over 
a time period of 71 h, at a relative humidity of 75 ± 5%. Next, the specimens were heated at 100 °C for 
1 h, thus completing a total drying time of 72 h (three days). This stage was carried out at a relative 
humidity of 25 ± 5% to maximize the removal of water. After complete drying, the green bodies were 
unmolded and underwent organics burn-out and presintering process in air. The burn-out step 
consisted of 3 h at 600 °C, while presintering was performed at 1200 °C during 2 h with a heating rate 
of 5 °C/min. Finally, the cooling of the specimens took place in the furnace to minimize the risk of 
cracking due to thermal shock. 

Figure 1. Scanning electron microscopy (SEM) micrographs of the three types of wet expanded
Expancel® microspheres used in this study: (a) WE 40 µm, (b) WE 20 µm, and (c) WE 12 µm.

Table 1. Properties of the polymer microspheres (WE: wet expanded) used in this study, as provided by
Akzo Nobel Pulp and Performance Chemicals AB. Volume of dried microspheres per unit mass of wet
product (v) determined using Equation (1). Morphological characterization by SEM image analysis:
determination of the mean particle size over volume and the mean aspect ratio.

Expancel®

Grade
Product Density

(g/cm3)
Solid Content

(wt. %) v (cm3/g)
Mean Particle

Size (µm)
Mean Aspect

Ratio

WE 40 µm 0.024 17.2 7.167 45.3 0.95
WE 20 µm 0.030 24.4 8.133 38.5 0.94
WE 12 µm 0.060 16.0 2.667 14.0 0.97

2.2. Specimen Preparation

Figure 2 shows the flowchart of the gel-casting process used in this study to prepare the ceramic
specimens. First, a water-based organic premix containing the monomer (MMA) and the cross-linker
(MBAM) was prepared. After 30 min of mixing at room temperature, the dispersing agent (either PAA
or SDS) was added and mixed for 5 min. Next, half of the total alumina powder was slowly added
to the organic premix in order to prevent the formation of agglomerates. The anti-foaming agent
(1-butanol) was then added, followed by the remaining ceramic powder. The resulting slurry was
transferred to a high-density polyethylene bottle already containing zirconia milling balls. The weight
ratio between the zirconia balls and the alumina powder was 1:1. After milling at high speed for 24 h,
the ceramic slurry was filtered to remove the milling balls. The initiator (APS) and a water-based
dispersion containing the appropriate amount of Expancel® microspheres were then added, and the
ceramic slurry was homogenized by magnetic stirring for 30 min at room temperature. After ultrasonic
degassing, the catalyst (TEMED) was added and the slurry was mixed for 30 s before casting. In this
study, commercially available truncated cone shaped rubber molds were used. The dimensions of
the upper and lower diameters were 70 mm and 45 mm, respectively, while the height was 35 mm.
Depending on the batch, the molds were filled up to a height of 17 to 27 mm, in order to allow the
casting of three specimens of equal dimensions. The molds were not covered after casting, so that the
upper surface of the cast bodies was in contact with the air throughout the whole process.

After 6 h of gelation at room condition, the specimens were dried in a furnace to better control
both the temperature and the relative humidity during the process. Based on the drying conditions
proposed by Andersson et al. [27], the temperature was increased stepwise from 25 ◦C to 50 ◦C over a
time period of 71 h, at a relative humidity of 75 ± 5%. Next, the specimens were heated at 100 ◦C for
1 h, thus completing a total drying time of 72 h (three days). This stage was carried out at a relative
humidity of 25 ± 5% to maximize the removal of water. After complete drying, the green bodies
were unmolded and underwent organics burn-out and presintering process in air. The burn-out step
consisted of 3 h at 600 ◦C, while presintering was performed at 1200 ◦C during 2 h with a heating rate
of 5 ◦C/min. Finally, the cooling of the specimens took place in the furnace to minimize the risk of
cracking due to thermal shock.
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Figure 2. Flowchart of the gel-casting and sacrificial templating procedure followed in the present
study to prepare the macroporous alumina specimens.

2.3. Characterization

The bulk density and the pore size distribution of the presintered foams were determined
by mercury intrusion porosimetry with a Micromeritics AutoPore III 9410 (Micromeritics, Aachen,
Germany). The considered pore size interval was 30 nm to 125 µm. The surface tension and the contact
angle of the mercury were assumed to be 0.485 N/m and 130◦, respectively. The total vol. % porosity
was then analytically determined using Equation (2), where ρbulk, ρalumina and ρair represent the bulk,
the skeletal and the air densities, respectively (ρair = 0.012 g/cm3).

vol. % porosity =
ρalumina − ρbulk
ρalumina − ρair

(2)

To evaluate the mechanical properties of presintered foams, three cubic samples with sides of
10 mm were cut from each specimen and carefully polished until two highly parallel and smooth
surfaces were obtained. Their compressive strength was then measured with an Instron 5967 (Instron,
Norwood, MA, USA) testing machine, using a 2 kN load cell and a crosshead speed of 0.5 mm/min.
The thermal behavior of the green bodies was studied simultaneously by differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA) with a STA 449 F3 Jupiter® (NETZSCH,
Gerätebau GmbH, Germany). Argon was used as protective gas and air as purge gas. Two alumina
crucibles were used, one containing the sample and one empty as reference. Scanning electron
microscopy (SEM) was used to investigate the Expancel® microspheres and the microstructure of the
ceramic foams. The observations were performed with a JEOL NeoScope JCM-6000 Plus (JEOL USA,
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Inc., Peabody, MA, USA) under high vacuum and high acceleration voltage (15 kV). The micrographs
thus obtained were quantitatively studied by image analysis using the software ImageJ.

To monitor the mass loss and the shrinkage of the alumina foams, the mass and the upper
diameter of the specimens were periodically measured during the drying process with a high precision
balance and measuring tape, respectively. As already mentioned, the upper surface of the cast bodies
was left free, while all other surfaces were in contact with the mold throughout the drying process.
It was thus decided to investigate the drying shrinkage on the upper surface, since the dimensional
variation due to water evaporation was expected to be significantly higher on this surface than in any
other. The cumulative mass loss and radial shrinkage were determined with Equations (3) and (4),
respectively, where m0 and D0 represent the mass and the upper diameter after gelation, and mi and
Di correspond to the mass and the upper diameter of the specimen after the step.

% mass loss =
m0 −mi

m0
× 100 (3)

%εr =
D0 −Di

D0
× 100 (4)

3. Results and Discussion

The processing of porous alumina ceramics using pre-expanded polymer spheres as sacrificial
template can offer a close control over the porosity and pore size distribution. To achieve a
well-tailored porous structure, the entrapment of air bubbles in the suspension containing alumina and
pre-expanded polymer spheres needs to be minimized. Indeed, neither the size nor the shape of these
air bubbles can be directly controlled, which results in a significant fraction of non-controlled porosity
in the final alumina foams. Given their relatively large size, these air bubbles are highly detrimental for
the mechanical properties of the foams. The influence of dispersant on the entrapment of non-controlled
air bubbles within the slurry is shown in Figure 3. The use of the ionic surfactant sodium dodecyl
sulfate as dispersing agent was observed to increase the heterogeneity of the microstructure due to the
presence of air bubbles in the ceramic suspension. As a result, alumina foams containing non-controlled
macropores, in addition to the macropores generated by the pre-expanded microspheres, and cracks
were obtained (Figure 3a). On the other hand, significantly lower amounts of air bubbles were entrained
into the slurries when using polyacrylic acid (PAA), a water soluble ionic polyelectrolyte, and were
effectively removed by ultrasonic degassing (Figure 3b). As can be seen in Table 2, the non-controlled
porosity could be reduced to as low as 5.1 vol. % in foams prepared with high volume fraction of
microspheres with 15 min of ultrasonic degassing. In foams prepared with low volume fraction
of microspheres, the non-controlled porosity could only be reduced to 11.6 vol. % after the same
degassing time. Thus, the addition of PAA as dispersing agent, combined with ultrasonic degassing
of the slurry, is required to produce macroporous alumina ceramics using pre-expanded polymeric
microspheres as sacrificial template.

Table 2. Type of alumina and microsphere used as template, solid loading, targeted porosity, and
degassing time for all ceramic slurries prepared in this study. Bulk density and total porosity of the
corresponding presintered alumina foams.

Batch
No.

Alumina
Type Expancel®Grade Total Solid

Loading (wt. %)

Dried
Microspheres

(wt. %)

Targeted
Porosity
(vol. %)

Degassing
Time (min)

Bulk
Density
(g/cm3)

Total
Porosity
(vol. %)

1 AKP-15 WE 40 µm 60.5 0.89 70.0 15 0.94 75.1
2 AKP-15 WE 40 µm 61.8 0.40 50.0 10 1.26 66.7
3 A-16 SG WE 20 µm 54.8 1.08 70.0 15 0.91 76.0
4 AKP-15 WE 20 µm 59.8 0.47 50.0 15 1.45 61.6
5 A-16 SG WE 12 µm 53.2 1.91 70.0 10 0.75 80.2
6 A-16 SG WE 12 µm 56.0 0.88 50.0 10 1.29 65.7
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The microstructural uniformity and integrity of gel-cast ceramic foams are dependent on the 
gelation method [21,22]. Both thermal and catalytic gelation of suspensions of alumina and pre-

Figure 3. Presintered alumina foams prepared using different dispersing agents: (a) sodium
dodecyl sulfate (SDS), an anionic surfactant and (b) polyacrylic acid (PAA), a water-soluble
anionic polyelectrolyte.

The microstructural uniformity and integrity of gel-cast ceramic foams are dependent on
the gelation method [21,22]. Both thermal and catalytic gelation of suspensions of alumina and
pre-expanded polymer microspheres were thus investigated. In the case of thermal gelation,
most acrylic binders require the slurries to be heated to a temperature of 75–80 ◦C, which is in
the expansion window for the thermoplastic microspheres [27]. In our case, the gelation temperature
caused the collapse of pre-expanded microspheres over time and resulted in the formation of loose
ceramic shells trapped in the pores upon presintering (Figure 4a). The thermal gelation of as-cast
bodies resulted in the contamination of pores. The use of a catalyst (TEMED) enabling the gelation
of the binder without additional heating was then envisaged, which resulted in a homogeneous and
contamination-free microstructure (Figure 4b).
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Figure 4. Fracture surface of presintered alumina foams prepared using different gelation methods:
(a) thermal gelation and (b) catalytic gelation.

The gel-cast green bodies contain approximately the same amount of solvent as the corresponding
initial slurries. Therefore, the drying of green bodies is of significance to minimize the dimensional
distortion and the cracking. The evolution of both the mass loss and the radial shrinkage of the gel-cast
alumina foams were monitored throughout the drying process (Figure 5a,b, respectively). It can be
seen in Figure 5 that the first 48 h of drying are characterized by a high mass loss rate, related to the
evaporation of the water adsorbed to the external surfaces. This first drying stage, carried out at a
relative humidity of 75 ± 5%, consisted of 24 h at 25 ◦C followed by 24 h at 35 ◦C. With the increase in
liquid-gas interface upon drying, the ceramic particles come closer and eventually into contact with
each other. At macroscale, the drying mechanism results in a relatively rapid shrinkage of the green
bodies. The last 24 h of drying, carried out at a relative humidity of 25 ± 5%, and consisting of 23 h at
50 ◦C followed by 1 h at 100 ◦C, show relatively low mass loss and shrinkage rates, corresponding to
the removal of entrapped water through open porosity.
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The suspensions with high total solid loadings were observed to result in low mass losses.
However, no clear correlation between the amount of polymeric microspheres in the slurry and the
mass loss upon drying could be identified. A small fraction of dried microspheres (0.5 to 1.9 wt. %)
were required to achieve 61.6 to 80.2 vol. % porosity, respectively. It was thus concluded that the
amount of solvent was the influencing parameter on the evolution of the mass loss, while the moisture
added to the slurry by the wet microspheres had no significant effect. Regarding the shrinkage of
the green ceramic foams, the amount of pre-expanded microspheres in the slurry was found to have
a major influence. Higher shrinkage was observed in moderate porosity foams (61.6 to 66.6 vol. %)
with large and isolated pores, prepared with small volume fraction of polymer microspheres. On the
other hand, high porosity foams (75.1 to 80.2 vol. %) with closely packed pores, prepared with larger
volume fraction of microspheres, exhibited lower shrinkages. The drying shrinkage was observed to be
rather homogeneous and no cracking occurred in the dried foams with a total solid loading higher than
53.2 wt. %, corresponding to a porosity of 80.2 vol. %. It is thus expected that crack-free presintered
alumina foams with porosity higher than 80 vol. % could be obtained from slurries containing total
solid loadings of 60 wt. % and higher.

After drying, the gel-cast green bodies underwent organics burn-out and presintering to achieve
accessible pore space and sufficient mechanical stability. Figure 6a shows the DSC and TGA curves
of a 66.7 vol. % porosity alumina foam produced with WE 40 µm microspheres. In this particular
specimen, organic additives represented 3.5 wt. %. The thermal degradation of the gelled binder
and the expandable microspheres was particularly critical, as these are the most abundant organic
additives in the dried specimens. Two main thermal events can be observed on the TGA curve
presented in Figure 6b. The first one, at approximately 260 ◦C, is related to the degradation of the
PMMA polymeric network. According to the literature, the decomposition of this compound takes
place between 240 ◦C and 360 ◦C [28]. The second event is observed in the range 320–400 ◦C and can be
related to the degradation of the polymeric microspheres, as the thermal decomposition of acrylonitrile
is reported to occur at around 410 ◦C [29]. No significant variation in the mass of the specimens was
observed after 600 ◦C. All the slurries prepared in this study contained as low as 3.5 to 5 wt. % in
organic additives, including the thermoplastic microspheres. Given these low concentrations and the
reported degradation temperatures for the remaining additives [30–32], a fast organics burn-out step
with a heating rate of 5 ◦C/min was proven effective in removing all the organic additives without
compromising the structural integrity of the scaffolds. Indeed, no cracks were observed to appear
during the organics burn-out and presintering process.
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Figure 6. Thermal analysis of a high porosity (66.7 vol. %) alumina foam produced with WE 40 µm
microspheres: (a) differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) curves
as a function of time and (b) TGA curve as a function of temperature.

The addition of pre-expanded polymer microspheres as sacrificial templates to ceramic powder
systems can simultaneously control the total porosity, the pore size distribution, and the morphology
of pores in the ceramic foams. The total porosity is mainly determined by the amount of microspheres
added to the ceramic slurries. The total volume of microspheres (Vmicrospheres) required to achieve
a certain level of porosity (vol. % porosity) was determined with Equation (5), where malumina
corresponds to the total mass of alumina powder in the slurry and ρskeletal represents the density of
the ceramic struts after presintering. The mercury intrusion porosimetry (MIP) measurements carried
out in the present study revealed that alumina scaffolds presintered at 1200 ◦C for 2 h exhibited strut
densities of 3.7 ± 0.2 g/cm3. Therefore, ρskeletal in Equation (5) was taken to be 95% the density of
dense alumina. The mass of wet product was then determined from Vmicrospheres and the volume of
dried microspheres per unit mass of each wet product. The differences between the target porosity
and the total porosity measured by MIP arise due to the volume fraction of entrapped air bubbles.

Vmicrospheres =
vol. % porosity

(1− vol. % porosity)
× malumina
ρskeletal

(5)

Cellular alumina foams produced in this study exhibited a hierarchical pore structure, as shown
in Figure 7. For instance, Figure 7a–c show low magnification micrographs of the fracture surface of
presintered high porosity alumina scaffolds produced with different types of microspheres. A highly
uniform microstructure can be observed, with well-dispersed primary macropores interconnected
by secondary pores. No evident microcracks, voids or ceramic particles agglomerates are observed.
Figure 7d shows a higher magnification micrograph of the presintered ceramic struts, where the third
level of porosity (i.e., inter-particle pores between alumina particles) can be observed. These tertiary
pores are expected to decrease in size and eventually disappear upon sintering at high temperature.

The particle size distribution in number (Figure 8a–c) and the aspect ratio of the primary
macropores were investigated by image analysis of SEM micrographs using the software ImageJ
(Table 1). WE 40 µm microspheres were found to exhibit sizes in the range 20 to 50 µm, WE 20 µm
microspheres in the range 5 to 40 µm, and WE 12 µm microspheres in the range 2 to 16 µm (occurrence
over 5%). This same method was used to determine the size distribution in number and the morphology
of the primary macropores in presintered foams (Table 3). A correction factor of 2/

√
3 was used to

determine the actual pore size, as proposed by Naranda et al. [33]. Due to random sectioning during
the sample preparation for SEM imaging, pores look smaller on the micrographs than the original pore
size. All specimens prepared with WE 40 µm and WE 12 µm microspheres exhibited bimodal pore
size distributions with highly overlapped modes (e.g., Figure 8d,f), while those prepared with WE
20 µm were characterized by a monodispersed pore size distribution (e.g., Figure 8e).



Ceramics 2018, 1 338

Ceramics 2018, 1, x FOR PEER REVIEW  9 of 14 

 

V୫୧ୡ୰୭ୱ୮୦ୣ୰ୣୱ = vol. % porosityሺ1 െ vol. % porosityሻ ൈ mୟ୪୳୫୧୬ୟρୱ୩ୣ୪ୣ୲ୟ୪   (5) 

Table 2. Type of alumina and microsphere used as template, solid loading, targeted porosity, and 
degassing time for all ceramic slurries prepared in this study. Bulk density and total porosity of the 
corresponding presintered alumina foams. 

Batch 
No. 

Alumina 
Type 

Expancel® 
Grade 

Total Solid 
Loading 
(wt. %) 

Dried 
Microspheres 

(wt. %) 

Targeted 
Porosity (vol. %) 

Degassing 
Time (min) 

Bulk Density 
(g/cm3) 

Total Porosity 
(vol. %) 

1 AKP-15 WE 40 μm 60.5 0.89 70.0 15 0.94 75.1 
2 AKP-15 WE 40 μm 61.8 0.40 50.0 10 1.26 66.7 
3 A-16 SG WE 20 μm 54.8 1.08 70.0 15 0.91 76.0 
4 AKP-15 WE 20 μm 59.8 0.47 50.0 15 1.45 61.6 
5 A-16 SG WE 12 μm 53.2 1.91 70.0 10 0.75 80.2 
6 A-16 SG WE 12 μm 56.0 0.88 50.0 10 1.29 65.7 

Cellular alumina foams produced in this study exhibited a hierarchical pore structure, as shown 
in Figure 7. For instance, Figure 7a–c show low magnification micrographs of the fracture surface of 
presintered high porosity alumina scaffolds produced with different types of microspheres. A highly 
uniform microstructure can be observed, with well-dispersed primary macropores interconnected by 
secondary pores. No evident microcracks, voids or ceramic particles agglomerates are observed. 
Figure 7d shows a higher magnification micrograph of the presintered ceramic struts, where the third 
level of porosity (i.e., inter-particle pores between alumina particles) can be observed. These tertiary 
pores are expected to decrease in size and eventually disappear upon sintering at high temperature.  

  

  
Figure 7. Fracture surface of presintered alumina foams: low magnification SEM micrographs of (a) 
75.1 vol. % porosity foam produced with WE 40 μm, (b) 76.0 vol. % porosity foam produced with WE 
20 μm and (c) 80.2 vol. % porosity foam produced with WE 12 μm; (d) high magnification SEM 
micrograph of a 65.7 vol. % porosity foam produced with WE 12 μm.  

The particle size distribution in number (Figure 8a–c) and the aspect ratio of the primary 
macropores were investigated by image analysis of SEM micrographs using the software ImageJ 
(Table 1). WE 40 μm microspheres were found to exhibit sizes in the range 20 to 50 μm, WE 20 μm 
microspheres in the range 5 to 40 μm, and WE 12 μm microspheres in the range 2 to 16 μm (occurrence 
over 5%). This same method was used to determine the size distribution in number and the 
morphology of the primary macropores in presintered foams (Table 3). A correction factor of 2/√3 

Figure 7. Fracture surface of presintered alumina foams: low magnification SEM micrographs of
(a) 75.1 vol. % porosity foam produced with WE 40 µm, (b) 76.0 vol. % porosity foam produced with
WE 20 µm and (c) 80.2 vol. % porosity foam produced with WE 12 µm; (d) high magnification SEM
micrograph of a 65.7 vol. % porosity foam produced with WE 12 µm.
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Figure 8. Particle size distribution by number of the three types of wet pre-expanded microspheres used
in this study: (a) WE 40 µm, (b) WE 20 µm, and (c) WE 12 µm. Primary macropore size distribution by
number of presintered porous alumina foams: (d) 75.1 vol. % porosity foam produced with WE 40 µm,
(e) 76.0 vol. % porosity foam produced with WE 20 µm and (f) 80.2 vol. % porosity foam produced
with WE 12 µm.
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Table 3. Morphological characterization of pores: mean size over volume and mean shape factor of the
primary macropores generated by the sacrificial template, as well as mean secondary interconnecting
pore and mean tertiary inter-particle pore sizes (as determined by mercury intrusion porosimetry) and
degree of openness of the pore structure. Compressive strength of the presintered alumina foams.

Batch No Mean Primary
Macropore (µm)

Mean Aspect
Ratio

Mean
Inter-Connecting

Pore (µm)

Mean
Inter-Particle

Pore (µm)

Degree of
Openness

(%)

Compressive
Strength

(MPa)

1 42.6 0.95 4.07 0.24 9.6 10.2 ± 0.6
2 41.1 0.96 2.18 0.30 5.3 24.1 ± 1.0
3 38.3 0.95 6.63 0.13 17.3 3.4 ± 0.1
4 34.2 0.93 2.19 0.29 6.4 38.3 ± 1.6
5 15.4 0.96 1.43 0.15 9.3 7.7 ± 0.5
6 13.2 0.96 - 0.23 - 40.0 ± 3.6

Overall, the mean primary macropore size did not differ more than 11% with respect to the mean
particle size of the corresponding pre-expanded microsphere grade. All presintered alumina foams
produced in this study exhibited a partially open cellular microstructure. Specimens prepared with WE
40 µm microspheres had primary macropores of sizes ranging from 25 to 55 µm (occurrence over 5%).
Furthermore, specimens prepared with WE 20 µm microspheres had primary macropores in the range
25 to 50 µm, while those prepared with WE 12 µm microspheres exhibited primary macropores in the
range 10 to 20 µm (occurrence over 5%). Besides sacrificial-templating, such cellular macroporous
ceramics are usually produced by direct foaming techniques. For instance, Barg et al. [18] prepared
cellular alumina foams with macropores ranging from 0.5 to 3 mm, while alumina scaffolds developed
by Gonzenbach [17] exhibited primary macropores ranging from 10 to 300 µm. Ceramic scaffolds
processed by traditional foaming techniques usually exhibit wide pore size distributions with
significantly large pores. The materials and methods described in the present study allow the
processing of macroporous ceramics with significantly narrower pore size distributions and small
pore sizes. In particular, given their relatively high specificity and their small mean pore size,
foams prepared with WE 12 µm microspheres could potentially be used as diesel particulate filters
(DPFs) [34].

Regarding the shape distortion, the mean aspect ratio of the pores did not differ more than 1% with
respect to the corresponding microsphere grade (Table 3). It was thus concluded that microspheres are
not irreversibly deformed during the mixing of the slurry, and so the shape of the pores is completely
determined by the shape of the wet pre-expanded microspheres.

Secondary interconnecting pores and tertiary inter-particle pores are critical for the mechanical
and the transport properties of ceramic foams. However, these could not be characterized by
image analysis of SEM micrographs. Therefore, the pore size distribution of presintered foams
was investigated by mercury intrusion porosimetry (Figure 9). For all specimens analyzed, a relatively
narrow peak was observed in the range 0.13–0.30 µm, corresponding to the tertiary inter-particle
pores between alumina particles. In general, a second lower peak could also be identified in the
range 1.43–6.63 µm, corresponding to the secondary interconnecting pores. This second peak was
generally more pronounced in foams with 75.1 to 80.2 vol. % porosity (e.g., Figure 9a) than in foams
with 61.6 to 66.7 vol. % porosity (e.g., Figure 9b). The close-packing of the microspheres in specimens
with high volume fraction of porosity results in relatively large windows connecting individual
pores after the organics burn-out. In mercury intrusion porosimetry, all pores are assumed to be
cylindrical. Consequently, these results must be interpreted as the size of the largest access to the open
pores and not the actual size of the inner pores. The degree of openness of the presintered alumina
scaffolds was determined as the ratio of mean size of secondary interconnecting pores to mean size
of macropores on a volume basis, as proposed by Pulko et al. [35] (Table 3). It was thus concluded
that porous alumina foams with a significantly open pore space can be produced using pre-expanded
thermoplastic microspheres as sacrificial templates.
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(b) 61.6 vol. % porosity foams.

The alumina foams presintered at 1200 ◦C exhibited total porosities between 65.7 and 80.2 vol. %,
corresponding to compressive strengths of 40.0 ± 3.6 and 7.7 ± 0.5 MPa, repectively (Table 3).
These results are comparable to the compressive strength of sintered macroporous alumina foams
reported in the literature. According to a study by Han et al. [36], densification and mechanical
strength of alumina are optimized after sintering at 1550 ◦C. Nevertheless, temperatures in the range
1550–1700 ◦C have been widely used in the processing of macroporous alumina foams. Among others,
Gonzenbach et al. [17] produced alumina foams with 88 vol. % porosity and compressive strength of
16 MPa after sintering at 1575 ◦C. Dhara et al. [37] obtained alumina scaffolds with 71 vol. % porosity
and compressive strength of 46 MPa after sintering at 1600 ◦C. Mao et al. [38] processed macroporous
alumina with approximate porosities of 75 and 82 vol. % and approximate compressive strengths of
50 and 20 MPa, respectively, after sintering at 1650 ◦C. These results are comparable to those obtained
in the present study for presintered alumina foams. It is thus suggested that the increase in the sintering
temperature could offer macroporous alumina scaffolds with superior mechanical strengths than those
already reported in literature.

4. Conclusions

A suitable processing route to produce macroporous alumina scaffolds using wet pre-expanded
polymeric microspheres as sacrificial templates has been developed. With this method, the expansion
of the microspheres during the process was avoided. The vol. % porosity and the pore size distribution
of the alumina foams were tailored with the amount and type of microspheres added to the slurry,
respectively. Furthermore, the shape distortion of the microspheres during the preparation of the
ceramic slurries was observed to be negligible, which resulted in the shape of the pores being controlled
by that of the pre-expanded microspheres. The presintered macroporous alumina foams contained
porosity from 65.7 to 80.2 vol. %, with mechanical strengths ranging from 3.3 MPa to 43.6 MPa.
The alumina foams exhibited uniform microstructures, with well-dispersed pores and no evident
defects. Given the pore size ranges and the degrees of openness achieved, wet pre-expanded polymeric
microspheres could be used to produce highly porous ceramic foams with tailored microstructure for
filtration, separation, and support for catalysts purposes.
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