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Abstract: The pursuit of low-power/low-voltage operation in devices has prompted a keen interest in
the mesoscale effects within ferroelectric thin films. The downsizing of ferroelectrics can significantly
influence performance; for instance, the remanent polarization and coercive field are susceptible to
alterations based on thickness. In this study, randomly oriented Bi3.25La0.75Ti3O12 thin films were
fabricated on Pt/Ti/SiO2/Si substrates using the sol–gel method, and SEM observations revealed
rod-like grains in all thin films. The investigation delved into the correlation between dielectric
and ferroelectric properties with thin film thickness. The thin film exhibited an increased remanent
polarization and a reduced coercive electric field. Additionally, the ferroelectric domain structure
was scrutinized through PFM, and the resistor properties of the BLT4 thin film were studied, which
shows the potential of BLT thin films in non-volatile memory and memristor.
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1. Introduction

Ferroelectric thin films exhibit diverse properties, such as ferroelectricity, piezoelec-
tricity, dielectricity, pyroelectricity, and photoelectric effects, rendering them suitable for
various applications including ferroelectric memory, piezoelectric drivers, infrared detec-
tors, and optoelectronic devices [1–5]. Traditional ferroelectric materials, predominantly
lead-based compounds, are exemplified by the widely used lead zirconate titanate (PZT)
in commercial applications due to their robust ferroelectric and piezoelectric character-
istics [6,7]. However, the environmental and health concerns arising from the volatiliza-
tion of lead in lead-based materials necessitate the exploration of lead-free alternatives.
Bismuth-based titanate and bismuth ferrite emerge as promising candidates for lead-free
piezoelectric materials. Notably, bismuth titanate (Bi4Ti3O12, BIT) exhibits favorable prop-
erties, including a small coercive field, a low leakage current density, excellent fatigue
resistance, and applicability in non-volatile memory [8–10].

BIT, classified as a typical three-layer bismuth layered ferroelectric (BLSF) material,
consists of a bismuth oxide layer (Bi2O3)2+ and a perovskite-like layer (An−1BnO3n+1)2−

along the c-axis direction [11,12]. Characterized by strong anisotropy, BIT demonstrates
spontaneous polarization of approximately 50 µC/cm2 along the a-axis and 4 µC/cm2

along the c-axis. Additionally, it features a low film deposition temperature and a high
Curie temperature (Tc = 675 ◦C) [13,14]. Despite its favorable properties, BIT faces chal-
lenges such as instability in the oxidation state of Ti ions and volatility in Bi ions during
the sintering process. These issues lead to defects, resulting in a high leakage current
and domain pinning, thereby affecting its practical applications [9,15]. To enhance its
ferroelectric properties, researchers have explored the substitution of Bi3+ ions in the
perovskite-like layer (Bi2Ti3O12)2+ with trivalent rare-earth ions such as Pr3+, Nd3+, Sm3+,
Eu3+, and La3+ [1,16–19]. In 1999, Park et al. reported a ferroelectric thin film of La-doped
BIT, Bi3.25La0.75Ti3O12 (BLT) [11]. Wu et al. demonstrated that the application of tensile or
compressive stress on the surface of BLT thin films in the high-field region (>75 kV/cm)
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effectively mitigates the leakage current [20]. Furthermore, substituting high-valent cations
for Ti4+ at the B site proves instrumental in eliminating oxygen vacancy defects, thereby
enhancing remanent polarization and reducing the leakage current. BIT thin films co-doped
with Sm and Ta, denoted as BSTTO, exhibited markedly improved ferroelectric properties,
boasting a higher remanent polarization (2Pr = 46.2 µC/cm2) compared to BIT thin films
(2Pr = 26 µC/cm2) [21]. Various techniques, including pulsed laser deposition (PLD) [22],
magnetron sputtering (MS) [23], metal–organic chemical vapor deposition (MOCVD) [24],
and the sol–gel method [25], have been employed for the preparation of BLT ferroelec-
tric thin films. Among these, the sol–gel process stands out for its cost-effectiveness,
facile stoichiometry control, and uniform deposition over large areas, making it versatile
for widespread applications. Notably, factors such as the precursor solution, annealing
conditions, film thickness, and substrate properties exert substantial influence on film
orientation [25–27]. Optimal film layer thicknesses of 30, 50, and 100 nm corresponded to
preferentially oriented thin films with (001), (100), and (117) orientations, respectively [28].
By adjusting the grain size of BLT through annealing temperature modulation, Yang et al.
achieved a higher energy storage density, rendering BLT ferroelectric thin films suitable
for high-energy-density storage devices, thereby expanding their application scope [29].
In addition, information storage technology stands as one of the most rapidly advancing
fields within the realm of integrated circuits. Among its components, memory stands
as the pivotal core in information storage technology. However, conventional storage
devices have reached a point where they can no longer meet the burgeoning demands of
information storage technology. Consequently, the pursuit of developing a new genera-
tion of memristors has captured academic interest in recent years. The development of
ferroelectric materials with resistive switching characteristics holds significant importance
for memristors.

In this study, lead-free BLT thin films were synthesized using the sol–gel method, and
the adjustment of spin coating times yielded BLT thin films with exceptional ferroelectric
properties. The dielectric and ferroelectric characteristics of thin films subjected to varying
spin coating times were systematically compared across different electric field strengths and
frequencies. The microscopic ferroelectricity of the BLT film and the microscopic evolution
of the domain wall of the BLT film were studied through PFM observation. The resistor
characteristics of the BLT4 thin film were studied, demonstrating its potential application
in memristor.

2. Materials and Methods

The Bi3.25La0.75Ti3O12 thin films were fabricated using the sol–gel method on
Pt/Ti/SiO2/Si substrates. The precursor solution was composed of bismuth(III) acetate
(Aladdin, Shanghai, China), lanthanum(III) acetate (Aladdin, Shanghai, China), and tetra-
butyl titanate (Aladdin, Shanghai, China) as primary raw materials, with propionic acid
(Aladdin, Shanghai, China) as the solvent and ethanolamine (Aladdin, Shanghai, China)
as the stabilizer. The quantities of bismuth acetate, lanthanum acetate, and tetrabutyl
titanate were determined according to stoichiometric proportions, with an additional 5% of
bismuth acetate to compensate for Bi volatilization during annealing. The synthesis pro-
cess entailed the gradual addition of bismuth acetate and lanthanum acetate to propionic
acid, followed by stirring at room temperature until complete dissolution. Subsequently,
tetrabutyl titanate was introduced, and a specific amount of ethanolamine was added to
stabilize the colloid. The mixture was stirred at room temperature for one day to yield a
yellow stock solution, and the concentration of precursor solution was 0.10 mol/L. This
solution was spun at 6000 rpm for 20 s and then pyrolyzed on a hot stage (C-MAG HS 7,
IKA, Staufen, Germany) at 400 ◦C for 5 min. This procedure was iterated four, five, six, and
seven times to produce the samples denoted as BLT4, BLT5, BLT6, and BLT7, respectively.
Finally, the samples underwent annealing in an infrared annealing furnace (IRLA-1200,
Wuhan JouleYacht Technology Co., LTD, Wuhan, China) at 700 ◦C in an air atmosphere for
30 min.
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The thin films’ phase analysis and crystallographic orientation were determined using
X-ray diffraction (XRD, D8 Advance X, Bruker, Germany) with CuKα radiation at room
temperature. Surface topography and cross-section were examined using a scanning elec-
tron microscope (SEM, Apreo 2, Thermo Scientific, Waltham, MA, USA). The piezoelectric
response and domain structure of the BLT thin films were characterized using piezoelectric
force microscopy (AFM/PFM, Cypher S, Oxford Instruments, Abingdon, Oxfordshire, UK).
Before electrical characterization, Au top electrodes with a 0.5 mm diameter were deposited
onto the thin films through magnetron sputtering (ETD-800, Vision Precision Instruments,
Beijing, China), forming Au/BLT/Pt capacitors. The hysteresis loop, leakage current
characteristic, and current–voltage loop were characterized using a ferroelectric analyzer
(Precision Multiferroic II, Radiant, Albuquerque, NM, USA), and the dielectric constant
and dielectric loss were determined using an impedance analyzer (WK6500B, Wayne Kerr,
Woburn, Massachusetts, UK). The resistor characteristics (I-V curve) of the device were
tested using a semiconductor analyzer (4200A-SCS, Keithley, Seattle, WA, USA).

3. Results and Discussion

Figure 1 depicts the X-ray diffraction (XRD) patterns of BLT thin films deposited
on (111)Pt/Ti/SiO2/Si substrates. The thin films exhibit complete crystallization and
demonstrate polycrystalline structures (ICDD/PDF No. 00-035-2795), with no observable
secondary phases in the XRD scans. Based on the intensity of the (117) XRD reflection,
the following formula [28] can be used to estimate the degree of preferred orientation of
BLT films:

α117 =
I(117)

I(008) + I(117) + I(200)
(1)

where I(006), I(117), and I(200) stand for the integrated peak intensities for (008), (117), and
(200) diffraction lines, respectively. α117 would be about 66% in a fully random film. This
indicates that all of the thin films possessed random orientation. Increasing the number
of spin coating cycles leads to a significant enhancement in the intensities of (111), (220),
(1115), and (317) peaks relative to the background noise level. This is to be expected as
a consequence of the film thickness increase with the number of spun layers. The slight
decrease in α117 with the number of spin cycles is probably due to this increase in the
intensities of the weak (008) and (200/020) lines relative to the background noise in the
XRD scans, rather than any change in preferred orientation.
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In Figure 2, surface images of the BLT thin films on Pt/Ti/SiO2/Si substrates with
varying spin coating cycles are presented. The micrographs reveal dense and smooth
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thin films without discernible cracks or bubbles, which indicates that all of the thin films
have good quality. With an increasing number of spin coatings, the BLT grains exhibit
elongation, which is confirmed by SEM micrographs. The thin films primarily consist of
rod-like grains oriented with different lengths. It is not clear whether these grains are rods
or plates, which are viewed edge-on. The formation of rod-like grains can be attributed to
the anisotropic growth of the BIT-based material, driven by lower c-plane interface energy
compared to the a/b surface, resulting in faster growth in the plane perpendicular to the
crystallographic c-axis [28]. In the process of film preparation, the shapes of grains depend
on nucleation and grain growth. According to Schwartz’s theory, in films with interface
nucleation, the grains are columnar, while in films with interface and bulk nucleation, the
grains are fine [30]. Therefore, it is speculated that when the film thickness is low, interface
nucleation is predominant, and as the thickness gradually increases, it transitions to both
interface and bulk nucleation. Furthermore, the grain density is influenced by nucleation
centers and the surface migration of adsorbed atoms. With an increase in the number of
spin-coating layers, i.e., an increase in thickness, the surface diffusion of adsorbed atoms
is restricted, and the density of nucleation centers increases, resulting in a more uniform
distribution of particle aggregation, and as the width of the rod increases, it is easier for
them to make contact with each other, which also leads to the smaller width of the grain
during the growth process [31]. The cross-sectional images in Figure 2e–h depict thin films
with varying layer counts. The thicknesses for four, five, six, and seven layers are 140 nm,
180 nm, 210 nm, and 240 nm, respectively, with each layer measuring approximately 35 nm.
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Figure 2. SEM micrographs and cross-sections of Bi3.25La0.75Ti4O12 thin films; (a,e) BLT4, (b,f) BLT5,
(c,g) BLT6, (d,h) BLT7.

The polarization–voltage hysteresis loop was measured at 1 kHz for each thin film
sample, and the remanent polarization (Pr) was extracted from the hysteresis loop. The
hysteresis loops for BLT thin films with different thicknesses are presented in Figure 3a,
and the corresponding thickness-dependent Pr values are illustrated. It was observed that
as the number of spin coatings increased, Pr gradually decreased. Furthermore, all samples
exhibited well-defined saturation hysteresis loops, which indicated that all of the films
had good ferroelectric properties. However, significant asymmetries were observed in the
hysteresis loop of the BLT4 thin film, likely stemming from differences in the work function,
defect charge, and interface control between the top and bottom electrodes. In Figure 3b,
dielectric constant and dielectric loss are shown as functions of frequency for all thin films
at room temperature. At 100 Hz, the dielectric constant increased with the film thickness,
rising from 258 at 140 nm to 276 at 240 nm. The dielectric constant increases with the film
thickness, influenced by both the extrinsic and intrinsic properties of the ferroelectric film.
This relationship can be further elucidated. Meanwhile, the dielectric constants of all thin
films decrease as the test frequency rises due to the suppression of the space charge effect.
In the frequency range from 102 to 105 Hz, the dielectric loss remains nearly constant (<0.10).
The abrupt changes in the dielectric constant and dielectric loss beyond 105 Hz result from
the L-C resonance induced by the stray inductance at the probe–film contact [32].
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different film thicknesses.

It is widely recognized that BIT thin films exhibit high leakage currents, which are
primarily attributed to defects like oxygen vacancies. The incorporation of La into BIT
(BLT) can ameliorate the leakage current characteristics. In Figure 3c, the leakage current
density versus the applied electric field (J-E) for BLT thin films with varying spin-coating
times is depicted. Irrespective of the spin-coating times, all BLT thin films exhibit reduced
leakage current densities, measuring less than 4.5 × 10−8 A/cm2 at an electric field of
150 kV/cm. The J-E curves of all Au/BLT/Pt samples display asymmetry around x = 0,
which is attributable to differing Schottky heights of the top and bottom electrodes in
the ferroelectric heterostructures [10]. The leakage current curve manifests two distinct
regions. In the low-voltage region, the leakage current densities of all BLT thin films
demonstrate linear growth, while in the high-voltage region, they increase exponentially.
The boundary between these two regions for BLT thin films is observed at approximately
180 kV/cm. In Figure 3d, the ln J-ln E curves for all BLT thin films illustrate a similar trend
in which the current density increases with the electric field, indicating that the leakage
current characteristics are independent of the film thickness. Detailed discussions on the
leakage current characteristics in the low electric field and high electric field regions will be
provided for the BLT4 film.

Figure 4 presents the electrical characteristics of BLT4 thin films. In Figure 4a, the
hysteresis loop of the BLT4 film at 1 kHz is shown as a function of the electric field. Notably,
an increase in the electric field leads to a rapid rise in both the remanent polarization
and coercive field. Once the saturation voltage is reached, the coercive field remains
constant, while the remanent polarization exhibits a linear increase with the electric field. In
Figure 4b, we depict the frequency-dependent hysteresis loops of BLT4, revealing a decrease
in maximal polarization and an increase in the corresponding remanent polarization as
the frequency varies. Importantly, the hysteresis loops remain relatively stable, indicating
good frequency stability. Figure 4c displays the leakage current behavior of BLT4, and the
inset exhibits the ln J-ln E curve. The leakage conductance mechanism of ln J-ln E was
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analyzed by the slope α of ln J-ln E. In general, when α~1, the conduction mechanism is
an ohmic conduction mechanism, and when α~2, the conduction mechanism is a space
charge limited current mechanism (SCLC). The ln J-ln E curve of BLT4 under a positive
electric field can be divided into two segments; when the electric field is low, α~1.4, this
indicates that the conduction mechanism of the BLT4 film is the combined action of an
ohmic conduction mechanism and an SCLC mechanism. When the electric field continues
to increase, reaching α~12.4, this may be dominated by the Schottky emission mechanism
and the Poole–Frenkel emission mechanism [33]. Lastly, in Figure 4d, we present the
hysteresis loop of BLT4 at 8 V and its corresponding current and voltage profiles. The
current-voltage curve exhibits a significant current peak near the coercive field, which is
associated with ferroelectric domain inversion induced by the applied electric field. The
reorientation of most domains under the applied electric field results in higher current
densities, underscoring the stability of the thin film domains.
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To confirm the presence of microscopic ferroelectricity, we utilized piezoelectric re-
sponse force microscopy to examine the as-prepared BLT4 thin films in randomly selected
areas. Figure 5a,b show the original amplitude and phase image of the BLT4 thin film, re-
spectively. Figure 5c,d show the amplitude and phase image of the BLT4 thin film obtained
after polarizing an area of approximately 3 × 3 mm2 at −9 V and subsequently polarizing
the central region with +9 V bias. This process revealed three distinct polarization states:
an outer region that remained unbiased during growth, a region biased negatively at −9 V,
and a centrally biased region at +9 V. These observations indicate complete polarization,
switching between “up” and “down” states. Figure 5e,f show an additional PFM scan of
the sample taken 30 min after the writing domain. The results indicate that the sample ex-
hibits robust domain stability, underscoring its potential value in non-volatile ferroelectric
memory applications.
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Similarly, we conducted piezoelectric response force microscopy characterization on
the as-prepared BLT5 thin films in randomly selected regions, as illustrated in Figure 6. Fol-
lowing domain writing, we observed that some shapes in the amplitude map matched the
intended designs, yet the phase map did not exhibit clear shape features. This discrepancy
arises from the fact that when writing domains, ferroelectric domains are only partially
induced, which is a notable contrast to BLT4 thin films.
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To investigate the resistance characteristics of Au/BLT/Pt devices, I-V curves were
measured at room temperature according to the schematic shown in Figure 7a. Figure 7b
shows a semilog plot of the I-V measurement, where the arrow indicates the voltage
sweep. The voltage scanning sequence is 1 → 2 → 3 → 4 → 5, and the corresponding
voltage is 0 V → 6 V → 0 V → −6 V → 0 V. It can be found that the device has resistance
switching characteristics. With the increase in the forward sweep voltage, an SET occurs
at about 3.2 V, and the device current increases significantly. The device switches from
the high-resistance state (HRS) to the low-resistance state (LRS) [34,35]. As the negative
sweep voltage increases, and as the sweep voltage returns from −6 V to 0 V, the device
switches from the LRS to the HRS. This shows that Au/BLT/Pt memory devices have
resistor characteristics and have good application prospects in memristor.
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strates using the sol–gel method, employing various spin-coating times. All thin films show
random orientations and have the appearance of rod-like grains. The findings indicate a
proportional increase in the film thickness, approximately 35 nm per layer, with each addi-
tional spin-coating application. Different spin-coating durations influence the ferroelectric
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