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Abstract: Aluminum–ceramic materials based on Al2O3 and AlN are widely used in the electronics
industry and, according to a number of electrophysical and technical and economic parameters, are
among the most suitable for the production of electrical and radio engineering products. In this study,
it is shown that the treatment of ceramics based on Al2O3 with an electron beam with a power of
200–1100 W and a current of 10–50 mA leads to heating of the ceramic surface to a temperature of
1700 ◦C. When heated to a temperature of 1500 ◦C and kept at this temperature for no more than 10 s,
an increase in the roughness of the ceramic surface is observed by more than an order of magnitude.
At the same time, for ceramic substrates based on aluminum nitride, an increase in the temperature
of electron beam treatment from 1300 to 1700 ◦C leads to an increase in thermal conductivity from
1.5 to 2 times. The edge angle of water wetting of the AlN surface can vary from 20 to 100 degrees
depending on the processing temperature, which allows one to control the transition of the material
from a hydrophilic to a hydrophobic state. At the same time, electron beam exposure to Al2O3 does
not change the wettability of this material so much. Electron beam processing in the forevacuum
pressure region allows controlled changes in the electrophysical properties of ceramic materials based
on Al2O3 and AlN.

Keywords: plasma-cathode electron source; electron-beam irradiation; roughness; microhardness;
thermal conductivity; ceramics; processing; Al2O3; AlN

1. Introduction

Aluminum oxide Al2O3 and aluminum nitride AlN share a number of properties,
such as high hardness and wear resistance, which make them suitable for producing tools,
bearings, coatings, and other wear-resistant machine components [1–6]. These ceramic
materials are widely used in various fields of engineering, such as electronics, optics,
metallurgy, and biomedicine [7–10].

Methods used to fabricate Al2O3 and AlN ceramics can be divided into conventional
and unconventional approaches. Conventional methods are based on sintering aluminum
oxide or nitride powders at high temperature and pressure. These methods include hot
pressing, hot isostatic pressing, sintering in an electric field, and activated sintering [11–14].
Unconventional methods are based on the synthesis of aluminum oxide or nitride from
other aluminum compounds at low temperature and pressure. They include sol-gel process-
ing [15], gas-phase processing, and self-propagating high-temperature synthesis [16–18].
To improve the ceramic properties, various additives can be included in the composition,
such as CaO, SiO2, Y2O3, ZrO2, and SiC, among others. The properties of the resulting
material are determined in many ways by the purity of the material itself and the additives
used, as well as by the regime and method of sintering. Currently, despite the multiplicity
of methods and approaches, there is a need for a means of controlled modification of the
surface properties of aluminum oxide or nitride ceramics after sintering.

Ceramic surfaces can be modified in various ways, including processing by ions and
plasma [19], electron-beam irradiation [20–23], and laser radiation [24,25]. These methods
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can modify the ceramic chemical or phase composition, its roughness, and other properties
of the surface layer, and thus improve its physical [26], mechanical [27,28], optical [29], and
electrical characteristics [30–33].

Electron-beam irradiation is an advanced method of modifying materials that makes it
possible to change the surface structure, phase composition, mechanical, optical, and electri-
cal properties [34]. The method employs a high-intensity high-energy electron beam of tens
to hundreds of keV to irradiate the surface in a vacuum chamber. A variety of physical and
chemical processes then take place: heating, melting, evaporation, ionization, excitation,
scattering, diffusion, recombination, etc. [35,36]. Electron-beam processing can be used to
improve the hardness, wear and corrosion resistance, and dielectric permeability of the
Al2O3 ceramic. However, existing methods of electron-beam treatment are problematic in
that they require providing a low pressure in the electron beam generation and transport
regions, which poses the problem of removing the negative charge that accumulates on the
irradiated non-conducting surface due to the electron beam itself.

One solution to this problem is the use of a pulsed beam mode that allows the irradi-
ated surface to partially discharge between pulses. The periodic beam action has its own
specific features: in the course of the exposure, the surface layer of the treated material
melts and then re-crystalizes. This processing regime brings about intense thermal stress
and leads to the formation of pores and cracks on the surface [37].

The use of forevacuum-pressure plasma-cathode electron sources is an alternative
method that improves the efficiency and quality of electron-beam treatment. These sources
are capable of forming electron beams at relatively high pressures, in the range 5–20 Pa. At
these pressures, surface charging of the irradiated dielectric is nearly completely neutralized
by the flux of positive ions from the plasma generated in the electron beam transport region
(the “beam-plasma”) [38]. We have demonstrated, in prior work, the value of using
forevacuum plasma-cathode electron sources for sintering, surface modification, ceramic
welding, and evaporation [39–41].

In the work described here we have explored the influence of an electron-beam
processing regime, in the forevacuum pressure range, on the surface structure, strength,
and thermal properties of aluminum oxide and nitride ceramics.

2. Materials and Investigation Techniques

We used commercially available substrates of the Al2O3 ceramic (policor, JSC Policor,
Kineshma, Russia) and aluminum nitride AlN (INC-AN180, Xiamen Innovacera Advanced
Materials Co., Ltd., Xiamen, China). These materials are widely used in the electronics
industry and are characterized by stable composition and minimum impurity content.
The samples were polished plates 20 × 12 mm in size and 1 mm thick. Parameters of the
substrates under study are shown in Table 1.

Table 1. Substrate parameters [42–44].

Parameter Policor (Al2O3) INC-AN180 (AlN)

Content, % 99.7 96
Density, g/cm3 3.96 3.3
TCLE, 10−6/◦C 8 4.8

Thermal conductivity, W/m·K 30 160–180
Dielectric constant (at 20 ◦C) 9.45–9.95 9

tan δ, 10−4 1 5
Melting point, ◦C 2072 2200

The structure and elemental composition of the substrate surfaces after electron-beam
treatment were analyzed using a Hitachi S-3400N scanning electron microscope (Hitachi
High-Tech, Tokyo, Japan) coupled to a Bruker X’Flash 5010 energy-dispersive analyzer
(Bruker AXS Microanalysis, Karlsruhe, Germany). The elemental composition of the
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original materials is shown in Table 2. The porosity of the non-irradiated substrates did not
exceed 1%.

Table 2. Elemental composition of original (unirradiated) substrates, at%.

Nitrogen Oxygen Aluminum Yttrium

AlN 48.2 0.9 49.4 1.5
Al2O3 - 59.7 40.3 -

Thermal conductivity was measured by the two-probe technique [45]. When measur-
ing the conductivity, a constant voltage of maximum value 500 V was applied. The current
was measured by an analog nano-ammeter.

The presence of yttrium oxide in the aluminum nitride ceramic is to ensure sintering.
Sintering of dense aluminum nitride materials is known to be challenging due to oxygen
impurities in the initial powder. Oxygen penetrates into the aluminum nitride network,
creating aluminum vacancies and reducing the thermal conductivity of the material. To
overcome this issue, Y2O3 is normally added to aluminum nitride ceramic in a weight
proportion of 1–5%.

Surface SEM photographs of the original substrates are shown in Figure 1. There are
visible point defects on the surface of the original samples, which may be directly related
to the substrate manufacturing technology.
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Figure 1. SEM surface images of original substrates: (a) Policor (Al2O3), (b) INC-AN180 (AlN).

The hardness was measured by the Vickers method, in which a tetrahedral pyramid is
forced into the test sample under a specific load, using an HV5 Vickers Hardness Tester
(Jinan Hensgrand Instrument Co., Jinan, China) with an overall measurement error of 10%.

Surface roughness was measured using a Micro Measure 3D Station (STIL, Aix En
Provence, France) profilometer and a Mitutoyo SJ-210 (Mitutoyo Corporation, Takatsu-ku,
Kawasaki, Japan) portable roughness tester with measurement accuracy of 5%.

Thermal conductivity was measured over the temperature range 10–500 ◦C in 100 ◦C
steps in a monotonic heating mode using a PLK-1818 hot plate and a Fluke Ti2000 thermal
imager (Everett, WA, USA) with a measurement accuracy of 5%. The temperature of the
sample surface (TS) and heating plate temperature (TP) were measured under conditions
close to equilibrium when thermal loss from side surfaces could be neglected.

The surface wettability with distilled water was determined according to the technique
described in [46] using an MBS-10 (Rusoptics, Moscow, Russia) stereoscopic microscope
with a magnification of 4× to 100× and equipment for determining the contact angle.

X-ray phase analysis (XPA) was carried out using an XRD7000S (Shimadzu, Kyoto,
Japan) diffractometer. The diffraction patterns obtained were processed using the interna-
tional PDF-2 database and the open-source software PowderCell 2.4.
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3. Experimental Setup and Methods

Electron-beam treatment of ceramic surfaces was carried out on the experimental
setup shown schematically in Figure 2. The setup includes a forevacuum-pressure plasma-
cathode electron source, a 0.2 m3 vacuum chamber, vacuum pumping equipment based
on a BocEdwadrs 80 M mechanical pump, electron beam power supplies, and diagnostic
systems. The electron source, based on a hollow-cathode plasma, is mounted on a central
flange of the vacuum chamber. The main parameters of the electron beam are beam
current—up to 50 mA, electron beam energy—up to 15 keV, beam diameter at its focus
(cross-over)—about 1 mm. Source design and parameters have been described in detail
elsewhere [47]. The focusing magnetic field is capable of varying the beam diameter over
the range 1 to 10 mm. The operating gas was helium (class A, 99.99% purity). The operating
pressure at which the substrates were processed was 30 Pa. As our previous investigations
have demonstrated, this pressure and inert gas are optimal for electron-beam treatment of
non-conducting materials such as ceramics.
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Figure 2. Schematic diagram of the experimental setup: 1—plasma-cathode electron source; 2—vac-
uum chamber; 3—beam deflection system; 4—electron beam; 5—beam-plasma; 6—sintered sample; 
7—computer; 8—pyrometer. 
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Figure 2. Schematic diagram of the experimental setup: 1—plasma-cathode electron source; 2—vacuum
chamber; 3—beam deflection system; 4—electron beam; 5—beam-plasma; 6—sintered sample;
7—computer; 8—pyrometer.

The ceramic sample was placed on a crucible which was a flat bar made of graphite
20 × 30 × 10 mm3 in size. The choice of graphite was because of its high heat resistance,
capable of withstanding temperatures of several thousand degrees without deformation. To
reduce the heat loss due to thermal conductivity, the crucible was suspended by tungsten
wires (not shown in the figure). To ensure uniform irradiation of the substrate surface, the
electron beam was raster-scanned over a rectangle of dimensions 1–2 mm greater than the
substrate. During irradiation, the temperature variation over the substrate area did not
exceed 15 ◦C. Focusing and deflection of the electron beam were carried out by magnetic
coils located directly below the electron source extractor. The temperature time history
during substrate processing is shown in Figure 3. The surface temperature increase was
achieved by gradually increasing the beam current at a constant beam-accelerating voltage
in the range 14–16 kV depending on the type of ceramic.
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Figure 3. Thermal regime of electron-beam irradiation of samples. The holding temperature was
1700 ◦C.

The heating rate was 60–70 ◦C/min depending on the type of ceramic, the isothermal
holding time was 10 s, and the cooling rate was 80 ◦C/min. The isothermal holding
temperature of 1300–1700 ◦C with a discretization of 100 ◦C was selected so as to be in the
range of 60–75% of the melting point. The overall time of electron-beam treatment was from
25 to 40 min, depending on the type of ceramic and the isothermal holding temperature.
With increasing holding temperature, the overall processing time increased.

4. Results and Discussion
4.1. Electron-Beam Irradiation Regime

The types of ceramic used differ significantly in their thermal properties. Thus, Al2O3
has a lower melting point (2072 ◦C) than aluminum nitride AlN (2200 ◦C), which makes
it more stable under thermal damage at high temperatures. However, the higher thermal
conductivity of aluminum nitride (160–180 W/(m·K)) compared with that of aluminum
oxide (30 W/(m·K)) makes it more efficient as a heat sink for heating elements and requires
more energy to heat. During electron beam irradiation, the difference in thermal properties
is fully manifested by the electron beam power needed to heat the Al2O3 and AlN surfaces
to the required temperature. Figure 4 shows the substrate temperature dependence on
electron beam power in the course of heating to the holding temperature. The dependencies
are shown for two boundary temperatures, 1300 ◦C (black lines) and 1700 ◦C (blue lines).
As can be seen, in order to heat aluminum oxide to a temperature of 1300 ◦C, it is necessary
to increase the electron beam power to about 580 W (line 1), while heating aluminum
nitride to the same temperature requires increasing the power by 140 W to a value of 720 W
(line 2). At a temperature of 1700 ◦C, the difference in the beam power required to reach
this temperature significantly increases. Thus, for the aluminum oxide ceramic, the electron
beam power for heating to 1700 ◦C is 1120 W (line 3), while for the aluminum nitride
ceramic, the required power is over 1600 W (line 4). In addition, a longer time is required
for aluminum nitride to reach the desired temperature due to the need to increase the beam
power by another 0.5 kW compared to the processing of aluminum oxide. Speeding up
the heating process is not advisable due to possible damage to the irradiated substrate by
strong thermomechanical stress.
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holding temperatures: 1, 3—Al2O3; 2, 4—AlN.

4.2. Effect of Electron-Beam Treatment on the Surface of the Al2O3 Ceramic

In its original, unirradiated state, the Al2O3 substrate has a white color, as is character-
istic of alumina ceramics. No grain structure appears on the surface of polished samples.
After processing, the surface has a greyish tint. The change in color may testify to a broken
stoichiometry of the composition in the surface layer inclined towards a shortage of oxygen.
Depending on the surface temperature, the removal of oxygen from alumina ceramics
is known to occur in a two-step manner: first through oxygen desorption from the sur-
face, and then its release from the crystal lattice. The equation describing the dissociation
reaction is [48,49]:

2Al2O3 → 4Al + 3O2 ↑ (1)

The conductivity of the ceramic samples was measured before and after electron-beam
treatment. In measuring the conductivity of non-irradiated samples, the current through
the measuring probes was recorded to the instrumentation accuracy (1 nA). No current was
detected in samples after electron beam irradiation, which can be explained by the fact that
the stoichiometric change in oxygen is insignificant due to the low processing temperature
compared to the melting point. Indeed, according to [50,51], at 2350 ◦C, the density of free
aluminum atoms in 100%-oxide alumina reaches 2.5%, however, a decrease in temperature
to 2200 ◦C leads to a decrease in the oxygen content by an order of magnitude to 0.3%.
With further decreases in temperature, one should expect a lower percentage of oxygen
content in the surface layer.

Figure 5 shows SEM images of the surface after electron-beam irradiation of the
aluminum oxide ceramic at different isothermal holding temperatures.

One can conclude from these images that electron-beam irradiation at a temperature
of 1300 ◦C does not result in a significant change in surface structure. However, when
the temperature rises to 1500 ◦C and above, melting occurs followed by re-crystallization
of the ceramic surface layer and formation of micro blocks 50–100 µm in size, indicating
texturization of the ceramic microstructure. Along with the micro-block boundaries, there
are observed pores with an average size of 2–5 µm. At a surface temperature of 1700 ◦C,
the micro-blocks form into regular cubic grains of size 100–150 µm, which is indicative of
the formation of a new phase—the Al2O3 γ-phase (Figure 5d). The presence of pores in
the surface layer is connected with the process of their creation and growth in a thin layer
of the melt due to the presence of gas-forming elements, which can evaporate (mainly of
oxygen, which is a ceramic constituent, and which is released during oxide dissociation).
The presence of a melt layer on the surface of irradiated ceramics at a surface temperature
below the melting point (2072 ◦C) is possible due to local melting of a thin layer under the
focused electron beam. Due to peculiarities of the electron beam scanning and positioning
system, the movement of the beam, though rather fast (the scanning frequency is 100 Hz),
is yet discrete. During the short time when the beam stops, the surface may heat to a higher
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temperature than the temperature of the whole surface measured by the pyrometer. The
small average size of the pores formed after electron-beam irradiation is indicative of the
short time of existence of the liquid phase in the surface layer and of rapid movement
of the molten and solidified areas over the substrate surface. The formation of pores on
the surface after re-crystallization is an undesirable effect, since pores are normally stress
concentrators and facilitate cracking [52]. In our case, no cracking was detected, and only
grain boundaries were more prominent.
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Figure 5. Surface of aluminum oxide ceramic samples processed at different holding temperatures:
(a) 1300 ◦C, (b) 1500 ◦C, (c) 1600 ◦C, (d) 1700 ◦C.

Analysis of the elemental composition of irradiated Al2O3 ceramic samples shows
that electron-beam irradiation in a helium atmosphere does not result in noticeable change
in the surface layer elemental composition. Figure 6 shows typical profilograms of the
relief of the surface areas of Al2O3 ceramic in its original state and after irradiation at a
temperature of 1300 ◦C, 1400 ◦C, 1500 ◦C, and 1600 ◦C. The horizontal axis in Figure 6
indicates the length in mm over which the surface roughness was measured and the vertical
axis indicates the roughness parameter Ra which is an arithmetic mean of absolute values
of profile deviations within the base length. Thus, the surface roughness parameter is
Ra0 = 0.0258 µm for the original sample, Ra1300 = 0.150 µm for the sample processed at
1300 ◦C, and Ra1500 = 2.93 µm for the sample processed at 1500 ◦C.
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Figure 6. Roughness of Al2O3 ceramics: (a) original sample; (b) irradiated at 1300 ◦C; (c) irradiated
at 1500 ◦C.

As can be seen, with an increase in surface temperature, the roughness increases by
several factors. However, when the temperature reaches 1600 ◦C, the irregularities decrease
and the substrate surface levels out. With further increases in temperature, the roughness
parameter continues to grow and reaches a maximum, as is confirmed by the SEM images,
Figure 5d. The increase in roughness is primarily connected with the fact that the electron
beam energy introduced into the sample is spent on melting the surface layer, which upon
cessation of irradiation undergoes rapid re-crystallization, leading to grain growth with the
formations of surface protrusions that negatively affect surface roughness (Figure 6b). A
further increase in processing temperature leads to significant growth of aluminum oxide
grains in the form of elongated rectangles and cubes.

Change in the surface structure brings about change in the ceramic strength properties.
Table 3 shows the results of measurements of microhardness by the Vickers method, which
is based on denting a tetrahedral pyramid with an angle of 136◦ at the apex between
opposite faces under a load; here the load was 5 kg. The data are given in the HV5 scale.

Table 3. Substrate microhardness measured by the Vickers method.

Processing Regime HV5

Original 1700
1300 ◦C 1620
1400 ◦C 1600
1500 ◦C 1580
1600 ◦C 1510
1700 ◦C -

For the sample processed at a temperature of 1700 ◦C, the hardness was not measured
because it was not possible to find a flat area on the surface suitable for measurement.
Omitting this sample, one can see that the hardness tends to decrease with increasing
isothermal holding temperature.
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4.3. Effect of Electron-Beam Treatment on the Surface of the AlN Ceramic

As already mentioned, AlN, being a highly thermally conducting and non-toxic
ceramic material, is in great demand by the electronics industry. As for the majority of
ceramic materials, the purity of the original powder, the sintering mode, and the additives
used play decisive roles in fabricating ceramics with the required properties after sintering.
Also, the thermal conductivity properties of aluminum nitride depend on the conditions
under which the sintered material is processed [53].

Figure 7 shows SEM images of the surfaces of AlN substrates processed at different
temperatures. The white inclusions in Figure 7a–c are particles of yttrium aluminate, which
is formed during the sintering of aluminum nitride ceramic. The covalent nature of the
Al–N bond requires high sintering temperatures. Due to the presence of oxygen impurity in
the original powder, oxygen penetrates into the nitride aluminum lattice during sintering
and creates aluminum vacancies, which results in the scattering of phonons, and therefore
in a decrease in thermal conductivity of the material. When an yttrium oxide additive is
used, it interacts with Al2O3 particles located on the AlN surface; a liquid phase is formed,
which intensifies sintering at lower temperature [54].
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Figure 7. Surface of AlN samples processed at different temperatures: (a) original, (b) 1300 ◦C,
(c) 1400 ◦C, (d) 1500 ◦C, (e) 1600 ◦C, (f) 1700 ◦C. The gray elements in the images are AlN grains. The
bright areas are supposedly yttrium aluminate.

After treatment at a temperature of 1300–1400 ◦C, changes in surface morphology
are barely discernible; however, this temperature is not high enough for the formation
of visible grain boundaries compared to the previously shown aluminum oxide. Further
increase in processing temperature to 1500 ◦C is accompanied by the formation of a distinct
grain structure on the irradiated surface, as well as shallow pores up to 10 µm in size evenly
scattered over the AlN surface. The average grain size of aluminum oxide is 10 µm, and
the bright inclusions corresponding to yttrium no longer appear in the surface structure.
Instead, thin veins containing predominantly oxygen and yttrium are formed on the grain
boundaries. After the temperature rises to 1600 ◦C (Figure 7e), further transformation of
the surface structure is observed, namely the absorption of small grains by larger ones, as
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evidenced by an increase in grain size as well by a decrease in the number of grains. The
pore size increases to 15–20 µm. After treatment at a temperature of 1700 ◦C (Figure 7f),
significant irregularities appear on the ceramic surface and porosity continues to increase.
Additionally, a well-formed aluminum–yttrium structure is seen on the surface, as in
Figure 8.
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Figure 8. Formation of an aluminum–yttrium structure on the AlN surface processed at temperatures
of 1500 ◦C (a) and 1700 ◦C (b).

The elemental composition measured at different areas in Figure 8 is summarized in
Table 4. The areas (I, II, III, and IV) are enumerated according to Figure 8.

Table 4. Elemental composition of different regions of irradiated AlN ceramic, at%.

Nitrogen Oxygen Aluminum Yttrium

I 24.2 25.5 44.8 5.6
II 41.6 6.6 52.0 0.3
III 0 60.6 11.5 27.9
IV 0 21.4 65.8 12.0

A histogram of the elemental distribution is shown in Figure 9. As seen, regions I and
II are characterized by low yttrium content. The content is minimum in region II, within the
measurement accuracy. In region I, the yttrium content increases, and one can assume the
formation of a third phase in the intergranular region. Region III has the highest yttrium
content. The most probable mechanism responsible for the formation of high yttrium
content is the high temperature in the processing region, which leads to the formation of
an aluminum–yttrium structure through the reaction of yttrium with oxygen and nitrogen,
yielding yttrium oxide Y2O3 and yttrium nitride YN, which, in turn interact with aluminum
oxide Al2O3 to form this surface structure.

X-ray diffraction patterns of original and irradiated sample surfaces treated at temper-
atures of 1600 ◦C and 1700 ◦C are shown in Figure 10.
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Figure 9. Histogram of elemental composition over the irradiated AlN surface. The isothermal
holding temperature is 1700 ◦C.
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Figure 10. X-ray diffraction patterns of AlN + Y2O3 samples; original, and at temperatures of 1600 ◦C
and 1700 ◦C.

X-ray diffraction analysis indicates that the AlN + Y2O3 samples consist predominantly
of the AlN (P63mc (186)) phase. As seen from Figure 10, the original AlN + Y2O3 sample
also includes phases of Al2O3 (R-3ch (167)), Y2O3 (F2/m-3 (202)), and Y4Al2O9 (P121/c1
(14)). At a temperature of 1600 ◦C, the YAlO3 (P63/mmc (194)) phase is formed, a result of
interaction of Y4Al2O9 and Al2O3. As the temperature increases further to 1700 ◦C, it is
likely to form the Y3Al5O12 (Ia-3d (230)) phase of the yttrium–aluminum garnet as a result
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of reaction between YAlO3 and Al2O3 [55,56]. Shown below are reactions for powders of
the Al2O3–Y2O3 system synthesized using the nanospray drying method [57]:

2Y2O3+Al2O3 → Y4Al2O9 (1100 ◦C)

Y4Al2O9+Al2O3 → 4YAlO3 (1100 –1400◦C)

YAlO3+Al2O3 → Y3Al5O12 (1400 ◦C and above)

Thus, as the processing temperature increases, yttrium oxide first embeds in the grain
boundaries as they are formed, and then rises to the surface to form an aluminum–yttrium
structure, which may affect the strength and thermal properties.

Figure 11 shows the dependence of hardness, measured by the Vickers method, on
processing temperature for aluminum nitride.
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Figure 11. Dependence of AlN hardness measured by the Vickers method on processing temperature.

One can see from Figure 11 that the sample microhardness decreases as the processing
temperature increases to 1500 ◦C. This decrease can be associated with the formation of a
region with a broken structure in the surface layer and increased porosity of the material,
which is indirectly confirmed by SEM images of the surface shown in Figure 7d–f. With
further increase in temperature, along with an increase in the surface hardness due to the
formation of the aluminum-yttrium structure, the hardness is improved due to the healing
of small cracks and pores. However, the hardness increases but does not achieve the value
of the original sample. A decrease in the hardness of high-density ceramics after irradiation
by electrons and ions is a known effect [58], which is associated with cracking of the surface
layer after processing. An increase in microhardness on account of surface layer melting
has been observed previously only for porous ceramics [59], which were not a study subject
of this work.

As with the aluminum oxide ceramic, roughness measurements for the aluminum
nitride ceramic (Table 5) show an increasing temperature dependence. As seen from Table 5,
this increase is not linear, but occurs in a stepwise manner.

At relatively low temperature of up to 1400 ◦C, the roughness varies within the
measurement accuracy. However, at a temperature of 1500 ◦C, the roughness increases by
more than a factor of four (the parameter Ra increases from 0.68 to 2.66 µm). This roughness
dependence correlates with the microscopic data (Figure 7).
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Table 5. Roughness measurements of AlN substrates after electron-beam processing at different
temperatures.

Processing Regime Ra. µm

Original 0.671
1300 ◦C 0.754
1400 ◦C 0.679
1500 ◦C 2.656
1600 ◦C 2.581
1700 ◦C 3.795

4.4. Thermal Conductivity Measurement of the AlN Ceramic after Electron-Beam Processing

The high thermal conductivity of the aluminum nitride ceramic, along with its elec-
trical insulating and strength properties in comparison with other types of ceramics and
its non-toxicity, makes this material important to the electronics industry. The theoretical
value of thermal conductivity of AlN, according to [60], can reach 320 W/(m·K); however,
in practice, this value is limited for commercially available specimens by a great number of
defects due to oxygen dissolved in the AlN lattice. According to [61–63], the mechanism of
defect formation can be as follows: oxygen dissolved in the AlN (ON) lattice induces the
formation of aluminum atom vacancies (VAl), and due to the considerable mass mismatch
between these vacancies and the surrounding lattice, a defect with very large phonon
scattering cross-section is created. The presence of oxygen in AlN is connected with its
content in the original powder used for sintering. This content may amount to 1%.

As noted above, since AlN is a material with a covalent bond, it has a low diffusion
coefficient, and this requires high sintering temperatures (>1600 ◦C). Moreover, in the
presence of protective oxide on the surface and oxygen in the crystal lattice, it is impossible
to reach high thermal conductivity without using sintering additives. The role of additives
is to form a liquid phase by interacting with the oxide layer (Al2O3) on the surface of
compacted particles and to act as a “sink” to remove oxygen from the lattice [64]. Other
methods of achieving high thermal conductivity include sintering at temperatures above
1800 ◦C for several hours, irradiation by high-energy neutrons [65], and heat treatment
after sintering in various reducing atmospheres at high temperature [66–69]. In the work
described here, for heat treatment we used electron-beam irradiation in residual atmosphere
at a chamber pressure of 10 Pa.

Figure 12 shows the thermal conductivity of AlN ceramic after irradiation at different
temperatures.
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Increase in the isothermal holding temperature leads to an increase in thermal con-
ductivity, with the largest change observed for samples sintered at 1500 ◦C and above,
at which temperature an aluminum–yttrium structure is formed on the surface. Despite
increase in surface roughness and decrease in strength, thermal conductivity increases
with the formation of pores. This effect can be related to an increase in the size of ceramic
grains with simultaneous decrease in their number. Decrease in phonon scattering on grain
boundaries is apparently a factor that facilitates the increase in thermal conductivity.

4.5. Effect of Electron-Beam Processing on Ceramic Wettability

The contact wetting angle determines the degree of interaction between a liquid and a
solid surface and characterizes its moisture resistance, anti-corrosion, anti-bacterial, and
other properties. Depending on the purpose and conditions of applications, it may be
advantageous to either increase or decrease the contact angle [70–72]. The contact angle
depends on interfacial surface energies of the liquid, solid, and gaseous states, as well as on
the surface roughness and chemical composition. There are several methods of changing
the contact angle, such as physical or chemical modification of the surface, application of
coatings, creation of structures with various geometry and size, and others. [73,74]. In the
present work we have explored the effect of electron-beam irradiation on surface properties
and contact angle.

As noted above, the roughness increases after electron-beam processing, which in
general should result in a decrease in the contact angle compared to the smooth surface,
provided the same interfacial surface energies. This effect arises due to increase in contact
area with the liquid and more possibilities for the formation of molecular bonds. However,
in certain cases, the roughness can lead to an increase in contact angle due to the formation
of air cavities between surface irregularities. This phenomenon is called composite wetting
and can be used to create super hydrophobic surfaces with contact angle over 150◦ [75].

Figures 13 and 14 show photographs of the original and processed substrate surfaces
of aluminum oxide and aluminum nitride taken after processing at different temperatures.
One can see that the droplets on the irradiated surface for both ceramics are larger than on
the non-irradiated surface.

Table 6 shows the results of measurements of contact wetting angle for the substrates
under study.

Table 6. Measured contact wetting angle.

Processing Regime Al2O3 INC-AN180

Original 63◦ 56◦

1300 ◦C 53◦ 93◦

1400 ◦C 97◦ 20◦

1500 ◦C 98◦ 38◦

1600 ◦C 88◦ 73◦

1700 ◦C 94◦ 101◦

The data in Table 6 are charted in Figure 15. As can be seen, with increase in irradiation
temperature, the contact angle varies differently for oxide and nitride ceramics. Thus,
for Al2O3 samples treated at 1400 °C and above the surface wettability decreases. The
ceramic surface exhibits hydrophobic properties, which is manifested by an increase in
contact angle from 63◦ for the untreated surface to 90◦–100◦ for the irradiated surface. The
wettability dependence for AlN ceramic is nonmonotonic. At low processing temperature,
the wettability decreases noticeably, then at a temperature of 1400 ◦C the contact angle
abruptly decreases, and the surface acquires more hydrophobic properties: the contact angle
decreases by more than a factor of two. With further increase in processing temperature,
the contact angle increases, exceeding 100◦.
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The contact angle is determined by the interaction between molecules of the liquid
and the solid surface. A lower contact angle indicates that the solid body has lower surface
energy; the energy increases with increasing processing temperature. According to [76], the
observed increase in hydrophilicity can be related to increase in surface roughness, as in
the case of irradiation by a femtosecond laser [77]. Note also another possible mechanism is
related to change in the chemical composition of the irradiated surface. After electron-beam
processing the content of Al on the surface of AlN substrate increases (according to Table 4
and Figure 10). A thin layer of aluminum oxide is formed due to oxidation. However, a
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large number of Al3+ and O2− ions produced by electron-beam irradiation do not combine
immediately, resulting in the formation of a Lewis acid and base pair, which expands the
polar areas on the surface and improves the surface energy and hydrophilicity [78–80].

5. Conclusions

Electron-beam irradiation of aluminum-containing ceramics Al2O3 and AlN by a
plasma-cathode electron source in the forevacuum pressure range provides an effective
method of surface modification of these ceramic materials.

Small changes in the surface properties begin to appear when the processing tempera-
ture reaches about 1500 ◦C. From this temperature and further as the temperature increases,
the surface of the ceramic begins to show the effects of melting and re-crystallization, which
result in grain growth on the surface of Al2O3, and, in the case of irradiation of AlN, the
formation of aluminum nitride structures.

The microhardness and roughness of the irradiated ceramic surface increases with
increasing processing temperature. The contact wetting angle of the AlN surface can vary
from 20◦ to 100◦ depending on temperature, which allows one to control the transition of
the material from hydrophilic to hydrophobic. Electron-beam irradiation of Al2O3 does not
affect the wettability of this material to such an extent.

The thermal conductivity of ceramic substrates subjected to electron-beam treatment
in the forevacuum pressure range increases by a factor of 1.5 to 2 over the untreated surface,
which is connected to increase in the size of ceramic grains and simultaneous decrease in
their number. A decrease in phonon scattering on grain boundaries facilitates an increase
in thermal conductivity.

The results of the work described here contribute to the further development of
technologies for electron-beam modification of ceramic materials.
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