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Abstract: Sintering under pressure by means of the spark plasma sintering (SPS) technique is a
common route to reduce the sintering temperature and to achieve ceramics with a fine-grained
microstructure. In this work, high-density bulk TiO2 was sintered by high pressure SPS. It is shown
that by applying high pressure during the SPS process (76 to 400 MPa), densification and phase
transition start at lower temperature and are accelerated. Thus, it is possible to dissociate the two
densification steps (anatase then rutile) and the transition phase during the sintering cycle. Regardless
of the applied pressure, grain growth occurs during the final stage of the sintering process. However,
twinning of the grains induced by the phase transition is enhanced under high pressure resulting in a
reduction in the crystallite size.

Keywords: nanopowder TiO2; high-pressure spark plasma sintering; grain growth; densification rate

1. Introduction

Nb-doped Titanium dioxide (Nb-TiO2) is a promising cheap, chemically stable and nontoxic
transition metal oxide for high temperature thermoelectric (TE) devices working in oxidizing
environments. A good TE efficiency requires materials with low thermal conductivity and high
electrical conductivity. While a small amount of Nb (2–4 at.%) increases the electrical conductivity
of TiO2 by several orders of magnitude, it has been recently shown that the thermal conductivity
of bulk nano-structured Nb-TiO2 obtained by spark plasma sintering (SPS) is significantly lowered
by decreasing the average grain size [1]. A value of 2.5 W/mK has been observed at 900 K for an
average grain size of 170 nm, while the value in the single crystal is of about 4 W/mK. SPS has proven
its efficiency in fast densification with limiting grain growth [2,3]. However, the role of the applied
pressure remains unclear [4–6]. This work provides a detailed investigation of the sintering mechanism
of Nb-TiO2 during the SPS process and of the effect of the high pressure with the aim of identifying the
parameters that control the average grain size in the nano-structured materials.

Our aim is to investigate whether high-pressure SPS can produce dense ceramics with
finer nanostructures.
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2. Materials and Methods

2.1. Synthesis of Niobium-Doped TiO2 Nanoparticles.

All syntheses were carried out under argon using standard air-free techniques. The reagents,
[Ti(OEt)4]3 and [Nb(OEt)5]2(Strem Chemicals, 99.9%) were distilled prior to use. Anhydrous pentane
was obtained using a solvent drier, MB SPS-800 (solvent purification system), from MBRAUN and
stored under argon over 4 Å molecular sieves. In a typical sol–gel synthesis procedure for the
preparation of a TiO2 nanopowder doped with 2 mol% Nb: 17.00 g (24.84 mmol) of [Ti(OEt)4]3 taken
in 15 mL of pentane were mixed with 0.47 g (0.75 mmol) of [Nb(OEt)5]2 under stirring at room
temperature. This solution was added dropwise to 150 mL of water with 2.40 g (7.45 mmol, 0.1 eq/Ti) of
(NtBu4)Br at 100 ◦C, and the medium was stirred for 1 h at 150 ◦C. The suspension was then centrifuged
to yield a white solid. The as-prepared precipitate was washed by 3 × 50 mL of deionized water
and 50 mL of ethanol, and dried at 80 ◦C for 12 h. Then, to remove all the organic compounds, the
powder was calcinated at 500 ◦C for 4 h under air. After the calcination, the powder crystallized under
the anatase phase (JCPDS no. 00-021-1272) with a brookite fraction of 5%. The average crystallite
size, determined by Rietveld refinement, was around 10 nm. This crystallite size corresponds to the
particle size observed by transmission electronic microscopy (TEM) (Figure 1). These crystallites are
agglomerated in aggregates smaller than 1µm, as measured by laser granulometry.
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Figure 1. TEM image of TiO2: 2 mol% Nb nanopowder calcined at 500 ◦C for 4 h.

2.2. SPS Densification

The titanium dioxide powders, after the calcination, were sintered by using spark plasma
equipment (SPS) HPD 25 (FCT Systeme GmbH, Germany). The powdered samples were loaded in a
tungsten cemented carbide (WC-Co) die (10 mm inner diameter) lined with a graphite foil (0.35 mm
thick). The sintering temperature was regulated by a K-type thermocouple (1 mm diameter) introduced
in the WC die. The pulse patterned consisted of two pulses lasting 10 ms followed by one pause period
of 5 ms.

Four experiments were performed in order to observe the effect of pressure on the sintering
behavior of the anatase powder. The powder was first pressurized up to the targeted pressure (76,
200, 300 and 400 MPa). Then, the same heating cycle was applied for each experiment (heating rate
n◦1-heating rate n◦2-sintering temperature-dwell time): 100 ◦C/min up to 680 ◦C–20 ◦C/min up to 700
◦C-10 min. After the dwell time, the heating power was shut off and the pressure was released.
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Subsequently, for a better understanding of phenomena, two samples were sintered under 400 MPa
following the same heating rates up to a lower sintering temperature without dwell time: 450 ◦C and
600 ◦C.

Two samples sintered at 76 MPa by heating 10 min at 850 and 960 ◦C with heating rates 10 and
100 ◦C/min, respectively, are also referred for comparison.

2.3. Characterization Techniques

The density of the sintered samples was measured using Archimedes method with distilled water
as a liquid medium. The values for the relative densities were calculated assuming a theoretical density
of titanium dioxide doped with 2 mol% of niobium. The calculated theoretical density is 3.925 g·cm−3

for the anatase phase and 4.267 g·cm−3 for the rutile phase. X-ray diffraction (XRD) was used to
analyse the crystallographic phase of the powder and the sintered sample. A Bruker D8 Advance
A25 diffractometer (Cu kα radiation at 0.154184 nm) equipped with a Ni filter and 1-D fast multistrip
detector (LynxEye, 192 channels on 2.95◦) was used. The diffractograms were collected at 2Θ with
steps of 0.02◦ from 15 to 85◦ (2Θ) for a total acquisition time of 120 min. The data analyses were carried
out by Rietveld refinement (Fullprof Suite package) [7] using Thompson Cox Hastings (modified
pseudo-Voigt) and instrumental resolution functions.

The observation of microstructures and the determination of grain size were performed using
scanning electron microscopy (SEM) and image analysis software (ImageJ). The average size was
obtained by measuring about 100 grains. Transmission electronic microscopy (TEM) of prepared
thinned blades was performed using a MET JEOL2100.

3. Results and Discussion

3.1. Effect of Pressure on Densification and Phase Transition

To study the influence of pressure on the densification and the phase transition phenomena,
four TiO2:2%Nb pellets were sintered by SPS at 76, 200, 300 and 400 MPa at a constant temperature of
700 ◦C according to the thermal cycle described in the experimental part. Sintering of the pre-calcined
powders resulted in pellets (density > 85%) of 10 mm diameter and 2 mm thick, with a metallic
blue-black color. The characteristics of the pellets are presented in Table 1. It can be observed
from XRD profiles (Figure 2) that the phase transition shifted to lower temperatures as the pressure
increased. Indeed, at 76 MPa—700 ◦C, the pellets were mainly composed of anatase phase, while at
200 MPa—700 ◦C, they mainly consisted of rutile phase (Figure 2). For pure TiO2 nanoparticles, the
anatase to rutile transformation occurred within 600–850 ◦C [8]. The transformation from anatase to
rutile involved a volume decrease of 8.7%, which was promoted by the application of pressure [9].
On the other hand, according to our previous work [10], Nb doping (2% mol.) delays the transition
temperature from 700 to 800 ◦C during the SPS sintering at 76 MPa.

Table 1. Characteristics of the different pellets produced in this study. The heating rate is 100 ◦C/min
for all samples, except for the sample “850 ◦C–76 MPa” which was heated at 10 ◦C/min. The mean
grain size and the corresponding standard deviation, D90 (90% of the particles are below this size), D50
(median) are evaluated from the SEM images. The crystallite sizes are extracted from the XRD patterns
fitted using Fullprof Suite package [7].

Pellets
Phases

(A + R = 100%)
Relative
Density

(%)

Mean
Grain Size

(nm)

Standard
Deviation

(nm)

Crystallite Size (nm)
D90 (nm) D50 (nm)

Anatase Rutile

700 ◦C–76 MPa 69.6% A 84.8 39 12 31 66 57 ± 2 38 ± 1

700 ◦C–200 MPa 98% R 96.2 260 53 86 319 ± 7 258 ± 2

700 ◦C–300 MPa 100% R 95.3 287 101 93 455 ± 7 306 ± 3
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Table 1. Cont.

Pellets
Phases

(A + R = 100%)
Relative
Density

(%)

Mean
Grain Size

(nm)

Standard
Deviation

(nm)

Crystallite Size (nm)
D90 (nm) D50 (nm)

Anatase Rutile

700 ◦C–400 MPa 100% R 96.0 322 98 62 428 ± 7 272 ± 2

600 ◦C–400 MPa 98.9% R 94.2 168 73 92 277 ± 6 165 ± 6

450 ◦C–400 MPa 95.4% A 89.7 22 5 17 28 ± 2 22 ± 1

850 ◦C–76 MPa 100% R 89.0 159 70 136 225 ± 3 152 ± 2

960 ◦C–76 MPa 100% R 96.3 252 158 92 448 ± 4 200 ± 4
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Figure 2. XRD patterns of the materials obtained after spark plasma sintering (SPS) cycle up to 700 ◦C
at the different pressures. The peaks are identified as the anatase phase (a) and the rutile phase (r) in
the samples. (g) Corresponding to graphite residue (originating from the graphite foil placed between
the WC mold and the sample during sintering) present on the surface of a sample.

The SPS dilatograms for these four samples are shown in Figure 3a–d. The displacement rate
of the piston (related to the sample shrinkage rate) shows that for the low pressure (76 MPa), the
densification was slow and extended over a wide temperature range (from 350 to 700 ◦C). A small part
of the sample was transformed into rutile. For an intermediate pressure (200 MPa), the densification
started near 280 ◦C and extended up to 700 ◦C. A large part of the sample was transformed into rutile.
As the pressure increased, the first stage of densification took place at a lower temperature and the
transformation of the anatase phase to the rutile phase was favored, but no phase transition signature
was observed in the dilatogram during the temperature rise.
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Figure 4. XRD patterns of the materials obtained after SPS cycles up to 450 and 600 °C under 400 MPa. 
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Figure 3. Sintering cycles of TiO2:2%Nb nanoparticles (pre-calcined at 500 ◦C/4 h) up to 700 ◦C under
different pressures: (a) 76, (b) 200, (c) 300 and (d) 400 MPa.

For the higher pressures (300 and 400 MPa), the dilatograms exhibited two stages of densification
around 380 and 650 ◦C. For the sample sintered at 300 MPa, the maximum displacement rate of the
first densification stage was observed at 385 ◦C. At 400 MPa, three phenomena could be distinguished.
The first and the second densification stages show the maximum displacement rates at 365 and 620 ◦C,
respectively. An interesting phenomenon can be noted for the sintering at 400 MPa. At 546 ◦C,
we observed a sharp jump with a piston displacement of 0.15 mm which may correspond to the
transition from the anatase phase (theoretical density = 3.925 g·cm−3) to the rutile phase (theoretical
density = 4.267 g·cm−3)—i.e., ∆V/V = −8 %. Indeed, we placed about 1 g of the powder in the matrix;
a phase change caused a variation of the volume of about 0.02 cm3. This implies a piston displacement
of 0.26 mm. This variation is purely indicative because we are uncertain about the exact mass of the
powder, the density of the pellets, and we did not take into account the thermal expansion of the lattice.
The phase transition rate at 400 MPa was very fast and certainly occurred at a lower temperature as
compared to sintering at 300 MPa where this peak was not observed. At 200 and 300 MPa, the transition
phase occurred but was more gradual. In fact, the anatase–rutile transition was reconstructive, and the
total transformation took place slowly between 600 and 700 ◦C under moderate pressure [8].

In order to understand the significant piston displacement rate observed in Figure 3d, two sintering
experiments were performed at 400 MPa. The first sintering was interrupted at 450 ◦C, before the sharp
peak and after the first densification peak. The second sintering was stopped at 600 ◦C immediately
after the sharp peak (Figure 3d). The XRD patterns (Figure 4) obtained at the pressure of 400 MPa
could be identified mainly with the anatase phase for 450 ◦C and the rutile phase for 600 ◦C. This
result (Figure 4) clearly shows that the sharp jump observed around 546 ◦C was related to the sudden
transformation of the anatase to the rutile phase. In consequence, the two densification stages observed
during the sintering at 400 MPa can be attributed to the sintering of the anatase phase around 365 ◦C
and then of the rutile phase around 620 ◦C. After the first stage, at 450 ◦C, the relative density of the
pellet that mainly comprised the anatase phase was equal to 89.7%. After the second densification
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stage, at 700 ◦C, the relative density of the pellet reached 96%, and the anatase phase was totally
transformed to the rutile phase.
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Figure 4. XRD patterns of the materials obtained after SPS cycles up to 450 and 600 ◦C under 400 MPa.

The Figure 5 presents the evolution of the temperature corresponding to the maximum of the piston
displacement speed, observed on the dilatograms, as a function of the applied pressure. A decrease of
about 200 ◦C was induced when the pressure increased from 76 to 400 MPa. The increase in the pressure
accelerated the rates of the densification and the phase transformation (Figure 3) and lowered their
occurrence temperature (Figure 5), which led to dissociate the different densification steps (anatase
then rutile) and to distinguish the phase transition.
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At a constant sintering temperature (here 700 ◦C), as the sintering pressure increases, the anatase
phase progressively transforms to the rutile phase (Figure 2). After sintering at 76 MPa, two phases
coexisted, and a density of 3.42 g·cm−3 was measured. After sintering at 200 MPa, a small anatase peak
could still be seen, but the pellet was mostly rutile with a density of 4.10 g·cm−3. Above this pressure,
the densities no longer change and the diffractograms showed a single rutile phase. This result confirms
that with increasing pressure, the phase transition is shifted to lower temperatures, as already reported
by Liao et al. [6]. They observed by hot pressing that the transformation is lowered to 400 ◦C under a
pressure equal to 1.5 GPa. It can be noticed that Maglia et al. [5] obtained different results by high
pressure field assisted rapid sintering of the anatase phase using a different sintering cycle than ours.

3.2. Effect of Pressure on Grain Size

In order to measure the grain size, SEM observation was performed on the pellets sintered at
700 ◦C with a heating rate of 100 ◦C/min and several pressures of 76, 200, 300 and 400 MPa. The images
are shown in Figure 6. The pellet sintered at 76 MPa had a very fine microstructure with a mean
grain size of 39 nm. Coarsening of grains was obvious in sintered samples under the higher pressures,
leading to a mean grain size higher than 260 nm. Figure 7 shows the grain size distributions (GSD)
extracted from the analysis of the SEM images (Figure 6). As the pressure increased, the GSD broadened
and deviated increasingly from a Gaussian shape. This suggests that abnormal grain growth (AGG)
occurs when pressure is equal to or higher than 300 MPa. AGG is known to lead to GSD broadening,
which can ultimately produce a bimodal distribution [11]. In contrast, for samples sintered at 76 and
200 MPa, the GSD shape suggests a normal grain growth (NGG). AGG may occur only at the final
sintering stage when the relative density has reached at least 95% [12].
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Figure 6. SEM images of the sintered pellets at 700 ◦C with the different pressures of (a) 76, (b) 200,
(c) 300 and (d) 400 MPa.
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Figure 7. Grain size distributions of the samples sintered at 700 ◦C for 10 min under different pressures.
Grain size is the grain diameter measured on the SEM images (50 to 175 values per sample). The data
are discretized in twelve 50 nm width intervals. For the clarity of the graphic representation, each
interval is represented by its center value. The average grain size, D, and the standard deviation, SD,
are reported for each sample.

The grain size and relative density of the pellets sintered at 700 ◦Care plotted in Figure 8 as
a function of pressure. It shows that for the same density, the grain size increases with pressure.
To compare with the density and the microstructure of a pellet sintered at a higher temperature (960 ◦C)
but at the lower pressure (76 MPa), the density and grain size values are added in the graph. It can be
noticed that the relative density (96%) and the mean grain size of this pellet were similar to those of
the pellet synthesized at 700 ◦C under 200 MPa. Under the higher pressures (300 and 400 MPa), the
sintering at 700 ◦C did not enhance the densification but led to AGG. These results confirm that AGG
starts at the final sintering stage, when the relative density has reached about 95%.

Figure 9 shows the evolution of grain size during the SPS at an equal pressure of 400 MPa, between
450 and 600 ◦C. With a temperature difference of 150 ◦C, the grain size increased from 22 to 168 nm.
It seems that the phase transition led to an increase in grain size.
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Figure 8. Evolution of grain size and relative density as a function of pressure for a thermal cycle up to
700 ◦C.
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Figure 9. SEM images of niobium-doped TiO2 after SPS at 400 MPa in a WC matrix. The influence of
phase transition on grain size is clearly visible in the SEM images.

This effect of the phase transition can be observed in Figure 10, representing the evolution of
grain size as a function of density for the isobaric sintering cycles: 76 and 400 MPa. We have shown
(Figure 4) that at 400 MPa, the transition occurred around 500 ◦C. Three pellets were sintered under
76 MPa at three different sintering temperatures (700, 850 and 960 ◦C) (Table 1). XRD analysis was
performed on each pellet, and it appears that transition phase occurred around 700 ◦C. At 850 ◦C, the
pellet consisted only of the rutile phase. It appears that a significant grain growth occurred around the
phase transition temperature range.
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pressures: 76 (∆) and 400 MPa (#). Open and closed symbols indicate if the sample is mainly crystallized
in the anatase phase or the rutile phase, respectively.

High applied pressure causes strong constraints on the grains and thus a higher density of the
initial compacts. As the temperature increases, thermal energy drives the phase transition. It is clear
that highly constrained grains lead to a transition at lower temperature. As soon as the transition
has occurred and the densification is partially achieved, grain growth accelerates regardless of the
pressure. Pellets sintered in the rutile stability region, at 400 MPa and 600 ◦C and at 76 MPa and
850 ◦C had the same mean grain size of 160 nm and the same relative density (94%). However, at
lower temperature, in the anatase stability region, a pressure as high as 400 MPa could densify the
anatase up to 90% with very a limited grain growth (22 nm). These observations suggest that the
grain growth is not driven by the same phenomena at 76 and 400 MPa. At 76 MPa, grain growth was
governed by diffusion phenomena. At 400 MPa, it was managed by the grain boundary sliding and
grain rotation generated by mechanical stress. For pellets with a density lower than 95%, sintering at
400 MPa allowed compacts with finer microstructures to be obtained. The gain in density is due to the
very dense grain packing obtained by the high initial pressure. They were arranged as compactly as
possible. Once the 95% relative density was overcome, it was observed that the compact sintered at
400 MPa had a coarser microstructure for the same density as compact sintered at 76 MPa due to AGG.
Below 95% densification, grain coarsening appeared to be a direct consequence of phase transformation
via nucleation and fast grain growth. The transition to the rutile phase was accompanied by significant
grain growth resulting in large rutile grains and small anatase ones (Figure 12b). The hypothesis of
rutile nucleation at the boundary between anatase particles can explain the formation of large rutile
grains by the coalescence of two or more anatase grains [8]. In Figure 11, we report the grain size as a
function of the relative density for the eight samples. The relative density of the powder compacted at
1000 MPa at room temperature is also reported. This was measured in compression using a Zwick
testing machine. Relative density for the compact at 76 and 200, 300, 400 MPa, not reported on the
graph, were equal to 29, 35, 39 and 43%, respectively.
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Figure 11. Grain size and crystallite size versus relative density for all samples.

It is clear from Figure 11 that the phase transition induced a jump in grain size from 30 to 170 nm
regardless of the applied pressure. Then, grain growth accelerated when the density exceeded 95%
independently of the process pressure. The higher grain growth rate observed for rutile grains is not
inherent in the nature of the phase. In fact, the activation energy for grain growth is known to be five
times smaller for anatase nanoparticles than for rutile nanoparticles [13]. The observed grain growth
acceleration appears to be related to the relative density, as shown by Bernard-Granger’s study on
spark plasma and hot-pressure sintering of zirconia [14]. This could be related to the pore pinning
effect [15]. In fact, as long as the sample contains dispersed pores, they pin the grain boundaries and
prevent their migration, reducing the rate of the grain growth. When the porosity decreases to less
than 5%, the pinning of the pores decreases, which dramatically accelerates the grain growth.

As mentioned above, high pressure sintering increased the densification rate but also the grain
growth rate at the end of the sintering cycle, inducing an AGG. This acceleration is induced by
grain boundary sliding and grain rotation. This stress-enhanced dynamic grain growth has been
demonstrated in the work of Barak Ratzker et al. [16] on the sintering of transparent alumina. Sliding
and rotation can lead to grain coalescence [17] for high temperature deformation of dense, fine-grained
materials. The rotation of one grain relative to the other occurs by sliding, so that the crystallographic
atomic planes of the two neighboring grains become identical. The grain boundary is erased, and a
single grain is formed. This mechanism contributes to enhanced grain growth during sintering at low
temperatures under high pressure. Large grains (400 nm) with angular grain-boundary curvatures
were observed by TEM in the sample sintered at 700 ◦C under 400 MPa (Figure 12a). These unstable
grains may be due to the slow diffusion rates observed at relatively low temperatures. As shown
in Figure 10, at 400 MPa, AGG occurred in a temperature range of 500 to 700 ◦C, which are low
temperatures to activate diffusion phenomena.
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Figure 12. TEM images of samples sintered at 700 ◦C under 400 MPa. The black arrow shows fractured
grains (a) and 76 MPa (b); grain comprised of twinned crystals, observed in the sample sintered under
400 MPa. The white arrow shows an intragranular dislocation fold originating from a triple point (c);
high resolution TEM image of the twin boundary (d).

A more accurate observation showed that the majority of the grains consisted of twinned crystals
(Figure 12c,d). Some of them were fractured along the twin boundaries (Figure 12a). The twinning
should be due to anatase–rutile transformation, but it was clearly enhanced by increasing pressure. In
fact, a high stress is known to promote twinning. In addition, the higher pressure (400 MPa) applied
during sintering induced an abrupt phase transition with volume reduction of 8%, which generated a
strong additional stress leading to twinning and fracture of the rutile grains. Intragranular dislocation
folds from triple points are also visible in this sample (Figure 12c). These kind of defects have been
reported on fine-grained Y2O3-tetragonal zirconia ceramic by Bernard-Granger et al. [18]. They explain
this microstructure as the result of grain boundary sliding during high temperature creep deformation
under 100 MPa.

In our case, the twinning and fracture of grains were consistent with the evolution of the crystallite
size extracted from the X-ray diffractogram analysis (Table 1 and Figure 11). Above a relative density
of 95%, the crystallite size was smaller than the grain size observed by SEM. This difference was
maximum for the sample sintered at 400 MPa–700 ◦C, which underwent colossal stress due to the fast
phase transition combined with the high applied pressure. The stress generated can induce dislocations
and even rupture of large rutile grains. These results are consistent with those reported by Maglia et
al. [5], who observed a decrease in the rutile crystallite size with increasing sintering temperature.

4. Conclusions

The anatase to rutile transition temperature decreased from 700 to 550 ◦C when the applied
pressure varies from 76 to 400 MPa. However, the densification process occurred at a lower temperature
under high pressure. Therefore, using high pressure SPS, we were able to densify the anatase powder:
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(i) At a sintering temperature as low as 450 ◦C with high applied pressure (400 MPa), the anatase
phase is retained with a very fine grain size (≈20 nm). A relative density up to 90% was achieved.
(ii) At a higher sintering temperature, a phase transition from anatase to rutile concomitant with a fast
grain growth was observed. A twinning of the rutile grains was induced by the phase transition and
enhanced by pressure.

In general, to limit grain growth, the sintering temperature must be lowered when the high
pressure process is used. Low-temperature sintering under high pressure is particularly interesting to
sinter temperature-sensitive materials or metastable phases.
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