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Abstract: In the field of metal matrix composites (MMC), spark plasma sintering (SPS) technique has
been used so far for the manufacture of particle, whisker and short-fiber reinforced alloys. In this
work, SPS technique is employed for the first time to produce continuous fiber reinforced light metals.
For this purpose, metal matrix composite prepregs with aluminum as a surface coating on carbon
fiber textiles are manufactured by twin arc wire spraying and subsequently consolidated by SPS in
the semi-solid temperature range of the alloy. Shear thinning rheological behavior of the metal alloy
at temperatures between solidus and liquidus enables the infiltration of fiber rovings under reduced
forming loads. SPS offered a better controlled and more efficient heat transfer in the green body and
faster consolidation cycles in comparison with alternative densification methods. Fully densified
samples with no porosity proved the suitability of SPS for densification of MMC with a remarkable
stiffness increase in comparison with samples densified by thixoforging, an alternative consolidation
method. However, the pulse activated sintering process leads to a quite strong fiber/matrix adhesion
with evidence of aluminum carbide formation.

Keywords: metal matrix composites (MMC); aluminum matrix composites (AMC); spark plasma
sintering (SPS); carbon fiber; semi-solid forming

1. Introduction

Aluminum has become the preferred structural material for a myriad of applications in the
fields of ground transportation and aeronautics because of its low density in comparison with carbon
steel. Nevertheless, specific demands of certain components require the use of alternative lightweight
materials with higher stiffness and targeted thermo-physical properties. Due to this reason, metal
matrix composites (MMC) have been in focus of research over the last 50 years. By adequate selection
of reinforcing phase and composite architecture, different objectives can be achieved by the substitution
of conventional materials by MMC components such as, Young’s modulus increase, reduction of
thermal elongation and creep resistance increase [1]. For niche applications in sectors of low pricing
pressure, such as aerospace, different material solutions based on ceramic fiber (SiC, Al2O3) reinforced
light metals have been developed since the 1980s [2]. However, for the establishment of fiber reinforced
light metals in application fields with tough cost targets, as ground transportation or mechanical
engineering, low-priced raw materials and economically viable manufacturing processes are required.

The search for synergies between outstanding mechanical properties of low-priced
polyacrylonitrile-based carbon fibers and the low density of aluminum has attracted wide attention
from academia and industry. However, the chemical compatibility of the matrix and reinforcing phase
of this material system is still today an unresolved technical hurdle. The uncontrolled growth of
aluminum carbide crystals, which are formed at the Cf/Al interface during high-temperature exposures,
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has been proven to impair mechanical properties of such composites. Several publications have
contributed to a better understanding of growth mechanisms and implications of interfacial Al4C3

nanocrystals for the micro- and macro mechanical properties of Cf/Al [3–7]. According to the published
literature about this topic, the compatibility of Cf/Al interface can be optimized by different strategies:

• Deposition of thin ceramic or metallic interlayers at the interface [8–10];
• Functionalization of fiber surface; targeted selection of carbon fibers with suitable surface

topography [11];
• Selection of aluminum alloys with certain levels of alloying elements, which contribute to inhibition

of Al4C3 growth [12,13];
• Optimization of manufacturing parameters for the reduction of thermal exposure.

The last two strategies are especially interesting from the point of view of cost effectiveness,
because their application is linked with no further manufacturing steps. For their implementation,
a wide knowledge about the most suitable manufacturing parameters, concerning interfacial properties
optimization for different aluminum alloys, is necessary. However, and according to the state of the art
previous to this publication, this study has not been conducted so far.

Considering published literature, carbide growth and therefore interfacial properties are very
sensitive to minor gradients of temperature during shaping and post-treatment [6]. Therefore, it is
necessary to operate with a very accurate control of processing parameters for a decent study on
optimization of time–temperature progression.

Spark plasma sintering (SPS), which has been investigated in the recent years not only for the
manufacturing of high-performance ceramics but also for consolidation of particle [14,15], carbon
nanotube [16] and short fiber reinforced light metals [17,18], is a technically feasible tool to perform
this task. The aim of this work is conducting for first time a feasibility study on the SPS consolidation
of continuously reinforced aluminum matrix composites. In order to compare the obtained results of
samples densified by SPS with an alternative method, MMC reference samples are manufactured by
thixoforging with a hydraulic press from the same raw materials.

2. Materials and Methods

For the study on SPS consolidation of continuous fiber reinforced aluminum following raw
materials were employed:

• Reinforcement: Carbon fiber woven fabrics in plain weave binding with an areal weight of
160 g/m2 from HT 200 tex 3k carbon rovings

• Matrix: Wires of 1.6 mm diameter supplied by Drahtwerk Elisental (Neuenrade, Germany) of
aluminum alloys AlSi1MgMn, AlSi5, AlSi7Mg, and AlSi10Mg. Chemical compositions of every
alloy are shown in Table 1.

Table 1. Chemical composition of aluminum alloys according to manufacturer specifications.

Sample Si (%) Fe (%) Cu (%) Mn (%) Mg (%) Zn (%) Ti (%) Be (%) Al (%)

AlSi1MgMn 1.03 0.31 0.08 0.47 1.09 0.01 0.01 n.s. Rest
AlSi5 5.10 0.11 0.01 0.00 0.01 0.00 0.01 0.001 Rest

AlSi7Mg 6.90 0.11 0.001 0.001 0.67 0.001 0.09 0.001 Rest
AlSi10Mg 9.30 0.16 0.00 0.00 0.26 0.00 0.02 0.001 Rest

The manufacturing process chain followed in this study is summarized in Figure 1. Woven fabrics
were initially cut into sheets, which were coated with the metallic matrix by means of thermal spraying.
The resulting MMC prepregs were consolidated to Cf/Al samples by two different methods: SPS
and thixoforging.
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Figure 1. MMC manufacturing process chain. 

MMC prepregs consisting of metallized carbon fiber fabrics were manufactured by means of 
twin wire arc spraying. This spraying technique consists of the continuous mechanical feeding of two 
metallic wires with the same chemical composition, parallel and with equal speed, into a spray gun. 
As the wires are electrically charged with opposing polarity, an electric arc is generated between the 
tips of the wires. The resulting heat melts the metallic feedstock. Molten particles are atomized and 
accelerated towards the substrate by compressed air flow. A twin wire arc torch Sparc 400 (GTV 
Verschleißschutz GmbH, Luckenbach, Germany) was used in this study. The torch was mounted on 
a robot arm, which followed a meander trajectory with a speed of 400 mm/s. The robot arm repeated 
six times the same trajectory on both sides of the woven fabric with a wire feed speed of 3.9 m/min 
and an output voltage of 36 V for sustaining the electric arc. After the thermal spraying process, the 
carbon fiber fabrics are pre-infiltrated by aluminum as shown in Figure 2.  

 
Figure 2. While light microscope images of thermally sprayed fiber prepregs: (a,c) AlSi1MgMn;  
(b,d) AlSi7Mg. 

The resulting coated fabrics were cut in different geometries to fit the die dimensions. In the case 
of the prepregs for SPS experiments, coated fabrics were cut in circles with a diameter of 49 mm. The 
SPS graphite die was covered with graphite foil as a release agent layer and eight stacked prepregs 
were additionally covered with two graphite discs at the top and at the bottom. The fiber prepregs 

Figure 1. MMC manufacturing process chain.

MMC prepregs consisting of metallized carbon fiber fabrics were manufactured by means of
twin wire arc spraying. This spraying technique consists of the continuous mechanical feeding of
two metallic wires with the same chemical composition, parallel and with equal speed, into a spray
gun. As the wires are electrically charged with opposing polarity, an electric arc is generated between
the tips of the wires. The resulting heat melts the metallic feedstock. Molten particles are atomized
and accelerated towards the substrate by compressed air flow. A twin wire arc torch Sparc 400 (GTV
Verschleißschutz GmbH, Luckenbach, Germany) was used in this study. The torch was mounted on a
robot arm, which followed a meander trajectory with a speed of 400 mm/s. The robot arm repeated six
times the same trajectory on both sides of the woven fabric with a wire feed speed of 3.9 m/min and an
output voltage of 36 V for sustaining the electric arc. After the thermal spraying process, the carbon
fiber fabrics are pre-infiltrated by aluminum as shown in Figure 2.
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The resulting coated fabrics were cut in different geometries to fit the die dimensions. In the
case of the prepregs for SPS experiments, coated fabrics were cut in circles with a diameter of 49 mm.
The SPS graphite die was covered with graphite foil as a release agent layer and eight stacked prepregs
were additionally covered with two graphite discs at the top and at the bottom. The fiber prepregs
were then consolidated to discs of 49 mm diameter with SPS equipment by FCT Systeme (Rauenstein,
Germany). The pulse condition used in this study was 8:2, relating the first number to the time
ON and the second to the time OFF (both magnitudes measured in ms). An initial axial pressure of
5 MPa and a preheating of 350 ◦C were applied to close the gaps between layers and to homogenize
the temperature at a value under the liquidus temperature of the alloy. According to the published
literature, this value of preheating temperature does not lead to aluminum carbide formation at
the fiber/matrix interface [6]. Finally, temperature and pressure were raised to their target values.
Three different densification temperatures of the semi-solid temperature range were chosen for every
alloy. Furthermore, two different axial pressures—7.5 and 10 MPa—for each densification temperature
were investigated. Depending on the alloy, the densification temperature varied between 585 ◦C and
650 ◦C. Figure 3 shows exemplary a densification cycle with a densification temperature of 605 ◦C and
an applied axial pressure of 10 MPa.
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then heated by a propane-powered infrared radiator and transferred to a hydraulic press Type HPS-
S 1000 kN by Schuler Hydrap (Plüderhausen, Germany). Target values of pressing force and stroke 
speed were set to 1000 kN (~67 MPa) and 6 mm/s respectively.  
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metal wires were characterized by differential scanning calorimetry (DSC). This method enables the 
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liquid phase content of metals. The DSC tests of this study were conducted with the thermal analyzer 
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Figure 3. Exemplary thermal and pressure cycles for densification of Cf/Al.

For the thixoforging densification experiments, coated fabrics were cut into rectangular sheets of
120 × 150 mm2. Eight prepregs layers were laminated and wrapped with a steel foil of 0.1 mm thickness
to avoid loss of liquid fraction of the alloy during densification. In order to enable an easy removal of
MMC plates after densification, the interior side of steel foil was impregnated with EKamold® boron
nitride suspension (3M, Minnesota, USA) as release agent. Prepreg packages were then heated by
a propane-powered infrared radiator and transferred to a hydraulic press Type HPS-S 1000 kN by
Schuler Hydrap (Plüderhausen, Germany). Target values of pressing force and stroke speed were set
to 1000 kN (~67 MPa) and 6 mm/s respectively.

In order to set appropriate densification temperatures for every alloy, melting properties of
metal wires were characterized by differential scanning calorimetry (DSC). This method enables the
determination of both, the liquidus and solidus temperatures and the temperature dependence of
liquid phase content of metals. The DSC tests of this study were conducted with the thermal analyzer
DSC822e by Mettler Toledo (Columbus, USA). The DSC tests started with a fast heating rate of 20 K/min
from room temperature to 500 ◦C followed by two different heating rates of 2 and 5 K/min up to
700 ◦C. The evaluation of the DSC curves to determine the liquid phase fraction as a function of
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temperature is based on the integration of the area between curve and baseline according to the
standard DIN 51004 [19].

MMC samples of each alloy were consolidated at three different processing temperatures within
temperature range of semi-solid state. The consolidation temperatures, which were selected for this
study considering results of DSC analysis, are shown in Table 2. There are different reasons for operating
under the liquidus line: impeding loss of metal liquid phase during pressing; inhibition of reaction
products formation at the interface; reduction of residual stresses; and shrinkage. This manufacturing
route, based on semi-solid consolidation of thermally sprayed prepregs, has been previously
investigated with alternative consolidation methods, as for instance hydraulic pressing [20–22].

Table 2. Processing temperatures and corresponding liquid phase content for each alloy.

AlSi1MgMn AlSi5 AlSi7Mg AlSi10Mg
Temperature

(◦C)
Liquid Phase
Content (%)

Temperature
(◦C)

Liquid Phase
Content (%)

Temperature
(◦C)

Liquid Phase
Content (%)

Temperature
(◦C)

Liquid Phase
Content (%)

630 12 595 58 585 66 585 83
640 48 605 65 595 75 590 88
650 100 615 77 605 87 595 94

The MMC samples were afterwards characterized with respect to Young’s modulus by resonance
frequency method (IMCE, Belgium) and with respect to flexural strength by static three-point bending
tests according to the standard DIN-EN-658-3 “Advanced technical ceramics—Mechanical properties
of ceramic composites at room temperature” on a universal testing machine Z100 (Zwick GmbH & Co.
KG., Ulm, Germany). The above-mentioned standard was chosen because of the lack of a standard for
fiber reinforced metals. SPS densified samples were mechanized by means of waterjet cutting as shown
in Figure 4. MMC samples manufactured by thixoforming were cut with a SiC cutting disc. The ratio
between sample thickness and supports distances was fixed at a value of 12 for all tests. The setup of
the bending test is shown in Figure 4.

Ceramics 2020, 3, 24 269 

 

reaction products formation at the interface; reduction of residual stresses; and shrinkage. This 
manufacturing route, based on semi-solid consolidation of thermally sprayed prepregs, has been 
previously investigated with alternative consolidation methods, as for instance hydraulic pressing 
[20–22]. 

Table 2. Processing temperatures and corresponding liquid phase content for each alloy. 

AlSi1MgMn AlSi5 AlSi7Mg AlSi10Mg 

Temperature 
(°C) 

Liquid 
Phase 

Content 
(%) 

Temperature 
(°C) 

Liquid 
Phase 

Content 
(%) 

Temperature 
(°C) 

Liquid 
Phase 

Content 
(%) 

Temperature 
(°C) 

Liquid 
Phase 

Content 
(%) 

630 12 595 58 585 66 585 83 
640 48 605 65 595 75 590 88 
650 100 615 77 605 87 595 94 

The MMC samples were afterwards characterized with respect to Young ́s modulus by 
resonance frequency method (IMCE, Belgium) and with respect to flexural strength by static three-
point bending tests according to the standard DIN-EN-658-3 “Advanced technical ceramics—
Mechanical properties of ceramic composites at room temperature” on a universal testing machine 
Z100 (Zwick GmbH & Co. KG., Ulm, Germany). The above-mentioned standard was chosen because 
of the lack of a standard for fiber reinforced metals. SPS densified samples were mechanized by 
means of waterjet cutting as shown in Figure 4. MMC samples manufactured by thixoforming were 
cut with a SiC cutting disc. The ratio between sample thickness and supports distances was fixed at 
a value of 12 for all tests. The setup of the bending test is shown in Figure 4. 

 
Figure 4. MMC specimens for mechanical characterization and setup of three-point bending test. 

The densities of consolidated samples were determined with an analytical balance (Kern ABS, 
Germany) using the Archimedes principle. The fiber volume fractions were calculated from the 
results of the density measurements, using the general rule of mixtures of fiber reinforced materials.  ߩ௖ ൌ ௠ݒ௠ߩ ൅  ௙ (1)ݒ௙ߩ

where ߩ௖, ,௠ߩ ,௠ݒ ;௙: densities of composite, matrix and dispersed phase respectivelyߩ  .௙: volume fraction of matrix and dispersed phase respectivelyݒ
  

Figure 4. MMC specimens for mechanical characterization and setup of three-point bending test.

The densities of consolidated samples were determined with an analytical balance (Kern ABS,
Germany) using the Archimedes principle. The fiber volume fractions were calculated from the results
of the density measurements, using the general rule of mixtures of fiber reinforced materials.

ρc = ρmvm + ρ f v f (1)

where
ρc, ρm, ρ f : densities of composite, matrix and dispersed phase respectively;
vm, v f : volume fraction of matrix and dispersed phase respectively.
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3. Results

3.1. Thermal Characterization of Aluminium Alloys

The results of the liquidus and solidus temperatures for each heating rate, according to the
evaluation of the DSC curves, are shown in Table 3. With regard to the solidus temperatures, there are
deviations of maximum 5 K comparing both heating rates. The differences of liquidus temperatures for
both heating rates achieve a maximal value of 8 K. It is a well-known fact that increments of heating
rates lead to deviations of DSC curves, which directly influence the values of liquidus and solidus
temperatures in this case.

Table 3. Solidus and liquidus temperatures of aluminum alloys according to DSC measurements.

Alloy Solidus Temperature (◦C) Liquidus Temperature (◦C)
2 K/min 5 K/min 2 K/min 5 K/min

Cf/AlSi1MgMn 610 605 652 660
Cf/AlSi5 560 560 634 640

Cf/AlSi7Mg 555 550 620 625
Cf/AlSi10Mg 560 560 605 610

Figure 5 shows the temperature dependence of liquid phase content for the investigated samples.
The curve slopes are completely different for each alloy. In the case of the casting alloy AlSi10Mg,
the inclination of the curve is very pronounced, especially in the range of 10–80% liquid phase content.
A similar behavior can be observed for the wrought alloy AlSi1MgMn above 10% liquid phase content.
Therefore, prepregs sprayed with these two alloys need to be handled with a very accurate control
of processing temperatures in order to reach suitable liquid phase contents for semi-solid shaping.
On the other side, the alloys AlSi5 and AlSi7Mg exhibit lower gradients, enabling their processing in
semi-solid state.
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3.2. SPS Consolidation of Samples

In general terms, MMC prepregs from the different aluminum alloys employed in this study
were successfully densified in the semi-solid state temperature range of each alloy. Fiber fabrics were
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infiltrated by the metallic matrix with nearly no signs of porosity, as observed in Figure 6. The only
exception to this behavior are the fiber prepregs sprayed with the cast alloy AlSi10Mg, which already
showed a particular melting behavior in the DSC analysis. The extremely high sensitivity of liquid
phase content to minor temperature variations (69% increase of liquid phase content between 570 and
580 ◦C) hampers presumably the consolidation of fabrics metallized with this alloy, leading to the
formation of numerous infiltration defects, as observed in Figure 6.
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Figure 6. While light microscope images of SPS consolidated MMC samples. From left to right:
Cf/AlSi1MgMn, Cf/AlSi5, Cf/AlSi7Mg and Cf/AlSi10Mg.

According to conducted density measurements, fiber volume content of the samples fluctuates
between 45% and 54% (see Table 4). An increase of consolidation temperature and axial pressure leads
to slightly higher values of fiber volume content. The reason for that is the missing small amount of
liquid phase, which is pressed out of the die due to the low viscosity of the metal. Although these
values are not atypically elevated for woven reinforced composites, the apparent local fiber volume
content around the fiber rovings is too high for an optimal fiber/matrix stress transfer. Distances
between single filaments are in some cases inexistent, as shown in the lower images of Figure 6.

Table 4. Fiber volume content estimated from density measurement and rule of mixtures.

Sample Fiber Volume Content (%)

Cf/AlSi1MgMn 50–54
Cf/AlSi5 46–49

Cf/AlSi7Mg 45–48
Cf/AlSi10Mg 48–52

3.3. Mechanical Characterization

The values of bending strength and Young’s modulus of SPS consolidated MMC samples for
optimal densification parameters are given in Figure 7. For comparison purposes, the mechanical
properties of MMC samples from identical prepregs consolidated by thixoforging process with
hydraulic press are shown in Figure 8. Although raw materials and prepreg manufacturing process
were the same in both cases, the differences of mechanical properties for both groups of samples are
remarkable. SPS consolidated samples exhibit much higher stiffness and lower bending strength in
comparison with MMC samples manufactured by alternative consolidation methods.
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Figure 8. Mechanical properties of Cf/Al samples consolidated by hydraulic pressing for optimum
densification parameters.

It is noticeable that, in the case of samples consolidated by SPS, differences of bending strength
between each material system are minor. All bending strength values of these samples are higher
than 150 MPa and lower than 165 MPa. The reason for his behavior is presumably, that failure
mechanisms of SPS consolidated samples are strongly dominated by the elevated interfacial bonding
strength. As observed in the failure surface (Figure 9, left image), SPS samples show a brittle behavior
without signs of crack deflection, pull-out morphology or fiber debonding. This fact indicates a
strong fiber/matrix adhesion, which would be the limiting factor of the composite under flexural stress.
This high level of fiber/matrix adhesion could be induced by an uncontrolled growth of interfacial
reaction products. Actually, suspicious crystals were found at the fiber surfaces by SEM fractographic
analysis of some SPS consolidated MMC samples, as shown for the case of a Cf/AlSi7 sample in the
central and right images of Figure 9.
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3.4. Raman Spectroscopy

This presumed carbide formation on the fiber surface was proven by a Raman spectroscopy
measurement. The company TTI GmbH—AViSpectro TGU (Stuttgart, Germany) was commissioned
for this purpose. According to the results, aluminum carbide is embedded in the surface of carbon
fibers in the form of small crystals. The results of the Raman spectroscopy as well as the microscopic
image at one of the points where Al4C3 was found are shown in Figure 10.

Ceramics 2020, 3, 24 273 

 

This presumed carbide formation on the fiber surface was proven by a Raman spectroscopy 
measurement. The company TTI GmbH—AViSpectro TGU (Stuttgart, Germany) was commissioned 
for this purpose. According to the results, aluminum carbide is embedded in the surface of carbon 
fibers in the form of small crystals. The results of the Raman spectroscopy as well as the microscopic 
image at one of the points where Al4C3 was found are shown in Figure 10. 

 
Figure 10. Raman spectrum and microscopic image at the Cf/Al interface. 

4. Discussion 

The main point to analyze in this chapter is the reason for the notable differences between failure 
mechanisms and mechanical properties of MMC samples consolidated by SPS and by hydraulic 
pressing. Considering the morphology of failure surfaces, SPS consolidated samples show no signs 
of energy dissipation phenomena at the interface. Indeed, aluminum carbide formation at the 
interface was detected by Raman Spectroscopy only in SPS consolidated samples. These differences 
of interface properties between both kinds of samples are caused by the different consolidation 
techniques, as raw materials and prepreg manufacturing parameters were the same for all the 
samples. 

Some recent studies about SPS densification of short carbon fibers and aluminum particles have 
reported how SPS processing with certain pulse conditions leads to uncontrolled growth of reaction 
zones at the interface [18]. According to some publications, decreases of the ON:OFF ratio elevates 
the momentary current intensity, which can increase local processing temperatures due to Joule 
heating [23,24]. According to Lalet et al., liquid phase was observed at a low ON:OFF ratio, although 
having set the processing temperature to 500 °C. This indicates a local temperature increase above 
the melting point of aluminum (660 °C) during SPS densification of short fiber reinforced aluminum 
[18]. Following the argumentation of the authors, the Al2O3 passivation layer of the Al particles, 
which were used as raw materials in the mentioned study, might be broken by internal stresses 
derived from melting-expansion iterations during SPS heating process. An analogy between 
passivation layers of Al particles of mentioned study and thermal sprayed Al layers of the present 
study could explain observed results. Although heated below the liquidus temperature, there could 
be local temperature increases during the SPS process, thus promoting the formation of Al4C3. 

Regarding the brittle failure mechanisms of SPS consolidated samples, another argument could 
explain this behavior. The constraint of metallic layers surrounded by reinforcing ceramic phases has 
been identified in a previous study as a negative-impact factor for toughness of metal matrix 
composites [25]. Suboptimal filament distribution in the MMC samples of this study, with fibers 

Figure 10. Raman spectrum and microscopic image at the Cf/Al interface.

4. Discussion

The main point to analyze in this chapter is the reason for the notable differences between failure
mechanisms and mechanical properties of MMC samples consolidated by SPS and by hydraulic
pressing. Considering the morphology of failure surfaces, SPS consolidated samples show no signs of
energy dissipation phenomena at the interface. Indeed, aluminum carbide formation at the interface
was detected by Raman Spectroscopy only in SPS consolidated samples. These differences of interface
properties between both kinds of samples are caused by the different consolidation techniques, as raw
materials and prepreg manufacturing parameters were the same for all the samples.

Some recent studies about SPS densification of short carbon fibers and aluminum particles have
reported how SPS processing with certain pulse conditions leads to uncontrolled growth of reaction
zones at the interface [18]. According to some publications, decreases of the ON:OFF ratio elevates
the momentary current intensity, which can increase local processing temperatures due to Joule
heating [23,24]. According to Lalet et al., liquid phase was observed at a low ON:OFF ratio, although
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having set the processing temperature to 500 ◦C. This indicates a local temperature increase above the
melting point of aluminum (660 ◦C) during SPS densification of short fiber reinforced aluminum [18].
Following the argumentation of the authors, the Al2O3 passivation layer of the Al particles, which were
used as raw materials in the mentioned study, might be broken by internal stresses derived from
melting-expansion iterations during SPS heating process. An analogy between passivation layers of
Al particles of mentioned study and thermal sprayed Al layers of the present study could explain
observed results. Although heated below the liquidus temperature, there could be local temperature
increases during the SPS process, thus promoting the formation of Al4C3.

Regarding the brittle failure mechanisms of SPS consolidated samples, another argument could
explain this behavior. The constraint of metallic layers surrounded by reinforcing ceramic phases
has been identified in a previous study as a negative-impact factor for toughness of metal matrix
composites [25]. Suboptimal filament distribution in the MMC samples of this study, with fibers
stacking together in large areas, may impair toughness of the whole composite. An increase of
aluminum thickness between filaments would lead to a toughness enhancement.

5. Conclusions

The suitability of SPS technique for production of continuous carbon fiber reinforced aluminum
was analyzed and proven for the first time in this work. MMC samples were consolidated with
remarkable infiltration results. The stable process management of modern SPS equipment enables
an accurate control of main densification parameters: temperature and pressure. This parameter
accuracy is required to optimize the shear thinning rheological behavior of aluminum alloys at
semi-solid temperatures.

According to the mechanical characterization of the samples, stiffness values in the order of
115–135 GPa were achieved. Considering the low density of this material system, values of specific
stiffness double those of standard Al-alloys, like EN AW 6082. However, SPS consolidated composites
exhibited reduced damage tolerance and suboptimal interface properties. This aspect should be
improved in future studies.
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